
198:538 Complexity of Computation Homework 3 Solutions
Rutgers University, Spring 2007

Problem 1

(a) Let M1,M2, . . . be an enumeration of polynomial-time Turing Machines. Since L /∈ P, for
each machine Mi there exist infinitely many x such that Mi fails to solve x correctly for L.
The distribution µL,n will be designed in a way so that it gives substantial probability to such
x. Then if we think of Mi as a heuristic, it will fail with non-negligible probability.

Let’s look at a particular instance length n and the first n machines M1, . . . ,Mn. If the
machine Mi fails to solve some x of length n correctly, µL,n will assign probability about 1/n
to this x. This will ensure that for every machine Mi, a lot of probability will fall on instances
that Mi does not solve correctly.

More formally, we have

µL,n(x) =


pn, if x is the first string of length n such that

Mi(x; 1/n2) 6= L(x) for some i ≤ n;
0, otherwise.

The number pn is chosen so that µL,n is a probability distribution, namely the probabilities
are distributed evenly among all the instances of the first type. Note that pn ≥ 1/n since at
most n strings are ”covered” by nonzero probability in the above definition.

Now, for every potential heuristic algorithm Mi for L, let x∗ be the first x of length n ≥ i
such that Mi(x∗; 1/n2) 6= L(x∗). But µL,n(x∗) = pn ≥ 1/n, therefore

Prx∼µL,n [Mi(x; 1/n2) 6= L(x)] ≥ 1/n2

so Mi cannot be a heuristic algorithm for L.

(b) The “if” direction is true for every ensemble µ. For the “only if” part we need to come up
with a µ such that if L ∈ NP− P then (L, µ) doesn’t have a polynomial-time heuristic. Let
N1, N2, . . . be an enumeration of nondeterministic polynomial-time turing machines. Define
µ as follows.

µn(x) =
µL(N1),n(x) + · · ·+ µL(Nn),n(x)

n
,

where L(Ni) is the language defined by machine Ni and µL(Ni),n is defined as in part (a).

Now suppose Mi is a potential heuristic algorithm for L. Let x∗ be the first string of length
n ≥ i such that Mi(x∗, 1/n2) 6= L(x∗). Then µL,n(x∗) ≥ 1/n and therefore µn(x∗) ≥ 1/n2.
However,

Pr
x∼µn

[Mi(x; 1/n2) 6= L(x)] ≥ 1/n2

so Mi is not a heuristic algorithm for L.

1

2

Problem 2

(a) Suppose, by way of contradiction, that µ is polynomial time computable. Therefore, there is
an efficient procedure that on input x computes µn(x). Let ν be the uniform distribution. To
distinguish µ from ν, consider the following test T (·). On input x, if µn(x) > 0 then output
1, otherwise output 0. Since for at least half the strings we have µn(x) = 0, it follows that
|PrX∼{0,1}n [T (Gn(X)) = 1]− PrY∼{0,1}m [T (Y) = 1]| ≥ 1/2. This contradicts the assumption
that Gn is a pseudorandom generator.

(b) To prove that PComp = PSamp implies P = P#P, recall that there is a randomized algo-
rithm R which given a DNF formula uniformly samples a satisfying assignment in expected
polynomial time. Consider now an algorithm that first picks a random formula ϕ of length n,
and then runs R to produce (ϕ, R(ϕ)). This algorithm can be viewed as a polynomial-time
sampler for pairs (ϕ, a) (for simplicity assume |ϕ| = |a| = n) from the distribution

µ2n(ϕ, a) =
{

1/(2n ·#SAT(ϕ)), if a is a satisfying assignment for ϕ;
0, otherwise;

Under the assumption PComp = PSamp, there is a polynomial-time algorithm that on input
(ϕ, a) computes the value µ2n(ϕ, a). We can use this algorithm to solve #DNF exactly as
follows: On input ϕ, first find an arbitrary satisfying assignment a for ϕ (this can be done
in linear time), then output the value 1/(2n · µ2n(ϕ, a)) = #SAT(ϕ). Since #DNF is #P-
complete it follows that P = P#P.

One can prove a statement in the oposite direction if the sampling algorithm S always runs
in polynomial time. Then there is a polynomial-time verifier A that takes input x of length
n and potential witness r and accepts when S(1n, r) ≤ x (meaning that when the sampling
algorithm uses r as its randomness, it outputs a string that is lexicographically at most r).
Then

µn(x) = |{r, |r| = p(n) : M(x, r) accepts}|/2p(n).

where S(1n) uses p(n) bits of randomness. If P = P#P this quantity is clearly computable in
polynomial time.

Problem 3

Let A′ be an average polynomial-time algorithm with running time tA′(x) on input x, which for
some constant c satisfies Ex∼µn [tA′(x)1/c] = O(n). By Markov’s inequality for every ε > 0 we have

Pr[tA′(x)1/c > O(n/ε)] < ε.

To construct an algorithm A with the desired properties, we run A′ for O((n/ε)c) steps, and if it
halts we output the answer, otherwise we output “fail”. We have

Pr[A(x, ε) = “fail”] = Pr[tA′(x) > O((n/ε)c)] = Pr[tA′(x)1/c > O(n/ε)] < ε

as desired.

3

For the converse, suppose that

Pr
x∼µn

[A(x; ε) = ”fail”] < (n/ε)c

for every ε > 0. We use A to construct an average polynomial-time algorithm A′ as follows: On
input x, first try running A(x; 1/2). This should take care of half the inputs. If A fails, try running
A(x; 1/4). This should take care of half the remaining inputs, and so on. More formally,

A′(x)
1 k ← 0
2 repeat k ← k + 1
3 answer ← A(x, 2−k)
4 until answer 6= “fail”
5 return answer

Let Sk be the set of all inputs of length n that are solved in the kth iteration of this algorithm.
Then Prx∼µn [x ∈ Sk] ≤ 2−k+1, because iteration k − 1 has solved all but a 2−(k+1) fraction of
inputs. Also, if x ∈ Sk then the running time tA′(x) is at most

∑k
i=1((n ·2i)c +O(1)) = O((n ·2k)c).

A′ is an average polynomial-time algorithm since

Ex∼µn [tA′(x)1/2c] =
∞∑

k=1

Ex∼µn [tA′(x)1/2c | x ∈ Sk] · Pr[x ∈ Sk]

≤
∞∑

k=1

O((n · 2k)c/2c) · 2−k+1

=
∞∑

k=1

O(n1/2 · 2−k/2) = O(n1/2).

Now let R be a reduction from (L, µ) to (L′, µ′), and let p(n) be the polynomial associated with R.
If A′ is an algorithm for (L′, µ′), define the algorithm A for (L, µ) as A(x; ε) = A′(R(x); ε/p(n)). It
can be shown (see the proof of theorem 7 in the notes) that Pr[A(x; ε) = “fail”] ≤ ε.

Problem 4

Observe that a graph G has a cycle of odd length if and only if there is an edge (u, v) for which
there is also a path of even length between u and v. Furthermore, there is a path of even length
between two nodes u, v ∈ V (G) if and only if (G2, u, v) ∈ USTCON . Consider now the following
algorithm.

S(G)

1 for each edge (u, v) in G
2 do if (G2, u, v) ∈ USTCON
3 then reject
4 accept

4

By the above discussion, this algorithm accepts if and only if G is bipartite. The algorithm can
also be made to use logarithmic space. The only problem is that we cannot afford to construct
G2 and feed its description to our subroutine for USTCON . However, we can decide if there is a
path of length two between two nodes u, v ∈ G(V), i.e. if (u, v) is an edge in G2, just by using the
description of G and logarithmic space (check if there is a w such that (u, w) and (w, v) are both
edges of G). Hence, every time the subroutine USTCON needs to know if (u, v) is an edge of G2,
we can answer in logarithmic space.

