198:538 Complexity of Computation Homework 1 Solutions
Rutgers University, Spring 2007

Problem 1

(a) Since Lg € P, there is a polynomial-time algorithm A which on input (M, x, 2, 1%) decides if
there is a y (with z a prefix of y and |y| < t) such that M accepts (z,y) in at most ¢ steps. We
are going to construct a polynomial-time search algorithm S for L, using A as a subroutine.
Our algoritm S will start with z and by asking A the proper questions will extend it bit by
bit to an answer y (if one exists).

(M, x,2,1%)
Pz
if A(M,x,p,1") rejects
then return No
while TRUE
do if A(M,x,p0,1")
then p < 20
elseif A(M,x,pl,1")
then p «— pl
else return p

© 00 O Ui Wi+~ N0

It is easy to see that before each while loop (and if an answer y exists), it holds that z is an
extendable prefix of some y. The algorithm will terminate after at most ¢ iterations.

(b) Let R’ be any N P-search problem described by verifier M, input z, polynomial bound p(+).
Then the search problem R (defined as in part (a)) is an N P-search problem, and by our
assumption that P = NP there must be a polynomial time algorithm for Lr. Hence, we can
run the search algorithm S for R on input (M, z, e, 17{#]) (where ¢ is the empty string).

Problem 2

First note that there is a polynomial-time turing machine V', which on input (x,y) verifies whether
y is a valid answer for x or if it is not. Now let M7, M, ..., be an enumeration of turing machines.
Our algorithm A on input = will simulate machines Mj, Ms, ..., M, (where n = |z|) on z. Since
A doesn’t know if those machines ever stop, it cannot simulate them sequentially. A will simulate
one step of My, then one of M, and so on; until it reaches M,,, at which point it starts all over
again.

In the process of this simulation, when a machine M; halts and outputs a y, our algorithm runs
V to see whether (x,y) € R; if the answer is positive it halts and returns y, otherwise it continues
with the simulation.

To take care of the case when there is no y such that (x,y) € R, A runs in parallel an exponential
search algorithm S for R. Let the running time of S to be at most 2", for a constant c.

Suppose now, that a search algorithm M for R exists among the machines My, Ms, ..., M,. In this
case, if t is the running time of M, A will simulate at most ¢ steps of machines M1, Mo, ..., M,
until the answer is found. This can be done in O(nt?) time for the n simulations (the square on ¢
accounts for the simulation overhead) plus an additional n¢ for the verification.

If M is not among My, Mo, ..., M,, then the answer will be given (if not from one of these machines)
from the exponential search algorithm for R that is run in parallel.

All in all, if M is the k-th machine in the enumeration, we have the following running times. If
x € L then the running time is O(nt? + n¢). (When n < k the running time is O(2*°), but this is
just a constant consumed by the O-notation.) If ¢ L then the running time is O(2""), as required.

Problem 3

(a) As it was shown in class, there exist functions f : {0,1}" — {0,1} that cannot be computed
by any circuit of size s(n). For each such function f, let L = {z € {0,1}" | f(z) = 1}. Now
order the set of these languages by inclusion, and pick a minimal language L’. There has to
be at least one element zy in L’ (otherwise f would be an easy function). Observe that by
the minimality of L’ we know that L = L’ — {zo} has to be in SIZE(s(n)).

(b) In view of part (a) it is enough to argue that L U {x¢} is in SIZE(s(n) + O(n)). This is true
because we can augment the circuit for L with a small circuit that checks whether z = xq.

(¢) The same argument for Turing Machines would have to consider functions that take as input
a string of any length. This has the effect that there might be no minimal element in the
corresponding ordering of the functions.

Problem 4

(a) From problem 3 we know that there are languages in SIZE(n!!) that are not in SIZE(n!?).
It suffices to show that such a language is in ¥4. Now fix an input length n and consider the
smallest circuit C), that computes a function on n bits not computable by any circuit of size
n'?. We know C,, will have size at most n''. Define L on inputs of length n as the set of all
x accepted by C,,.

Recall that circuits of size s can be described by strings of O(slogs) bits, and when we say
one circuit is smaller than another we mean that it is described by a lexicographically smaller
string.

We show that L is in 4. For this, observe that C' = C), can be uniquely described as the
circuit with the following two properties:

e If D is a circuit of size n'°, then C' and D do not compute the same function.

e If F is a smaller circuit than C, then E computes some function in SIZE(n!?). Namely,
there is a circuit F' of size n'® such that F and F compute the same function.

Formally, we have that

z €L <= 3C of size at most |z|'! such that
VD of size |z|*°, 3y such that C(y) # D(y) and
VE smaller than C'
3F of size |z|' such that Vz, F(z) = F(z) and
C(z)=1.

By construction, for sufficiently large input lengths n, L is not computable by any circuit of
10

size n™".

(b) Consider the relation of NP and SIZE(n'?). If NP ¢ SIZE(n!?), then clearly ¥ ¢ SIZE(n!Y).
On the other hand, if NP C SIZE(n!?), then X5 = ¥4 by the Karp-Lipton theorem. It follows
from part (a), that Yo ¢ SIZE(n!Y).

