
198:538 Complexity of Computation Homework 1 Solutions
Rutgers University, Spring 2007

Problem 1

(a) Since LR ∈ P , there is a polynomial-time algorithm A which on input (M,x, z, 1t) decides if
there is a y (with z a prefix of y and |y| ≤ t) such that M accepts (x, y) in at most t steps. We
are going to construct a polynomial-time search algorithm S for L, using A as a subroutine.
Our algoritm S will start with z and by asking A the proper questions will extend it bit by
bit to an answer y (if one exists).

S(M,x, z, 1t)

1 p← z
2 if A(M,x, p, 1t) rejects
3 then return No
4 while true
5 do if A(M,x, p0, 1t)
6 then p← z0
7 elseif A(M,x, p1, 1t)
8 then p← p1
9 else return p

It is easy to see that before each while loop (and if an answer y exists), it holds that z is an
extendable prefix of some y. The algorithm will terminate after at most t iterations.

(b) Let R′ be any NP -search problem described by verifier M , input x, polynomial bound p(·).
Then the search problem R (defined as in part (a)) is an NP -search problem, and by our
assumption that P = NP there must be a polynomial time algorithm for LR. Hence, we can
run the search algorithm S for R on input (M,x, ε, 1p(|x|)) (where ε is the empty string).

Problem 2

First note that there is a polynomial-time turing machine V , which on input (x, y) verifies whether
y is a valid answer for x or if it is not. Now let M1,M2, . . . , be an enumeration of turing machines.
Our algorithm A on input x will simulate machines M1,M2, . . . ,Mn (where n = |x|) on x. Since
A doesn’t know if those machines ever stop, it cannot simulate them sequentially. A will simulate
one step of M1, then one of M2, and so on; until it reaches Mn, at which point it starts all over
again.

In the process of this simulation, when a machine Mi halts and outputs a y, our algorithm runs
V to see whether (x, y) ∈ R; if the answer is positive it halts and returns y, otherwise it continues
with the simulation.

1

2

To take care of the case when there is no y such that (x, y) ∈ R, A runs in parallel an exponential
search algorithm S for R. Let the running time of S to be at most 2nc

, for a constant c.

Suppose now, that a search algorithm M for R exists among the machines M1,M2, . . . ,Mn. In this
case, if t is the running time of M , A will simulate at most t steps of machines M1,M2, . . . ,Mn

until the answer is found. This can be done in O(nt2) time for the n simulations (the square on t
accounts for the simulation overhead) plus an additional nc for the verification.

If M is not among M1,M2, . . . ,Mn, then the answer will be given (if not from one of these machines)
from the exponential search algorithm for R that is run in parallel.

All in all, if M is the k-th machine in the enumeration, we have the following running times. If
x ∈ L then the running time is O(nt2 + nc). (When n < k the running time is O(2kc

), but this is
just a constant consumed by the O-notation.) If x /∈ L then the running time is O(2nc

), as required.

Problem 3

(a) As it was shown in class, there exist functions f : {0, 1}n → {0, 1} that cannot be computed
by any circuit of size s(n). For each such function f , let L′

f = {x ∈ {0, 1}n | f(x) = 1}. Now
order the set of these languages by inclusion, and pick a minimal language L′. There has to
be at least one element x0 in L′ (otherwise f would be an easy function). Observe that by
the minimality of L′ we know that L = L′ − {x0} has to be in SIZE(s(n)).

(b) In view of part (a) it is enough to argue that L ∪ {x0} is in SIZE(s(n) + O(n)). This is true
because we can augment the circuit for L with a small circuit that checks whether x = x0.

(c) The same argument for Turing Machines would have to consider functions that take as input
a string of any length. This has the effect that there might be no minimal element in the
corresponding ordering of the functions.

Problem 4

(a) From problem 3 we know that there are languages in SIZE(n11) that are not in SIZE(n10).
It suffices to show that such a language is in Σ4. Now fix an input length n and consider the
smallest circuit Cn that computes a function on n bits not computable by any circuit of size
n10. We know Cn will have size at most n11. Define L on inputs of length n as the set of all
x accepted by Cn.

Recall that circuits of size s can be described by strings of O(s log s) bits, and when we say
one circuit is smaller than another we mean that it is described by a lexicographically smaller
string.

We show that L is in Σ4. For this, observe that C = Cn can be uniquely described as the
circuit with the following two properties:

• If D is a circuit of size n10, then C and D do not compute the same function.

3

• If E is a smaller circuit than C, then E computes some function in SIZE(n10). Namely,
there is a circuit F of size n10 such that E and F compute the same function.

Formally, we have that

x ∈ L ⇐⇒ ∃C of size at most |x|11 such that
∀D of size |x|10, ∃y such that C(y) 6= D(y) and
∀E smaller than C

∃F of size |x|10 such that ∀z,E(z) = F (z) and
C(x) = 1.

By construction, for sufficiently large input lengths n, L is not computable by any circuit of
size n10.

(b) Consider the relation of NP and SIZE(n10). If NP * SIZE(n10), then clearly Σ2 * SIZE(n10).
On the other hand, if NP ⊆ SIZE(n10), then Σ2 = Σ4 by the Karp-Lipton theorem. It follows
from part (a), that Σ2 * SIZE(n10).

