
80240233: Complexity of Computation Lecture 4
ITCS, Tsinghua Univesity, Fall 2007 19 October 2007

Instructor: Elad Verbin Notes by: Decheng Dai

In this lecture, we discuss Circuit, which are a computational model stronger than Turing Machines.
We prove the Karp-Lipton-Sipser Theorem, which states that if the Polynomial Hierarchy does not
collapse, than polynomial-sized circuits cannot solve NP-hard problems. (Intuitively, this means
that circuits are not a lot stronger than Turing machines as far as the P versus NP question is
concerned).

1 Circuits

A circuit is a directed acyclic graph where nodes are called gates and edges are called wires. Input
gates are gates with in-degree zero, and output gates are gates with out-degree zero. Input (resp.
output) gates are labeled with bits of the input (resp. output) in a one-to-one fashion; each non-
input gate is an AND, OR or NOT gate. AND and OR gates have a fan-in of 2, while NOT gates
have a fan-in of 1. An important point is that gates may have unbounded fan-out, unless explicitly
stated otherwise.

A circuit C with n inputs and m outputs computes a function fC : {0, 1}n → {0, 1}m. An important
complexity measures for circuits is the size, where the size of C is the number of AND and OR
gates in the circuit C. (We justified that the NOT gates are not counted by noting that any circuit
C has a circuit C ′ that computes the same function, has the same number of AND and OR gates,
and where the number of NOT gates is at most the number of other gates, plus n).

For simplicity we, from now on, consider only circuits with one output bit, i.e. m = 1.

2 How Strong are Circuits?

It is natural to wonder how many boolean functions can a circuit with at most n inputs and t AND
and OR gates compute? Another interesting question is whether there is any relation between
Turing machines and circuits? For the first question, there is an upper bound of (n + t)O(n+t) and
a lower bound on 2b

t−1
n
c which we show in this section. For the second question, the Karp-Lipton-

Sipser Theorem, which we show in Section 4 gives some results.

Claim 1. The set of all circuits on n bits of size t computes at most (n + t)O(n+t) distinct boolean
functions.

Proof. Note that the number of boolean functions with n inputs is at most 22n
. Therefore, when

t ≥ 2n, the claim is trivially true. Suppose for now that there are no NOT gates. For any circuit
with t ∈ [0, 2n), we consider the number of wires and possible entry-points in the circuit. Since

1

2

each gate has exactly two entry-points, there must be a total of (2× t + 1) entry-points (the extra
one is for the circuit’s output). There is a total of n + t gates (including the inputs), and each
entry-point must be connected to exactly one of these. Therefore, there are at most (2× t + 1)n+t

different connections. The effect of NOT gates is that each edge can be reversed by a NOT gate,
so we need to multiply by 2n+t. Furthermore, each two-input gate can be either AND or OR, so
we need to multiply by 2t. Overall, the number of circuits is at most

2n+t × 2t × (2t + 1)n+t ≤ (n + t)O(n+t)

Corollary 2. if n ≥ 1000, then there is a function f on n inputs that cannot be computed using
only 20.9n gates.

Proof. A counting argument. If n ≥ 1000, t = 20.9n, then (n + t) ≈ 20.9n, so (n + t)O(n+t) =
20.9n×20.9n

< 22n
.

Claim 3. The circuits with n inputs of size t can compute at least 2b
t−n

n
c distinct functions.

We leave this as an exercise and prove only an easier claim.

Claim 4. Circuits of size t = 2n × n + 1 can compute all different functions of n variables.

Proof. Let function f : {0, 1}n → {0, 1}, we use the CNF of f to construct a circuit. There are at
most 2n clauses in this formula and n variables in every clause. Every clause of the formula uses a
n-AND gate(can be simulated with n− 1 basic AND gates) and the formula is a 2n-OR gate (can
be simulated by 2n − 1 basic OR gates) taking all the clauses as its inputs.

(n− 1)× 2n + (2n − 1) ≤ 2n × n− 1.

3 Asymptotic Circuit Complexity: Definitions

A circuit family C = {C1, C2, ..., Cn, ...} is an infinite set of circuits such that Ci receives i input
bits; a circuit family defines a function f(x) = C|x|(x) and a decision problem L ⊆ {0, 1}∗, where

L = {x ∈ {0, 1}∗|C|x|(x) = 1}.

The class P/poly is the set of all decision problems accepted by circuit families {C1, C2, ..., Cn, ...}
s.t. SIZE(Cn) ≤ nO(1). In general , for a function m : N → N, SIZE(m(n)) is the set of languages
accepted by circuit families {C1, C2, ..., Cn, ...} where SIZE(Cn) ≤ m(n). So,

P/poly =
⋃
c≥1

SIZE(nc)

3

4 The Karp-Lipton-Sipser Theorem

Theorem 5 (Karp-Lipton-Sipser). if NP ⊆ P/poly, then Π2 = Σ2, so PH = Σ2.

According to the theorem, to prove that PH does not collapse to the second level, it is enough to
prove that 3-SAT cannot be computed by poly-sized circuit. Before proving the above theorem, we
first show a result that contains some of the ideas in the proof of the Karp-Lipton-Sipser theorem.

Lemma 6. if NP ⊆ P/poly then there exists a poly-size circuit family {C1, C2, ..., Cn, ...} that gets
as input a 3-CNF formula Φ, and returns a satisfying assignment if there exists one, or 0’s if Φ is
not satisfiable.

Proof sketch. Consider the following NP problem: given as input the formula Φ over n variables, a
number k, and k bits b1, ..., bk, output 1 if and only if there is a satisfying assignment x1, ..., xn for
Φ where xi = bi, for all 1 ≤ i ≤ k. By the assumption, there exists a polynomial size circuit family
which realizes this NP computation. By composing 2n such circuits, we can build the witness from
scratch.

The lemma provides a way to guess the 0, 1’s of some satisfying assignment for a 3-SAT formula
one by one; we now prove the Karp-Lipton-Sipser theorem.

Proof of Theorem 5. We will show that if NP ⊆ P/poly then Π2 ⊆ Σ2. By a result in lecture 3,
this implies that PH = Σ2. Let L ∈ Π2, then there is a deterministic Turing Machine V such that

x ∈ L ⇐⇒ ∀y1∃y2.V (x, y1, y2) = 1.

(All quantifiers also restrict the variable to be a bit-string of polynomial size. To make the formulas
easier to read, we do not write this explicitly in notation).

By adapting the proof of the lemma, we can show that for every n there is a circuit Cn of size
poly(n) such that for every x and y1,

∃y2.V (x, y1, y2) = 1 ⇐⇒ V (x, y1, Cn(x, y1)) = 1

Thus, we have that for inputs x of length n,

x ∈ L ⇐⇒ ∃〈Cn〉∀y1.V (x, y1, Cn(x, y1)) = 1

where 〈Cn〉 stands for the binary string that represents Cn.

Thus, we have shown that L ∈ Σ2.

Note that in the proof we in fact show that if NP ⊆ P/poly and if L ∈ Π2 then there exists a
machine V such that for every x,

x ∈ L ⇐⇒ 〈Cn〉∀y1.V (x, y1, Cn(x, y1)) = 1

4

where 〈Cn〉 is a string that depends on |x| but not on x. Thus, we have shown that L is in a slightly
smaller class than Σ2, in which the existential variable depends on the length of the input but not
on the input itself. This means that NP ⊆ P/poly implies a collapsing result which is slightly
stronger than Σ2 = Π2.

