
80240233: Complexity of Computation Lecture 21
ITCS, Tsinghua Univesity, Fall 2007 18 December 2007

Instructor: Andrej Bogdanov Notes by: Wei Yu

It the last lecture we showed that if one-way permutations exist, then so do pseudorandom gener-
ators from n to n + 1 bits. Now we show that these can be used to go from n bits to m(n) bits.
Then we use these generators to construct another objest called a “pseudorandom function”. A
pseudorandom function from {0, 1}n to {0, 1}n is a function that to any polynomial-size circuit
appears completely random, yet takes only n random bits to specify – as opposed to a random
function, which requires many more random bits.

1 Pseudorandom generators with longer output

We now show how, given a pseudorandom generator G : {0, 1}n → {0, 1}n+1, we can get G′ :
{0, 1}n → {0, 1}m(n) for arbitrary polynomial m(n). For simplicity, we will only show the argument
for m(n) = n+ 2. It will then be clear how this construction can be bootstrapped to obtain larger
values for m(n).

Let G : {0, 1}n → {0, 1}n+1 be an arbirtary pseudorandom generator. Write G(x) = (g(x), b(x)),
where g(x) are the first n output bits of G(x), and b(x) is the last bit. We will show that the
function G′ : {0, 1}n → {0, 1}n+2 given by

G′(x) = (G(g(x)), b(x)) = (g(g(x)), b(g(x)), b(x))

is a pseudorandom generator. What happens here is that we apply G(x), save the last bit of the
output, then apply G again on the first n bits. We can continue the same procedure to

Theorem 1. If G is a pseudorandom generator then so is G′.

Proof. To argue that G′ is pseudorandom, let’s look at the following picture, which shows how the
output of G′ is obtained:

x
G−−−→ G(x) = (g(x), b(x)) G1−−−−→ (G(g(x)), b(x))

here, G1 : {0, 1}n+1 → {0, 1}n+2 is the function that applies G to the first n bits of input and
preserves the last bit.

To argue that the output of G′ is indistinguishable from a random string of length n+ 2, it will be
convenient to think “in parallel” what happens when G1 is applied to a uniformly random string
of length n+ 1:

yn
G−−−→ G(yn) = (g(yn), b(yn)) G1−−−−→ G′(yn) = (G(g(yn)), b(yn))

(yn, y1) G1−−−−→ (G(yn), y1)

(yn+1, y1)

1



2

Here, yi is a random string of length i. Now suppose that some circuit C can ε-distinguish between
the distributions G′(yn) and yn+2 = (yn+1, y1). Then C can either ε/2-distinguish between G′(yn)
and (G(yn), y1), or it can ε/2-distinguish between (G(yn), y1) and (yn+1, y1).

In the first case, the following circuit C ′ can ε/2-distinguish G(yn) from yn+1: On input z, output
G1(z). In the second case, we can use the following randomized circuit C ′′: On input z, choose a
random y1 ∼ {0, 1} and output C(z, y1). Either way, the output of G is ε/2-distinguishable from a
random output by a circuit whose size is larger than C by at most poly(n).

One idea in this proof is that if two distributions X and Z are distinguishable, then for any
distribution Y either X and Y are distinguishable or Y and Z are distinguishable. To turn one type
of distinguisher into another, it is often helpful to introduce one or several intermediate distributions
Y which will make the problem more closely related to what we are aiming at. This is known as
“the hybrid argument”, as the distribution Y typically represents some sort of hybrid of X and
Z. We already saw one application of the hybrid argument in Lecture 9 on the Nisan-Wigderson
generator.

For our next application, the construction of pseudorandom functions, it will be convenient to
use an alternative definition of pseudorandom generator. In the definition we used, the generator
obtains one sample, and based on this one sample it is supposed to tell if the sample looks random
or pseudorandom. However, we can also consider a distinguisher that obtains as many samples as
it wants to have, and we expect the distinguishing probability to remain small. This is indeed the
case.

Theorem 2. If G : {0, 1}n → {0, 1}m(n) is a pseudorandom generator, then for any polynomial-size
family of oracle circuits C that queries q(n) strings of length m(n) and every polynomial p(n)∣∣Pry1,...,yq∼{0,1}m [Cy1,...,yq(1n) = 1]− Prx1,...,xq∼{0,1}m [CG(x1),...,G(xq)(1n) = 1]

∣∣ < 1/p(n).

Proof. Let ε = 1/p(n). Suppose there is some C such that∣∣Pry∼{0,1}m(n) [Cy1,...,yq(1n) = 1]− Prx∼{0,1}n [CG(x1),...,G(xq)(1n) = 1]
∣∣ ≥ ε.

Consider the distribution Hi = (G(x1), . . . , G(xi−1), yi, . . . , yq), where the first i − 1 strings are
random, and the last q − i of them are pseudorandom, all of them independent. Then the above
inequality says that ∣∣Prh∼H0 [Ch(1n) = 1]− Prh∼Hq [Ch(1n) = 1]

∣∣ ≥ ε.
There must exist a value 0 ≤ i < q such that∣∣Prh∼Hi

[Ch(1n) = 1]− Prh∼Hi+1
[Ch(1n) = 1]

∣∣ ≥ ε/q.
Fix choices of x1, . . . , xi−1, yi+1, . . . , yq that maximize this probability. Then∣∣Pryi [C

G(x1),...,yi,...,yq(1n) = 1]− Prxi [C
G(x1),...,G(xi),...,yq(1n) = 1]

∣∣ ≥ ε/q.
Then the circuit C ′(z) = CG(x1),...,G(xi−1),z,yi+1,...,yq(1n) will ε/q-distinguish yi and G(xi), which is
a contradiction.



3

2 Pseudorandom functions

We now define pseudorandom functions. For this, we want to think of a function F : {0, 1}k →
{0, 1}n as a table of values F (x) ∈ {0, 1}n, one for every x ∈ {0, 1}k. A random function R has the
property that all the values R(x) are uniformly distributed in {0, 1}k and mutually independent.
To specify such a function, we need to choose 2k random values R(x) uniformly and independently
from {0, 1}n, so the construction requires n · 2k random bits. A pseudorandom function is one that
looks like a random function to any polynomial-size circuit family, yet can be specified using only
n random bits.

Definition 3 (Pseudorandom Function). A pseudorandom function is a family of functions Fz :
{0, 1}k(n) → {0, 1}n (k(n) = poly(n)), where z ∈ {0, 1}n such that on input (z, x), the value Fz(x)
is polynomial-time computable, and for every polynomial-size family of oracle circuits C and every
polynomial p: ∣∣Prz∼{0,1}n

[
CFz(1n) = 1

]
− PrR∼{0,1}k

[
CR(1n) = 1

]∣∣ < 1
p(n)

where R is a random function.

G

G G

G G G G

z

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

· · · · · · · · · · · · · · · · · · · · · · · ·

Fz(0k) Fz(0k−11) · · · · · · Fz(1k)

g0(z) g1(z)

g0(g0(z)) g1(g0(z)) g0(g1(z)) g1(g1(z))

Figure 1: Construction of a pseudorandom function

Theorem 4. If a pseudorandom generator G : {0, 1}n → {0, 1}2n exists, then a pseudorandom
function exists for any k(n) = poly(n).



4

Proof. Let G(z) = (g0(z), g1(z)), where g0(z) and g1(z) represent the first and last k bits of G(z),
respectively. We will show that the family of functions

Fz(x) = gxk
(· · · gx2(gx1(z)) · · · )

is pseudorandom. The construction is showed in Figure 1.

Suppose that for some C and ε,∣∣Prz∼{0,1}n
[
CFz(1n) = 1

]
− PrR∼{0,1}k

[
CR(1n) = 1

]∣∣ ≥ ε.
We will use a hybrid argument to design a distinguisher that violates Theorem 2. To do this, we
introduce the following family of hybrid semi-random functions H0, . . . ,Hk:

Hi: Choose a random function R : {0, 1}i → {0, 1}n
On input x, output the value gxk

(· · · gxi+1(R(x))).

Notice that H0 is exactly the distribution Fz (in this case R is a constant string of length n), while
Hk is a random function. For instance, for k = 3, the hybrids H0, H2, and H3 are illustrated in
Figure 2.

z

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

· · · · · · · · · · · · · · · · · · · · · · · ·

Fz(0k) Fz(0k−11) · · · · · · Fz(1k)

R R

R

G G G G

G

G G

G G G G

z

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

· · · · · · · · · · · · · · · · · · · · · · · ·

Fz(0k) Fz(0k−11) · · · · · · Fz(1k)

z

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1

· · · · · · · · · · · · · · · · · · · · · · · ·

Fz(0k) Fz(0k−11) · · · · · · Fz(1k)

RR R R

R R

R

· · · · · · · · · · · · · · · · · ·

Figure 2: Hybrid functions. Here R represents a random function.

By the hybrid argument, there must exist an index i such that∣∣Pr[CHi−1(1n) = 1]− Pr[CHi(1n) = 1]
∣∣ ≥ ε/k.

Recall that our aim is to construct an oracle circuit C ′ such that∣∣Pr[C ′y1,...,yq = 1]− Pr[C ′G(x1),...,G(xq)] = 1]
∣∣ ≥ ε′

for some ε′ = poly(ε, 1/n). To do this, notice that the functions Hi−1 and Hi differ only in what
happens at “level” i. In Hi−1, the inputs chosen at this level look like the outputs of G, while in Hi

they look random. So if we can distinguish between Hi−1 and Hi, we should be able to distinguish
random and pseudorandom strings of length 2n (see figure 3).



5

The distinguisher C ′ will do the following:

C ′(1n): Let zj = (zj0, zj1) denote the jth query of C (zj0, zj1 ∈ {0, 1}n).
Simulate C(1n). When C(1n) makes its jth query xj ,

If no query xl such that xl1 . . . xl(i−1) = xj1 . . . xj(i−1) was made before (l < j)
Pretend that the answer to query xi is gxk

(· · · gxi+1(zjxi) · · · ).
Otherwise,

Pretend that the answer to query xi is gxk
(· · · gxi+1(zlxi

) · · · ),
where l is the smallest index of a query with the above property.

Return the output of C(1n).

· · · · · ·

R

G G

G

1

i − 1

i

i + 1

k

· · · · · ·R

G

1

i − 1

i

i + 1

k

R

R

Figure 3: Hybrid argument

To see what is happening, consider the partial function P : {0, 1}i → {0, 1}n defined as follows: If
xj is the jth query of C(1n), then P (xj1 · · ·xji) = zlxji

, where l is the smallest index of a query
such that xl1 . . . xl(i−1) = xj1 . . . xj(i−1). When zj are uniformly random strings of length 2n, then
P (xj1 · · ·xji) behaves like random function from {0, 1}i to {0, 1}n. When zj = G(uj), ui ∼ {0, 1}n,
then P (xj1 · · ·xji) = gxi(ul), so P behaves like gxi applied to the output of a random function. In
the first case, the queries made by C follow the distribution Hi, and in the second case they follow
the distribution Hi+1. It follows that

Pr[C ′y1,...,yq(1n) = 1]− Pr[C ′G(x1),...,G(xq)(1n) = 1]

= Pr[CHi−1(1n) = 1]− Pr[CHi(1n) = 1] ≥ ε/q.


