
80240233: Complexity of Computation Lecture 20
ITCS, Tsinghua Univesity, Fall 2007 14 December 2007

Instructor: Andrej Bogdanov Notes by: Wei Yu

In Lecture 9 we saw how the Nisan-Wigderson (NW) generator can be constructed assuming assum-
ing the existence of an “average-hard” function. In this lecture, we will show that one way functions
give a Blum-Micali-Yao (BMY) type pseudorandom generator. Recall the main distinction between
these two types of generators:

• NW: The random seed is very small, but the running time of the generator depends on size
of distinguisher.

• BMY: The running time of the generator is independent of the size of the distinguisher, but
the random seed is longer.

Definition 1 (Blum-Micali-Yao Pseudorandom Generator). A Blum-Micali-Yao type pseudoran-
dom generator is a collection of functions Gn : {0, 1}n → {0, 1}m(n) (m(n) > n), such that,

1. On input x ∈ {0, 1}n, Gn(x) is polynomial time computable.

2. For every family of polynomial size circuits C, and every polynomial p(n),∣∣∣Prx∼{0,1}n [C(Gn(x)) = 1]− Pry∼{0,1}m(n) [C(y) = 1]
∣∣∣ < 1

p(n)

for sufficiently large n.

Theorem 2 (H̊astad, Impagliazzo, Levin, Luby). One-way functions exist if and only if pseudo-
random generators (with m(n) = poly(n)) exist.

In the last lecture we showed that every pseudorandom generator is a one-way function. It is more
difficult to show that if one-way functions exist, then so do pseudorandom generators. In this
lecture we will prove that if a special kind of one-way function called a “one-way permutation”
exists, then pseudorandom generators also exist.

Definition 3 (One-way permutation). A family of functions fn : {0, 1}n → {0, 1}n is a one-way
permutation if {fn} is a family of one-way functions and each fn is a permutation.

Theorem 4. If fn is a one-way permutation, then

Gn(x, r) = (f(x), r, 〈x, r〉)

where x and r are of length n, and 〈x, r〉 =
∑n

i=1 xiri mod 2 is the “inner product” of x and r
modulo 2, is a pseudorandom generator from {0, 1}2n to {0, 1}2n+1.

Since the input length will always be the same, we will write G for Gn and f for fn.

1



2

1 Proof of Theorem 4

We prove the contrapositive. Suppose G is not a pseudorandom generator. Then there exists a
family of circuits C of size s(n) = poly(n) and a function ε(n) = 1/poly(n) such that∣∣Prx,r∼{0,1}n [C (f(x), r, 〈x, r〉) = 1]− Pry∼{0,1}2n+1 [C(y) = 1]

∣∣ > ε(n)

We will construct a new family of polynomial-size circuits C ′ such that Prx∼{0,1}n [C ′(f(x)) = x] ≥
ε(n)/2, and conclude that f is not one-way.

Let’s view C as a distinguisher between the distributions (f(x), r, 〈x, r〉) and the uniform distribu-
tion U2n+1 on 2n+ 1 bits. If we write z = f(x), then C distinguishes between the distributions(

z, r, 〈f−1(z), r〉
)

: z, r ∼ Un and U2n+1.

We can now turn the distinguisher C into a predictor P (see Lemma 5 in lecture 9) of size s(n)+O(1)
which satisfies

Prx,r
[
P (z, r) = 〈f−1(z), r〉

]
>

1
2

+ ε

which is the same as

Prx,r [P (f(x), r) = 〈x, r〉] > 1
2

+ ε

By Markov’s inequality, it follows that

Prx

[
Prr [P (f(x), r) = 〈x, r〉] > 1

2
+
ε

2

]
>
ε

2

Let S be the set of all x such that

Prr [P (f(x), r) = 〈x, r〉] > 1
2

+
ε

2
(1)

This suggests the following algorithm for inverting f(x) when x ∈ S: On input z = f(x), try to
find all x′ such that Prr [P (z, r) = 〈x′, r〉] > 1/2 + ε/2. Since x satisfies (1), one of these x′ must
equal x. To find out which one, apply f(x′) to all of them and see which one maps to z. Since f is
a permutation, if f(x′) = z it must be that x′ = x.

Can we carry out this computation by a polynomial-size circuit? At first, the idea seems unreason-
able: It looks like there might be exponentially many x′ such that Prr [P (z, r) = 〈x′, r〉] > 1/2+ε/2,
so even listing all of them, much less computing them, may take too much time. However, this is
not the case, and the search of x′ can be carried out in polynomial-time, thanks to the following
theorem:

Theorem 5 (Goldriech-Levin). There is a randomized algorithm A which on input ε and given
oracle access to g : {0, 1}n → {0, 1} runs in time polynomial in n and 1/ε and with probability 2/3
outputs a list that contains all x such that

Prr [g(r) = 〈x, r〉] ≥ 1
2

+ ε.



3

2 Proof of the Goldreich-Levin theorem

We will start by proving a much weaker statement than what is required, and strenghten it in
stages to derive the proof of the theorem. Our goal is to design an algorithm A that outputs all x
such that

Prr [g(r) = 〈x, r〉] ≥ p.

where p = 1/2 + ε. Let us however start with the case p = 1.

Case p = 1. In this case, A can evaluate g(r) = 〈x, r〉 for every r and wants to “recover” x. It is
not hard to see that g uniquely determines x, and the ith bit of x is given by xi = 〈x, ei〉 = g(ei),
where ei is the string that has 1 in the ith coordinate and 0 everywhere else. So in this way we can
recover x bit by bit.

Case p = 1− 1
6n . Now we need to work a bit harder, since it might be the case that g(ei) 6= 〈x, ei〉,

so querying g at ei might be misleading. But we can deduce the value 〈x, ei〉 by querying g at two
random points, using a similar trick as when we did worst-case to average-case reductions for the
permanent in Lecture 16. We know that for every r, xi = 〈ei, x〉 = 〈x, r〉 + 〈x, r + ei〉. Moreover,
for a random r, the strings r and r + ei are both uniformly random in {0, 1}n. So, if we choose a
random r and compute g(r) + g(ei + r), we have that

Prr[g(r) + g(ei + r) 6= xi] ≤ Prr[g(r) 6= 〈x, r〉] + Prr[g(ei + r) 6= 〈x, ei + r〉] < 1
6n

+
1

6n
<

1
3n

By taking a union bound, we have that Prr[∃i : g(ei + r) + g(r) 6= xi] < 1
3 . So with probability 2/3

this randomized algorithm recovers all the bits of x.

Case p = 3
4 + ε. In the above algorithm, we now have that

Prr[g(r) + g(ei + r) 6= xi] ≤ Prr[g(r) 6= 〈x, r〉] + Prr[g(ei + r) 6= 〈x, ei + r〉] < 2(1/4− ε) < 1/2− 2ε.

We cannot take a union bound of n such events anymore. However, by repeating this procedure
several times, we can increase its success probability from 1/2−2ε to 1/3n, and then take the union
bound.

In particular, consider the following algorithm: For each 1 ≤ i ≤ n, compute the value g(r)+g(ei+r)
for t = O(log n/ε2) independent values of r and let xi equal the majority of the answers. Each trial
gives the correct value for xi with probability 1/2 − 2ε and the trials are independent, so by the
Chernoff bound the probability that a majority of the trials fails is at most exp((2ε)2t/2) < 1/3n.

Case p = 1/2 + ε. We now give the proof of the theorem. It turns out that an interesting
phenomenon happens when we try to take p ≤ 3/4. By the analysis of the previous case, it follows
that when p > 3/4, there is a unique x such that Pr[g(r) = 〈x, r〉] ≥ p. However, when p ≤ 3/4,
there may be two or more such xs. So we must introduce a way into the algorithm to disambiguate
between the different solutions.



4

There is also an evident (and related) problem with the above analysis: If we attempt to use the
same algorithm, we would get that Pr[g(r) + g(ei + r) = xi] < 1− 2ε, so it appears that we do not
obtain any information about the value xi.

However, suppose that someone could tell us the values hr = 〈x, r〉 needed by the algorithm, so we
wouldn’t have to query g to get them and make potential mistakes. Then we would have

Prr[hr + g(ei + r) 6= xi] ≤ Prr[g(ei + r) 6= 〈x, ei + r〉] < 1/2− ε. (2)

so the previous algorithm would work – provided that we knew the values hr = 〈x, r〉.

How can we get hold of the values hr? One possibility is to simply guess them, and think of each
possible guess as giving a candidate value for x. So to obtain a list of all x, one can simply go
through all the choices for hr. How many such choices are there? For each i, the algorithm uses
O(log n/ε2) choices of r, and there are n possible values of i, so we need to guess O(n log n/ε2)
different values hr. It looks like going through all the choices would take time exponential in n!

One place in the algorithm where we can save immediately is this: Instead of using independent
choices of r for the different coordinates i, we can in fact make the same choices. In the end, our
analysis works by taking a union bound over i, so it does not matter if the randomness used for
different coordinates is the same. This will reduce the number of random strings r needed by the
algorithm to O(log n/ε2), so the number of possible choices for hr becomes 2O(logn/ε2) = nO(1/ε2).
Recall that in our setting, ε = 1/poly(n), so this is still too large.

To further improve the algorithm, we introduce additional correlations among the rs. To amplify
the success probability of (2) from 1/2 + ε to 1 − 1/3n, it is not really necessary that the rs are
independent. It turns out that we can choose them in a dependent way so that we only need to
guess the value hr for a very small number of r, and this will automatically yield guesses for the
other rs.

We choose the rs from the following distribution: First, choose a “basis” r1, . . . , rm ∼ {0, 1}n
independently at random, where m = O(log(n/ε2)). Then, for every subset S ⊆ {1, . . . ,m}, set
rS =

∑
j∈S rj . Notice that guesses hj for the values 〈x, rj〉 automatically yield guesses hS for the

values 〈x, rS〉 via the formula 〈x, rS〉 =
∑

j∈S〈x, rj〉.

We can now give the algorithm A from the theorem:

Ag: Choose r1, . . . , rm independently at random from {0, 1}n.
For every choice of values h1, . . . , hm ∈ {0, 1}:

For every 1 ≤ i ≤ n:
For every S ⊆ {0, 1}m:

Set rS =
∑

j∈S ri and hS =
∑

j∈S hj .
Compute ai,S = hS + g(ei + rS).

Set xi = majorityS(ai,S).
Output x = x1 . . . xn.

We choose m = log(6n/ε2), so the number of possible choices for h1, . . . , hm is 6n/ε2 and the
running time of the algorithm is polynomial in n and ε.



5

Claim 6. For every x such that Prr[g(r) = 〈x, r〉] ≥ 1/2 + ε, with probability 2/3 over the choice
of r1, . . . , rm, Ag outputs x.

This claim almost proves the Goldreich-Levin theorem. The only difference is that it only guarantees
each x satisfying the condition will appear in the list with probability 2/3, while the theorem says
that the list contains all such x with probability 2/3. To take care of this, we run the algorithm 2n

times and take the union of all the lists output by it. Then each such x will appear in the list with
probability 1− 3−n, so by a union bound the list will contain all such x with probability 2/3.

Proof. We will show that Ag outputs x when hi = 〈x, rj〉 for all 1 ≤ j ≤ m, which also implies
hS = 〈x, rS〉 for every S ⊆ {1, . . . ,m}. Let us fix this choice for hi. As before, is enough to show
that for all i,

Prr
[
majorityS(hS + g(ei + rS)) = xi

]
> 1− 1

3n
.

Let

YS =

{
1, if hS + g(ei + rS) = xi,

0, otherwise.

Then for every S,

Pr[YS = 1] = Pr[hS + g(ei + rS) = xi] = Pr[g(ei + rS) = 〈x, ei + rS〉] ≥
1
2

+ ε

The main observation here is that the random variables YS are pairwise independent, since the
variables rS are pairwise independent and YS is determined by rS . We can therefore use Chebyshev’s
inequality to obtain a deviation bound on Y =

∑
S⊆{0,1}m YS . Let us assume for simplicity that

Pr[YS = 1] = 1/2 + ε. Then

E[Y ] =
∑

S⊆{0,1}m
E[YS ] = (1/2 + ε) · 2m and Var[Y ] =

∑
S⊆{0,1}m

Var[YS ] ≤ 2m.

By Chebyshev’s inequality, we have

Pr[xi 6= majorityS(ai,S)] ≤ Pr
[
Y < E[Y ]− ε · 2m

]
≤ Pr

[
Y < E[Y ]− ε · 2m/2 ·

√
Var[Y ]

]
≤ 1

(ε · 2m/2)2
<

1
3n
.


