
80240233: Complexity of Computation Lecture 17
ITCS, Tsinghua Univesity, Fall 2007 4 December 2007

Instructor: Andrej Bogdanov Notes by: Hongyi Yao

In the last lecture we showed that if E has “worst-case hard” problems then it also has “slightly
average-case hard” problems. More precisely, if there is some L ∈ E such that L 6∈ BPP, then
there is L′ ∈ E such that every randomized polynomial-time algorithm fails to solve L′ on at least
O(1/n) fraction of inputs.

Today we show that from L′ we can obtain a new problem L′′ ∈ E that is hard to solve even
on a 1/2 − ε fraction of inputs for every ε > 0.1 However we work with a different notion of
hardness: Instead of hardness against randomized algorihtms, we will consider hardness against
(polynomial-size) circuit families.

The approach we describe is based on Yao’s XOR lemma (1982). Many different proofs of this
result are known, and here we present a proof by Impagliazzo (1995).

1 The XOR Lemma

First, we give some definitions for average case hardness against circuits.

Average Case Hardness We say f : {0, 1}n → {0, 1} is δ-hard for size S, if for any circuit of
size S, Prx∼{0,1}n [f(x) = C(x)] < 1− δ.

Suppose we have a problem f is somewhat hard, so how can we construct a very hard function
from f? Intuitively, we want to ask one to solve many independent instances of f . But how do
we combine these different instances to obtain a single decision problem? Here we will XOR the
answers to the different instances. Intuitively, since the XOR function depends on the values of all
its variables, in order to “know” the answer to the combined instance we will have to solve every
individual instance separately.

Given f : {0, 1}n → {0, 1}, we write

fk(x1, x2, ..., xk) = f(x1) + · · ·+ f(xk)

where ’+’ indicates summation mod 2.

Here we will prove the following theorem:

Theorem 1. If f : {0, 1}n → {0, 1} is δ-hard for circuits of size S, then fk is 1/2 − ε − (1 − δ)k
hard for circuits of size O(Sε2δ2).

1This level of hardness is still insufficient for the Nisan-Wigderson generator, but the approach we describe can
be extended to that setting using additional ideas.

1

2

If we start from a decision problem L ∈ E that is O(1/n)-hard for polynomial-size circuits on every
(sufficiently large) input length and apply the above transformation on every input length of L
with k = O(n log ε), we obtain a problem L′ ∈ E that is 1/2− ε hard on every input length of the
form kn. By padding we can make L′ 1/2− ε hard on all input lengths.

Before we do the proof let’s see why the theorem makes sense. Suppose C is the “best” circuit of
size S for f , so we have

Prx∼{0,1}n [f(x) = C(x)] = 1− δ.

We can try to solve fk(x1, . . . , xk) by running the circuit C on x1, . . . , xk and xoring the answers
together. This is not the only way to attack fk, but it seems like a reasonable attempt.

One way to analyze this process is to think as follows: When I choose a random x ∼ {0, 1}n, with
probability 1 − 2δ it will happen that C(x) = f(x), and with probability 2δ the value C(x) will
be completely independent from f(x). More formally, we can define R ⊆ {0, 1}n to be some set
containing all x such that C(x) 6= f(x) and as many x (chosen arbitrarily) such that C(x) = f(x).
Then Prx∼{0,1}n [x ∈ R] = 2δ and conditioned on x ∈ R, Pr[C(x) = f(x)] = 1/2.

Now we have:

Pr[C(x1) + · · ·+ C(xk) = fk(x1, . . . , xk)] = Pr[? | ∃xi ∈ R] · Pr[∃xi ∈ R]
+ Pr[? | ∀xi : xi 6∈ R] · Pr[∀xi : xi 6∈ R]

=
1
2
· [1− (1− 2δ)k] + 1 · (1− 2δ)k

=
1
2

(1 + (1− 2δ)k)

where ? is the event C(x1) + · · · + C(xk) = fk(x1, . . . , xk). This is because conditioned on some
xi falling inside R, the answer C(xi) will be independent from f(xi), so regardless of the other xjs
C(xi) will hit the correct value with probability exactly 1/2.

This intuition suggests that fk is indeed very hard. However to turn it into a proof we have to
argue that any small circuit on input x1, . . . , xk fails to compute fk(x1, . . . , xk) on a substantial
fraction of inputs. Above we considered only circuits that treat each input xi independently and
then xor the answers.

To reformulate our assumption, we know that for every circuit C of size S, it must be the case that

Prx∼{0,1}n [C(x) = f(x)] < 1− δ.

Trying to imitate the above argument, we start by the simple observation that

For every circuit C of size S, there exists a set R ⊆ {0, 1}n of size 2δ · 2n such that
Prx∼R[C(x) = f(x)] = 1/2.

The hardcore lemma of Impagliazzo, which we state without proof, shows that we can switch the
quantifiers essentially without loss of generality:

There exists a set H ⊆ {0, 1}n of size δ · 2n such that for every circuit of size S · δ2ε2/4,
Prx∼H [C(x) = f(x)] = 1/2 + ε.

3

We call such a set H an ε hardcore set for size S′ = S · δ2ε2/4. Using the hardcore lemma, to prove
Theorem 1 it is sufficient to show that:

Lemma 2. If f : {0, 1}n → {0, 1} has an ε hardcore set for size S′ of size δ2n, then fk is
1/2− ε− (1− δ)k hard for size S′.

Proof. We will argue the contrapositive; assuming that fk is not 1/2 − ε − (1 − δ)k hard for size
S′, we will show that for everty set H of size δ2n, H is not ε-hardcore for size S′.

Let C be a circuit of size S′ such that

Pr[C(x1, x2, ..., xk) = fk(x1, x2, ..., xk)] ≥
1
2

+ ε+ (1− δ)k.

and H be a candidate hard-core set of size δ · 2n.

We define the sets S0, . . . , Sk ⊆ {0, 1}nk, where

St = {x = (x1, . . . , xk) : exactly t of x1, . . . , xk are in H}.

Then we have:

Prx∼{0,1}nk [C(x) = fk(x)] = Pr[C(x) = fk(x) | x ∈ S0] · Pr[x ∈ S0]

+ Pr[C(x) = fk(x) | x 6∈ S0] · Pr[x 6∈ S0]

≤ (1− δ)k + Pr[C(x) = fk(x) | x 6∈ S0].

So it must be that
Pr[C(x) = fk(x) | x 6∈ S0] ≥ 1

2
+ ε.

Since the left hand side is a weighted average over the sets S1, . . . , Sk, it must be that for some
t 6= 0:

Pr[C(x) = fk(x) | x ∈ St] ≥
1
2

+ ε.

Now we will construct a random circuit C ′ with “partial knowledge” of f will solve f on the set H
on 1/2 + ε fraction of instances: on input x ∈ {0, 1}n,

C ′: On input x ∈ {0, 1}n:
Set a1 = x.
Choose a2, . . . , at independently at random from H.
Choose at+1, . . . , ak independently at random from {0, 1}n −H.
Choose a random permutation π : [k]→ [k].
Output C(aπ(1), . . . , aπ(k)) + f(a2) + · · ·+ f(ak)

When x is randomly chosen from H, then the string (aπ(1), . . . , aπ(k)) ∈ {0, 1}nk looks exactly like
a random string in St. So it must be the case that

Pr[C(aπ(1), . . . , aπ(k)) = f(a1) + · · ·+ f(ak)] ≥
1
2

+ ε.

4

Since a1 = x,

Pr[C ′(x) = f(x)] = Pr[C(aπ(1), . . . , x, . . . , aπ(k)) + f(a2) + · · ·+ f(ak) = f(x)] ≥ 1/2 + ε.

To remove the randomness and the need for “partial knowlege” of f , observe that there must be
a specific choice of a2, . . . , ak and π which maximizes the probability that C ′(x) = f(x). If we fix
this choice, the values f(a2), . . . , f(ak) are fixed as well, and we can hardwire these into the circuit
C ′. Notice that C ′ has exactly the same size as C (since not gates are not counted towards the size
of a circuit.)

