
80240233: Complexity of Computation Lecture 16
ITCS, Tsinghua Univesity, Fall 2007 30 November 2007

Instructor: Andrej Bogdanov Notes by: Yingchao Zhao

So far in the class we encounter two notions of “hardness.” When we define NP-hardness, for
instance, we want to rule out algorithms that solve problems on all inputs. In our analysis of the
Nisan-Wigderson generator, we looked into a different notion of hardness. The assumption we used
there is that there are problems in EXP for which no algorithm can do essentially better than guess
the answer at random.

Generally, we might expect that designing an algorithm that does slightly better than random
guessing should be easier than designing one that solves the problem in question on all instances.
In certain specific settings, this is indeed the case. For example, there are natural distributions on
random 3SAT formulas such that for a random formula chosen from this distribution, most of the
time it is possible to tell efficiently if the formula is satisfiable or not. In contrast, we do not expect
this to be true for all formulas since 3SAT is NP-complete.

However, in other settings the opposite is true: Designing an algorithm that does slightly better
than guessing the solution at random is as hard as designing an algorithm that correctly solves all
instances of the problem.

Today we will begin to look at some examples of such problems. To simplify the exposition, it helps
to think of these two notions of hardness – getting everything correct and doing slightly better than
random guessing – as two extremes of average-case hardness. We can also look at other degrees
of average-case hardness: Can we solve a given problem on 90%, 99%, or even 1− 1/n fraction of
inputs of length n?

1 The permanent

Our first example of a problem which is as hard to solve in the worst case as it is in the average case
is the permanent. To define the permanent, we go back to the #P-complete problem of counting
perfect matchings in a bipartite graph. Given a bipartite graph G = (U, V,E) with |U | = |V | = n,
the adjacency matrix A of G is the n × n matrix where Ai,j = 1 if (i, j) is an edge in G (where
i ∈ U, j ∈ V) and Ai,j = 0 otherwise. With A, we can rewrite the number of perfect matchings in
G as

number of perfect matchings =
∑
π

n∏
i=1

Ai,π(i)

where π ranges over all permutations of the set {1, . . . , n}.

We can now think of this quantity as a function of the matrix A rather than a function of the graph
G. Here, the matrix A takes 0 − 1 values, but generally A can take arbitrary integer values, or
values in any finite field F. Given an n× n matrix A with entries in a finite field F, we define the

1

2

permanent of A over F as

per(A) =
∑
π

n∏
i=1

Ai,π(i)

where sums and products are over the finite field F. Since counting perfect matchings is #P
complete, there is no polynomial-time algorithm for computing the permanent over the integers or
fields of characteristic > n! unless P#SAT = P. In fact, even if we could compute the permanent
efficiently over fields of size poly(n), then P#SAT = P.

Now let us look at the average-case version of the permanent problem: For what fraction of n× n
matrices A can we compute per(A)? It turns out that computing per(A) for “most” matrices A is
no easier than doing so for every matrix A:

Theorem 1. If there is a randomized polynomial-time algorithm A such that PrX [A(X) = per(X)] >
1 − 1/(3n + 3), where X is chosen at random from the set of n × n matrices over F, where F is
a field of size at least n + 2, then permanent over F can be computed on all inputs in randomized
polynomial time.

By the assumption of the theorem, we are given access to algorithm A that computes per correctly
on a 1 − 1

3n+3 fraction of inputs. Now we want to compute per on an arbitrary input X. The
output A(X) might be correct or incorrect, and we don’t even know which is the case. The idea
is to reduce the computation of per(X), for an arbitrary matrix X, to running the algorithm A
on a few random inputs. Since A behaves well on random inputs, this algorithm should compute
per(X) for arbitrary X with high probability.

How do we reduce the problem of computing permanents of arbitrary matrices to computing perma-
nents of random matrices? We look at per as a function in the n2 variables Aij . The main property
we will use is that per is a polynomial of degree n in these variables. In fact, the argument we show
will apply to any polynomial of sufficiently small degree, so we will switch to the following more
abstract setting:

We have a polynomial p : Fn → F of degree d, and we are given access to an “oracle” function
A : Fn → F that computes p on a 1 − 1

3d+3 fraction of inputs. Now we want to compute p on
arbitrary input x using A. Consider the following algorithm B:

B: On input x,
Choose random y ∈ Fn.
Let T be an arbitrary subset of F of size d+ 1 not containing 0.
For each t ∈ T , compute the value at = A(x+ ty).
Compute the unique polynomial q(t) of degree d such that q(t) = at for t ∈ T :

q(t) =
∑

i∈T ai ·
(∏

j∈T−{i}(t− j)
)
/
(∏

j∈T−{i}(i− j)
)
.

Output q(0).

To see what is going on, let us first imagine that A(x) = p(x) for all inputs x ∈ Fn. For fixed x
and y, consider the univariate polynomial r(t) = p(x + ty): Since p is a polynomial of degree d,
this is a polynomial of degree (at most) d as well. One way to specify r(t) is to give the values of r

3

on any collection T of d+ 1 distinct points. Then we can recover the value of r at any other point
by interpolation: First, compute the unique polynomial q of degree d which is consistent with the
values of r on T and then output the value of this polynomial at the desired point. In particular,
by doing so we can recover q(0) = r(0) = p(x), which is what we were supposed to compute.

In our setting, A(x) = p(x) not for all but only for “most” of the inputs x. The reason the above
argument can still be carried out is the following: No matter what x is, for a random y, the inputs
x+ ty are uniformly random in Fn, so at the points that are queried by B with high probability A
will look exactly like p. More precisely:

Claim 2. For every x, Pry∼Fn [∀t ∈ T : q(t) = p(x+ ty)] > 2
3 .

Proof. We have

Pr[∃t ∈ T : p(x+ ty) 6= q(t)] ≤
∑
t∈T

Pr[p(x+ ty) 6= q(t)] ≤ (d+ 1) · 1
3(d+ 1)

= 1/3

because for every x and every t ∈ T , x+ ty is a uniformly random point in Fn.

Now conditioned on q(t) = p(x + ty) for all t ∈ T , we argue as before that q(0) = p(x). This
follows from the fact that for any fixed choice of x and y, the function r(t) = p(x + ty) is a
univariate polynomial of degree d. Since q(t) = at = r(t) for all t ∈ T and both q and r are degree d
polynomials, it follows that q(t)−r(t) is a degree d polynomial that evaluates to zero at d+1 distict
points, so it must be that q(t)− r(t) is the zero polynomial. Then B(x) = q(0) = r(0) = p(x).

To summarize, we showed an algorithm B such that for any input x, B(x) = p(x) with probability at
least 2/3 over the internal randomness of B. Applying this algorithm to the function p(X) = per(X)
proves Theorem 1.

2 Worst-case to average-case reductions for E

Recall that in our proof of the Nisan-Wigderson Theorem we assumed the existence of decision
problems in E (deterministic time 2O(n)) which are hard to compute by circuits of size 2δn on
1/2 + 1/2δn fraction of inputs of length n. We also mentioned that the same consequence can be
obtained under the weaker assumption that there are problems in E which are hard to compute in
the worst case by circuits of the same size. One way to obtain this stronger form of the theorem is
to start from the weaker one and apply the following general result of Impagliazzo and Wigderson:

Theorem 3. Suppose there is a function in E such that for some δ > 0 and every circuit family
C of size 2δn, C(x) 6= f(x) for some input x. Then there is a function f ∈ E such that for some
δ > 0 and every circuit family C of size 2δn, Prx∼{0,1}n [C(x) = f(x)] < 1/2 + 2−δn for sufficiently
large n.

This is an example of the same phenomenon of worst-case and average-case hardness equivalence
as what we saw for the permanent. We won’t prove this theorem, but for now we will show the
following:

4

Theorem 4. Suppose that E 6⊆ BPP. Then there is a function f ∈ E such that for every polynomial-
size circuit family C, Prx∼{0,1}n [C(x) = f(x)] = 1− 1/(3n+ 3) for sufficiently large n.

In the next lecture we will discuss one way to improve the quantity 1− 1/(3n+ 3) above to 1/2 + ε
for any constant ε.

To prove Theorem 4, we try to imitate the proof of Theorem 1. The crucial property we used
there is that permanent is a polynomial of low degree in its inputs. Do problems in E also admit a
representation as low-degree polynomials? Indeed this is so: Given any decision problem L ∈ E, let
g : Fn → F be the multilinear extension of L(x), where x ∈ {0, 1}n (let us assume for convenience
that F has characteristic 2 and size 2logn+1). This f is a polynomial of degree at most n. Then for
any input x ∈ Fn, g(x) can be computed in time 2O(n) via the interpolation formula which queries
L at all points in {0, 1}n.

To obtain a decision problem in E, we need to turn this polynomial g : Fn → F into a decision
problem f : {0, 1}m(n) → {0, 1}. To do so, we represent each element in F by some binary string of
length log n+ 1 in a canonical way, and define

f(x, i) = g(x)i = the ith bit of g(x).

Here, x ∈ Fn ∼= {0, 1}n(logn+1) represents the input to g, and i ∈ {1, . . . , log n+1} ∼= {0, 1}log(logn+1)

indexes one of the bits in g(x). It is not hard to check that if L ∈ E, then f ∈ E as well.

We now show that if f can be computed on a 1−1/(3m+3) fraction of inputs of length m by some
polynomial-tome randomized algorithm A, then L ∈ BPP. Like the construction, the reduction
has two stages: First, we give an algorithm B that computes g correctly on 1− 1/(3n+ 3) fraction
of its inputs, and then using B we construct a randomized algorithm C for L.

To obtain C from B, we proceed in exactly the same way as in the proof of Theorem 1: Since g
is a polynomial of degree n over a field of size > n + 2, we can transform B into a randomized
algorithm C that computes g : Fn → F correctly on all inputs. In particular, C computes L when
the input is in {0, 1}n because g is an extension of L.

It remains to show how to obtain B from A. There is only one natural way of doing so: On input
x ∈ Fn ∼= {0, 1}n(logn+1), B outputs the field element whose ith bit is A(x, i). Since Prx,i[A(x, i) =
f(x, i)] > 1− 1/(3m(n) + 3), we have that

Prx∼Fn

[
A(x, i) = f(x, i) for all i

]
= 1− Prx∼Fn

[
A(x, i) 6= f(x, i) for some i

]
≥ 1− Prx∼Fn

[
(log n+ 1) · Pri[A(x, i) 6= f(x, i)]

= 1− (log n+ 1) · Prx,i[A(x, i) 6= f(x, i)]

= 1− log n+ 1
3m(n)

> 1− 1
3n+ 3

.

Therefore, B(x) = g(x) for at least 1 − 1/(3n + 3) fraction of inputs x ∈ Fn, and so C(x) = L(x)
on arbitrary x with probability 2/3.

