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1 The multilinearity test

The idea behind the multilinearity test is simple. The test is based on the observation that if f is
a multilinear function, then the restriction of f on any “axis-parallel line” ` is an affine function in
one variable (a function of the form ax + b). An axis-parallel line in direction i is a set of points
` ⊆ Fm of the form:

` = {(a1, . . . , ai−1, xi, ai+1, . . . , am) : xi ∈ F}

where a1, . . . , ai−1, ai+1, . . . , am are fixed elements of F that specify the line `. This suggests the
following procedure for testing multilinearity: Choose a random axis-parallel line ` and check if the
restriction of f along ` is an affine function. How can we check that the restriction of f along ` is
affine? The key property of affine functions that we will use is that the value of any affine function
on a line is completely specified by values at any two distinct points; if f is affine, then for any
three distinct points a, b, c ∈ `, the relation

f(c)− f(b)
ci − bi

=
f(b)− f(a)
bi − ai

=
f(a)− f(c)
ai − ci

(1)

must hold. In fact any two of these equalities are sufficient to check, as they imply the third one.

Since F is exponentially large in m, we cannot check this condition for all triplets of points a, b, c ∈ `,
but we can carry out some random tests.

The multilinearity test. Given access to a function f : Fm → F:

1. Choose a random axis-parallel line ` over Fm.

2. Choose a random triple of distinct points a, b, c ∈ `.

3. If the values f(a), f(b), f(c) satisfy (1), accept, otherwise reject.

By our discussion, if f is a multilinear function, then the multilinearity test accepts f with proba-
bility 1. Now we want to show that if f is far from multilinear, then the test rejects f with some
nonnegligible probability. This probability can be increased by repeating the test several times.

There are several proofs of this fact, none of them easy. We will show the proof by Feige, Goldwasser,
Lovasz, Safra, and Szegedy.

Theorem 1. Let δ > 0 be an arbitrary constant. Assume |F| � m/δ. Suppose that f is δ-far from
multilinear. Then the multilinearity test rejects f with probability at least Ω(δ/m).
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Let’s introduce some notation. Let δ(f) denote the distance between f and the multilinear function
closest to f , that is

∆(f) = minL Prx∼Fm [f(x) 6= L(x)]

where L ranges over all multilinear functions over Fm. Let τ(f) denote the probability that the
multilinearity test rejects f . We say a triple of points (a, b, c) along some axis-parallel line is f -affine
if the values f(a), f(b), f(c) satisfy (1). Then the rejection probability of the test can be written as

τ(f) = E`

[
Pra,b,c∼`[(a, b, c) is not f -affine]

]
where ` is chosen at random from the set of all axis-parallel lines in Fm.

The analysis will split into two cases, depending on whether f is somewhat far or very far from
multilinear.

Claim 2. Suppose |F| � m/δ and δ ≤ δ(f) ≤ 9/10. Then τ(f) = Ω(δ/m).

Claim 3. Suppose |F| � m and δ(f) > 9/10. Then τ(f) = Ω(1/m · (1− 1/|F|)m−1).

Putting the two claims together gives Theorem 1. Before we start the proofs we state two useful
facts about affine functions that follow directly from (1):

Fact 4. If (a, b, c) and (a, b, c′) are both f -affine, then (a, c, c′) is also f -affine.

Fact 5. If (a, b, c) is both f -affine and g-affine and f(a) = g(a) and f(b) = g(b), then f(c) = g(c).

2 Proof of Claim 2

Let L denote the closest multilinear function to f and let S be the set of points x ∈ Fm on which
f and L match, that is

S = {x ∈ Fm : f(x) = L(x)}.

Let N be the number of points among a, b and c that fall inside S. First we will show that
Pr[N = 1 or N = 2] = Ω(δ/m). Then we will show that the probability of a, b, c not being f -affine
is roughly the same as the probability that N = 1 or N = 2.

To argue the first part, it is sufficient to show that

Pra,b[a ∈ S and b 6∈ S] = Ω(δ/m).

If a and b were independent, then this would be trivial, and in fact the probability would be
δ(f)(1 − δ(f)) = Ω(δ). However, they are not independent. Even so, we can think of a and b as
being generated from the following distribution:

1. Choose two independent random points p, q ∼ Fm.

2. Choose a random index i ∼ {1, . . . ,m}.

3. Set a = (p1, . . . , pi−1, pi, qi+1, . . . , qm) and b = (p1, . . . , pi−1, qi, qi+1, . . . , qm).
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Now observe that

Pra,b[a ∈ S and b 6∈ S] ≥ Pri[a ∈ S and b 6∈ S | p ∈ S and q 6∈ S] · Prp,q[p ∈ S and q 6∈ S].

The second probability is Ω(1) since p and q are independent. The first probability is at least 1/m:
If p ∈ S and q 6∈ S, there must be some index i for which (p1, . . . , pi−1, pi, qi+1, . . . , qm) ∈ S but
(p1, . . . , pi−1, qi, qi+1, . . . , qm) 6∈ S and a, b “hit” this i with probability at least 1/m.

Now we show that
τ(f) ≥ Pr[N = 1 or N = 2]− 3/|F| (2)

By the above calculation, this together with the fact |F| � m/δ shows that τ(f) ≥ Ω(δ/m)
establishing the claim.

To show (2) we look at each line ` separately. We fix a line ` and consider a random triple (a, b, c)
along `. Let

S` = S ∩ ` = {x ∈ ` : f(x) = L(x)} S` = {x ∈ ` : f(x) 6= L(x)}.

Also let N` be the number of points among a, b, c that fall inside S`.

• If N` = 2, then the probability that (a, b, c) is f -affine is zero. Since (a, b, c) is always L-affine,
by Fact 5, if f and L match at any two points, then they must also match at the third one.

• If N` = 1, then it is possible that (a, b, c) could be f -affine, but we will show that this cannot
happen “a lot”. Suppose for instance that a, b 6∈ S`. Then there is at most one c ∈ S` such
that (a, b, c) is not f -affine: Suppose on the contrary that there are c 6= c′, c, c ∈ S` such that
both (a, b, c) and (a, b, c′) are f -affine. Then by Fact 4, (a, c, c′) is also f -affine, but since f
and L match at both c and c′, by Fact 5 they must also match at a, a contradiction.

In other words, if we fix a, b 6∈ S`, and choose a random c from S`, the probability that (a, b, c)
is f -affine is at most 1/|S`|.

By this discussion, we have that

Pra,b,c∼`[(a, b, c) is not f -affine] ≥ Pr[(a, b, c) is not f -affine | N` = 2] · Pr[N` = 2]
+ Pr[(a, b, c) is not f -affine | N` = 1] · Pr[N` = 1]

≥ 1 · 3 · |S`|2 · |S`|
|F|3

+
(

1− 1
|S`|

)
· 3 · |S`| · |S`|2

|F|3

≥ 3 · |S`|2 · |S`|
|F|3

+
3 · |S`| · |S`|2

|F|3
− 3
|F|

= Pr[N` = 1 or N` = 2]− 3/|F|.

Taking expectation over axis-parallel ` we obtain (2).
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3 Proof of Claim 3

We prove this claim by induction on m. When m = 1, we show that if δ(f) > 9/10, then
τ(f) > 9/10. Suppose that τ(f) ≤ 9/10, so that

Pr[(a, b, c) is f -affine] > 1/10

where the randomness is over all distinct triples a, b, c ∈ F. In particular we can fix a choice of a
and b such that

Prc 6=a,b[(a, b, c) is f -affine] > 1/10.

Let L be the unique linear function such that L(a) = f(a) and L(b) = f(b). By Fact 5 we then
have that L(c) = f(c) for at least 1/10 fraction of points c, so f is 1/10-close to a linear function.

We now do the inductive step. For every a1 ∈ F, we define fa1 to be the m − 1-variate function
obtained when we restrict the first coordinate of f to a1, that is

fa1(y) = f(a1, y), where a1 ∈ F, y ∈ Fm−1.

Let’s assume that δ(f) > 9/10. We try to understand what could be the reason that f could
be so far from multilinear. One option is that many of the restrictions fa1 , where a1 ranges over
F are themselves far from multilinear. But it could also be the case that all restrictions fa1 are
multilinear, but they do not piece together into a single multilinear function f . Then we expect
the test to detect this when the line ` is axis-parallel in direction 1.

Even for a fixed a1, it may be reasonable to expect that either the function fa1 is itself far from
multilinear, or that the test “catches” f on some triple of the form (a1, y), (b1, y), (c1, y). Let τa1

denote this probability:

τa1 = Prb1,c1,y[((a1, y), (b1, y), (c1, y)) is not F-affine]

where a1, b1, c1 are conditioned to be all distinct. We would like to say that for all a1, if δ(f)
is large, then either δ(fa1) is large or τa1 is large. This is not quite true, but a slightly weaker
statement of a similar flavor can be shown.

Claim 6. For every pair of distinct s1, t1 ∈ F,

δ(f) ≤ δ(fs1) + δ(ft1) + τs1 + τt1 + 6/|F|.

Let us now assume that δ(f) > 9/10. By this claim there can be at most one value s1 ∈ F for which
both δ(fs1) ≤ 1/10 and τs1 ≤ 1/3. Fix this value s1 (if it doesn’t exist, choose s1 to be arbitrary).

Now consider a random triple (a, b, c) chosen by the multilinearity test. With probability 1−1/|F|,
a1 6= s1. Conditioned on this event, what is the probability of the test rejecting? We divide in
three cases depending on the value a1:

• If δ(fa1) ≤ 1/10, then it must be that τa1 > 1/3. Conditioned on this value of a1 and on
` being axis-parallel to direction 1, the probability of the test rejecting is 1/3, so the total
probability of the test rejecting is at most 1/3m.
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• If 1/10 < δ(fa1) ≤ 9/10, then conditioned on ` not being axis-parallel to direction 1, by Claim
2, the test rejects with probability Ω(1/(m− 1)).

• If δ(fa1) > 1/10, then conditioned on ` not being axis-parallel to direction 1, by inductive
hypothesis the test rejects with probability Ω(1/(m− 1) · (1− 1/|F|)m−2).

It follows that

τ(f) ≥
(

1− 1
|F|

)
·min

(
1

3m
,
m− 1
m

· Ω
( 1
m− 1

)
,
m− 1
m

· Ω
( 1
m− 1

·
(

1− 1
|F|

)m−2))
= Ω

(
1
m
·
(

1− 1
|F|

)m−1
)

since the last term dominates the minimum. Since |F| � m, the whole expression is bounded by
Ω(1/m). It only remains to prove Claim 6.

Proof of Claim 6. Let Ls1 , Lt1 be the closest multilinear functions to fs1 and ft1 , respectively.
These are functions in m − 1 variables. We extend Ls1 and Lt1 to a multilinear function L in m
variables via the formula

L(x1, y) = Ls1(y) +
x1 − s1
t1 − s1

(Lt1(y)− Ls1(y)).

Then δ(f) ≤ Prx1,y[f(x1, y) 6= L(x1, y)]. To upper bound this probability, we observe the following
simple fact:

Suppose r1 ∈ F is such that s1, t1, x1 and r1 are all distinct. If ((s1, y), (x1, y), (r1, y))
is f -affine, ((t1, y), (x1, y), (r1, y)) is f -affine, fs1(y) = Ls1(y) and fa2(y) = La2(y) then
f(x1, y) = L(x1, y).

To see this, first note that if ((s1, y), (x1, y), (r1, y)) and ((t1, y), (x1, y), (r1, y)) are both f -affine,
then by Fact 4 so is ((s1, y), (t1, y), (x1, y)). Since L is affine along the line ` specified by y by Fact
5 and L matches f at (s1, y) and (t1, y), it must be that f(x1, y) = L(x1, y).

Therefore we have that

Prx1,y[f(x1, y) 6= L(x1, y)] ≤ Prx1,r1,y[((s1, y), (x1, y), (r1, y)) is not f -affine]
+ Prx1,r1,y[((t1, y), (x1, y), (r1, y)) is not f -affine]
+ Pry[fs1(y) 6= Ls1(y)] + Pry[ft1(y) 6= Lt1(y)]
+ Prx1,r1 [x1, r1, s1, t1 are not all distinct]

where the first two terms are conditioned on x1, r1, s1, t1 being all distinct. The probabilities in
this sum are τs1 , τt1 , δ(fa), δ(fb) and ≤ 6/|F|, respectively.


