
80240233: Complexity of Computation Lecture 11
ITCS, Tsinghua Univesity, Fall 2007 13, November, 2007

Instructor: Andrej Bogdanov Notes by: Bangsheng Tang

One may be familiar with the difference between an NP-problem and a Counting problem. An
NP-problem asks “Is there a solution?”, while a Counting problem asks “How many solutions are
here?”. In this lecture, we shall focus on Counting problems.

1 Counting Problems

For an NP-problem R, the counting version of R is the function #R : {0, 1}n → N given by

#R(x) = |{y : (x, y) ∈ R}|.

Recall that when we defined NP-relations we required that the length of y such that R(x, y) holds
can be at most polynomial in x, so it must be that #R(x) ≤ 2p(|x|) for some polynomial p.

We define #P (pronounced as “sharp-P”) as the class of all the counting problems of form #R,
where R is an NP-relation.

With the counting problems defined, one may wonder how hard are these counting problems. When
we proved that BH is complete for NP, namely ∀L ∈ NP, L ≤ BH. This reduction preserves the
number of witnesses. This is called a parsimonious reduction.

Suppose A and B are two decision problems, if A ≤ B under parsimonious reduction, then if we
can solve #B, then we can solve #A.

Figure 1: Reduction from #A to #B

∀L ∈ NP, L ≤ NP under parsimonious says that if we can solve #BHefficiently, then any problem
in #P can be solved efficiently. Moreover, it has been proved that L ≤ BH ≤ CKTSAT ≤ SAT,
and all these reductions are parsimonious. If #SAT can be solved efficiently, then any problem in
#P can be solved efficiently.

To compare decision and counting, consider the set of problems P#R, which is decision version of
#R. If P#SAT = P, then for every #R ∈ #P, P#R = P , since #SAT is complete for #P.

One should be careful when dealing with parsimonious reductions, since not all NP-reductions are
parsimonious. For instance consider the problem of 3-coloring a graph (3COL): Given a given
graph G, this problem asks if G is 3-colorable, namely if it is possible to assign colors in the set
{1, 2, 3} such that neighboring vertices never have the same color.

1

2

3COL is NP-complete, but the reduction 3SAT ≤ 3COL is not parsimonious. The intuition here
is that, for an instance of 3SAT, which is a boolean function φ, then φ is reduced to a graph G. φ
is satisfiable if and only if G is 3-colorable. A 3-coloring to G could be converted to an assignment
for φ. Let V1, V2, V3 be the vertices that are colored 1, 2 or 3 accordingly. Then we totally change
all the vertices in V1 to be colored 2, and all the vertices in V2 to be colored 1, which produces
another valid solution but the corresponding boolean assignment remains the same. There are in
fact totally 6 such permutations of colors, therefore an assignment of φ would correspond to 6
different colorings.

To resolve that, we introduce another definition.

Definition 1. We say #A reduces to #B, if there is a pair of poly-time computable functions (R,
Q), such that

∀x,#A(x) = Q(#B(R(x)))

According to this definition, #3COL is complete for #P. One should remember that MATCHING ∈
P, but it can be proved that #MATCHING is complete in #P .

2 The Complexity of Counting Problems

How hard is counting problems? One may observe that P#SAT ⊇ NP, coNP, and BPP. Actually,
a much stronger containment holds:

Theorem 2 (Toda). ∀k, P#SAT ⊇ Σk

In the other direction, P#SAT ⊆ exp. Since its behaviors could be simulated by exhaustive search.

Then what about approximating counting problems? By approximately counting an NP-relation
R, we mean on input x, we want to run in time poly(|x|, 1/ε), output a number N such that
(1− ε)#R(x) ≤ N ≤ (1 + ε)#R(x).

Notice that approximate counting is at least as hard as NP. If we set ε = 1/2, the approximate
counting algorithm outputs zero when there are no witnesses for R, and a positive number when
there are witnesses for R. However it turns out that approximate counting is not much harder than
this: For every NP-relation R, there is a probabilistic algorithm with access to a SAT oracle that
runs in expected poly(|x|, 1/ε) and approximately count #R. Namely, approximate counting can
be done by a randomized algorithm given access to a SAT oracle.

This indicates that approximate counting is easier than exact counting. If it is not the case, then by
Toda’s theorem every problem in the polynomial hierarchy can be solved by a randomized algorithm
with access to a SAT oracle, which implies that PH = Σ3, an unlikely consequence.

3 Counting and Interactive Proofs

This section mainly devoted to the theorem below.

3

Definition 3. Denote IP(poly) as interactive protocols with unbounded number of rounds.

Theorem 4. P#SAT ⊆ IP(poly)

Proof. It is sufficient to convert an IP for following problems, given φ, k: φ has exactly k satisfying
assignments.

The main trick here is, instead of reasoning about formulas, we want to reason about polynomi-
als. Here we convert a 3SAT formula φ(x1, . . . , xn) with m clauses n variables to a polynomial
qφ(x1, . . . , xn) according to the following rules:

1. xi → xi

2. xi → 1− xi

3. y ∧ z → y · z

4. y ∨ z = y ∧ z → 1− (1− y) · (1− z)

For qφ we have:

• qφ(x1, . . . , xn) = φ(x1, . . . , xn)

• deg qφ ≤ 3m

• #SAT(φ) =
∑

x∈{0,1}n qφ(x) ≤ 2n

Now we turn to prove that, given:
∑

x∈{0,1}n qφ(x), deg qφ ≤ 3m

• If
∑

x∈{0,1}n qφ(x) = k, ∃P , such that, Pr[(P, V) accepts] = 1.

• If
∑

x∈{0,1}n qφ(x) 6= k, ∀P ∗, Pr[(P ∗, V) rejects] ≥ 2/3.

We will think of qφ as a polynomial over some finite field F, where F is a prime field of size > 2n.∑
x∈{0,1}n qφ(x) =

∑
x1∈{0,1}

∑
x2∈{0,1} · · ·

∑
xn∈{0,1} qφ(x1, x2, . . . , xn).

The idea is, P helps V to strip the Σ’s one by one.

Let q(z) =
∑

x2,...,xn
qφ(z, x2, . . . , xn). q(z) is polynomial of degree ≤ 3m, and it can be described

by 3m + 1 coefficients like q(z) = a0 + a1z + · · · + a3mz
3m. Note that V cannot calculate these

coefficients using only polynomial time, while P knows.

Now at the first round, P sends a description of a polynomial q′(z) of degree at most 3m to V . When
V receives the description, it checks that whether q′(0) + q′(1) = k. If not, it rejects. Otherwise,
it picks a random number r ∈ F, and asks P to prove that

∑
x2,...,xn

qφ(r, x2, . . . , xn) = q′(r). And
this case turns out to be an instance of the same problem with a polynomial of n− 1 variables and
k = q′(r). This procedure could be done recursively.

There are two claims to confirm the correctness of the protocol.

4

Claim 5. If q(0) + q(1) = k and q′ = q, then for all r,
∑

x2,...,xn
qφ(r, x2, . . . , xn) = q′(r).

Claim 6. If q(0) + q(1) 6= k then for every q′, Prr
[∑

x2,...,xn
qφ(r, x2, . . . , xn) = q′(r)

]
≤ 3m/|F|.

Proof. Since q′(0)+q′(1) = k 6= q(0)+q(1), q and q′ must be distinct polynomials, that is q−q′ 6≡ 0.
By the Schwarz-Zippel lemma we have that Prr[q(r)− q′(r) = 0] ≤ 3m/|F|. Therefore, Prr[q(r) =
q′(r)] ≤ 3m/|F|.

Now comes the full protocol.

At round 0, P sends some prime number p between 2n and 2n+1 to V . V checks that p is prime
and sets F to be the prime field Fp.

Then at round 1 and round 2, P tries to convince that
∑

x1,...,xn
qφ(x1, . . . , xn) = k as described

above. If V choose to continue, it asks P to prove
∑

x2,...,xn
qφ(r1, x2, . . . , xn) = k1 in the next

round, where r is picked randomly by V and k1 is the expected value of when z is substituted by r.

At round 2i− 1, P tries to prove the problem given by V at the previous round, and at round 2i,
V checks the proof given by P and decide whether to continue. If so, V produces a problem with
one variable substituted by a random number ri and ask P to prove it at round 2i+ 1.

After n such iterations, V only needs to check whether qφ(r1, . . . , rn) = kn by itself, and accepts
only when this is true.

Claim 7. If
∑

x1,...,xn
qφ(x) = k, then ∃P , Pr[(P, V) accepts] = 1.

Proof. By what is given above.

Claim 8. If
∑

x1,...,xn
qφ(x) 6= k, then ∀P ∗ Pr[(P ∗, V) rejects] ≥ 2/3.

Proof. If V accepts, then there exists an i, such that
∑

xi,...,xn
qφ(r1, . . . , ri−1, xi, . . . , xn) 6= ki,∑

xi+1,...,xn
qφ(r1, . . . , ri, xi+1, . . . , xn) = ki+1. Denote this event as Ei. Then we have

Pr[∃i : Ei] ≤
n∑
i=1

Pr[Ei] ≤
n∑
i=1

3m/|F| = 3mn/|F| ≤ 3mn/2n ≤ 1/3.

The two claims complete the proof of the theorem.

