
CSCI 5170: Computational Complexity Lecture 13
The Chinese University of Hong Kong, Spring 2016 12 April 2016

The million dollar question in computational complexity is “do all problems in NP have efficient
algorithms?” The general consensus is “probably not”, but a proof is still lacking after more than
50 years of research. In the first four lectures we gave examples of computational hardness in
some restricted models of computation: decision trees, small depth circuits, restricted branching
programs, and monotone circuits. If we could generalize these methods to prove that, for example,
solving satsifiability of 3CNF formulas on n inputs requires circuits of size 2n

1/100
, we would have

an example of an NP problem that does not have small circuit families and therefore no efficient
algorithms either.

There is an interesting explanation about why this seemingly promising approach has failed to
yield consequential results. The reason is that proofs of computational hardness are often learning
algorithms in disguise. The learning algorithm gets oracle access to the circuit and deduces certain
properties that the function computed by the circuit must satisfy. Many proofs of computational
hardness do in fact show that all functions computed by the circuit model in question are efficiently
learnable (in a precise sense that we will define shortly).

On the other hand, it is widely believed that there exist efficiently computable functions that are
not efficiently learnable. Such functions are called pseudorandom functions and can be constructed
from sufficiently strong pseudorandom generators. So if there was a proof that 3SAT on n inputs
requires circuits of size 2n

1/100
, either this proof would look very different from, say, the proof that

parity on n bits requires depth 3 circuits of size 2n
1/3

, or else pseudorandom functions do not exist,
everything is learnable efficiently, and there is no cryptography.

1 Smallness and constructivity

The circuit lower bounds we proved in lectures 1, 2, and 3 all followed the same basic pattern. First
we specified a property that all functions in the circuit class must have. Then we argued that the
hard function does not have this property.

For example, to show that PARITY on n inputs requires a decision tree of depth d = n/2, we used
the following property of depth d decision trees: After fixing some d of the variables to suitably
chosen values the function computed by the decision tree becomes a constant. PARITY does not
have this property.

To show that PARITY requires decision trees of size s = 2Ω(n), we used the fact that after applying
a 1/2-random restriction a size s decision tree reduces to a depth less than d with probability at
least s · (3/4)d. Setting d to equal n/2 reduces the problem of lower bounding the size to the solved
problem of lower bounding the depth.

Smallness The property “f : {0, 1}n → {0, 1} does not become constant after fixing some half of
its inputs to some fixed values”, which we denote by P (f), certainly applies to the parity function,
but it also applies (with high probability) to a random function R. This can be easily checked by
a union bound: There are

(
n
2

)
choices of which half of the variables to fix and 2n/2 possible fixings.

For any such fixing, the probability that R becomes a constant is 2 · 2−2n/2
(as all 2n/2 values must

1

be zero or one). Therefore

Pr[P (R) does not hold] ≤
(
n

2

)
· 2n/2 · 2 · 2−2n/2

= 2−2Ω(n)
.

So our proof that parity requires size 2Ω(n) decision trees also proves that most functions on n
inputs require size 2Ω(n) decision trees. Such properties are called small since the essential property
of the circuit is only shared by a tiny fraction of all functions.

Definition 1. A property P of boolean functions f : {0, 1}n → {0, 1} is small if the probability
that a random function satisfies P is at most 1/3.

The exact probability 1/3 is not important. The proof that PARITY on n bits requires depth

d circuits of size 2Ω(n1/(d−1)) from Lecture 2 relied on a similar property: After restricting all
but n/(K log s)d−1 inputs in a size s, depth d circuit, the circuit becomes a constant with constant
probability. A calculation similar to the one we just did shows that the property “becomes constant
after restricting some subset of n− 2 log n inputs” is small. So the same proof shows that random
functions require depth d circuits of size 2Ω((n/ logn)1/(d−1)).

The proof that the inner product modulo 2 function on 2n bits requires read-k-times randomized
branching programs of width w = Ω(2n/2k) relied on the following property: For every function
f : {0, 1}n×{0, 1}n → {0, 1} computable by a width w, read-k-times randomized branching program
there exist set X and Y such that |X| · |Y | ≥ 22n/2w2k such that f is constant on a 2/3 fraction of
entries in X × Y (assuming error 1/3). We then argued that the inner product function does not
have this property as long as |X| · |Y | is at least Ω(2n).

It is again not difficult to argue that the property “is almost constant on X × Y for every X,Y
such that |X| · |Y | ≥ 100n” is small. By large deviation bounds, the probability that a random
function is constant on a 2/3 fraction of X × Y for any such fixed X and Y is at most 2−3n. By a
union bound the probability that there exist such a pair X,Y is at most 22n · 2−3n ≤ 1/3.

To summarize, all of the lower bound proofs we saw with the exception of the bound on monotone
circuits for CLIQUE from Lecture 4 followed the same pattern: We described some property of
functions, showed that it holds for all functions computed by small circuits, and then argued that it
does not hold for the hard function in question. It also happens that the property does not hold for
most functions, so the proof also shows that random functions are hard for the model in question.
This is not surprising as we know by a counting argument that most functions should in fact be
hard for any “reasonable” circuit model. It can be proved that any property based on a “formal
complexity measure” — a concept we won’t define — is small as long as it is not satisfied by all
functions.

Constructivity Constructivity postulates that the relevant lower bound property is efficiently
computable:

Definition 2. A property P of boolean functions f : {0, 1}n → {0, 1} is c-constructive if, P can be
computed in time 2cn given the ability to evaluate f at inputs of its choice.

We think of c as a constant independent of n. Since f itself is an object of size 2n, “polynomial in
2n” means “polynomial in the size of f .”

It is not at all clear that properties behind circuit lower bound proofs must be constructive; let us
look at the above examples. The property “f becomes constant after restricting k of its variables”
is constructive: There are

(
n
k

)
ways to choose the restricted variables and 2k values that they can

2

be restricted to, in which case all that needs to be verified is that the function is constant on the
remaining n − k inputs; for this we need to examine 2n−k outputs of f . The running time of the
brute force algorithm for this property is

(
n
k

)
2k2n−k, which is at most quadratic in 2n.

On the other hand, it is not clear if the property “f is constant on a 2/3 fraction of entries of
X ×Y for some X,Y such that |X| · |Y | ≥ K” that we used to prove our branching program width
lower bound is constructive. A brute-force algorithm for this property would need to go over all
sufficiently large subsets X and Y of {0, 1}n. Each set ranges over 2Ω(n) possibilities, so the number

of sets to verify is 22Ω(n)
.

Let’s take a step back and remember how we proved that the inner product function has this
property. We derived it from the stronger statement that

∣∣∣∑
x,y∈{0,1}n

p(x) · (−1)〈x,y〉 · q(y)
∣∣∣ ≤√ 2n

|X||Y |

where p and q are the probability mass functions of the uniform distributions on the sets X and Y .
The proof we gave in Lecture 3 in fact works not only for probability mass functions, but for any
two functions p and q of `2 norm 1/

√
|X| and 1/

√
|Y |, respectively. In fact, our argument from

Theorem 14 in Lecture 3 more generally proves that∣∣∣∑
x,y∈{0,1}n

p(x) · (−1)f(x,y) · q(y)
∣∣∣ ≤ 2n/2 ·

√∑
x∈{0,1}n

p(x)2 ·
√∑

x∈{0,1}n
q(x)2

for all functions p, q : {0, 1}n → R. This says that the largest singular value of the 2n × 2n matrix
F (x, y) = (−1)f(x,y) is at most 2n/2. Singular values of a matrix are computable in time polynomial
in the size of the matrix, so stated in this way the property becomes constructive.

To summarize, the property P (f) = “F (x, y) = (−1)f(x,y) has a singular value larger than 2αn”
is sufficient to prove that F requires read-k-times branching programs of width Ω(2αn/k). The
property P is constructive. It turns out that it is also large (although we won’t prove it): The
largest singular value of a random 2n × 2n ±1 matrix is O(2n/2) with high probability.

2 Pseudorandom functions and natural proofs

A distribution over functions {F : {0, 1}n → {0, 1}} is called (s, ε)-pseudorandom if for every circuit
D of size at most s,

PrF [DF (1n) = 1]− Pr[DR(1n) = 1] ≤ ε

where R is a uniformly random function from {0, 1}n to {0, 1}.

The requirement is that no small distinguisher D, which is allowed to query the function at inputs
of its choice, can tell apart F from a random function with advantage better than ε. From a
learning-theoretic perspective, pseudorandom functions are functions that are hard to learn from
their input-output behaviour: Even after observing F at any number of inputs, it is hard for the
distinguisher D to predict the value at some before unseen input with advantage better than ε.

Pseudorandom functions F that are computable by circuits of size polynomial in n are believed to
exist for every n. We will next show how such functions can be constructed from sufficiently strong
pseudorandom generators.

On the other hand, if polynomial-size circuits satisfy some property P that is both large and
constructive, then they cannot compute pseudorandom functions:

3

Theorem 3. If all functions f : {0, 1}n → {0, 1} in some class C satisfy some property that is small
and c-constructive then C cannot compute (2cn, 1/3)-pseudorandom functions.

Proof. Let D be the property in question. By smallness Pr[DR(1n) = 1] ≤ 1/3. Since all properties
in C have the property, for any distribution on F in C, Pr[DF (1n) = 1] = 1. So

PrF [DF (1n) = 1]− Pr[DR(1n) = 1] ≥ 2

3
.

Since the property is computable in time 2cn, C cannot compute (2cn, 1/3)-pseudorandom functions.

We now show that polynomial-size circuits can compute (2cn, 1/3)-pseudorandom functions for
every c assuming sufficiently strong pseudorandom generators exist. To do this, it will be helpful to
think of the distribution F as a family of functions FK : {0, 1}n → {0, 1}, where K is some random
“key” that indicates which function in the family is sampled.

We will in fact construct pseudorandom functions from {0, 1}n to {0, 1}k for some larger k. The
most significant bit of such a function is a pseudorandom function from {0, 1}n to {0, 1} with the
same parameters.

3 Construction of pseudorandom functions

We will now show how to construct a pseudorandom function from a pseudorandom generator.
Let’s start with a pseudorandom function that takes one bit of input. In other words, we want a
family of functions FK : {0, 1} → {0, 1}k whose output is indistinguishable from the output of a
random function.

In this case the solution is really simple: The pseudorandom function is fully described by the
pair of values (FK(0), FK(1)), and so it is sufficient that this pair be indistinguishable from a truly
random pair. But we can interpret the pair (FK(0), FK(1)) as a pseudorandom string of length 2k,
which suggest the following construction: Take a pseudorandom generator G : {0, 1}k → {0, 1}2k
and let FK(0) = G0(K), FK(1) = G1(K), where G0 and G1 denote the first m and last m bits of
the output of G respectively.

How about a pseudorandom function on two bits FK : {0, 1}2 → {0, 1}k? We can do the same
trick again: take a pseudorandom generator with 4k bits of output, which we divide into four
blocks FK(00), FK(01), FK(10), FK(11). But in fact it suffices to use a pseudorandom generator
G : {0, 1}k → {0, 1}2k and set:

FK(00) = G0(G0(K)) FK(01) = G1(G0(K)) FK(10) = G0(G1(K)) FK11 = G1(G1(K)).

We can view this as a two-level construction. The first input of FK determines if we take the left
or the right part of the output of G. Next, we use this part as a seed and choose the left or the
right part as output depending on the value of the second input.

How do we argue that FK is pseudorandom? We can do it in two stages: First, we replace the
inner application of G by a truly random string S0S1 of length 2k and argue that

H = (G0(S0), G1(S0), G0(S1), G1(S1))
is indistinguishable from (G0(G0(K)), G1(G0(K)), G0(G1(K)), G1(G1(K)).

4

But now we have a distribution H that is of the form (G(S0), G(S1)), where S0 and S1 are inde-
pendent seeds, so by a hybrid argument its output will be indistinguishable from random. (It is a
good exercise to complete the missing steps in this proof.)

This suggests the following general construction of a pseudorandom function FK : {0, 1}n → {0, 1}k
from a pseudorandom generator G : {0, 1}k → {0, 1}2k:

FK(x1x2 . . . xn) = Gxn(Gxn−1(. . . Gx1(K) . . .)).

where G0 and G1 are the first k and last k bits of the output of G, respectively.

Theorem 4. If G is a (s, ε)-pseudorandom generator, then {FK} is an (Ω(s/tn), snε) pseudoran-
dom function family, where t is the circuit size of G.

If s = 2Ω(k), t is polynomial in k, and ε = 1/3sn and k is a sufficiently large polynomial in n we
obtain a pseudorandom function with the desired parameters.

To prove this theorem, it will be convenient to use an alternative characterization of pseudorandom
generator: Here, we give the distinguisher oracle access to the output of G.

Lemma 5. If G : {0, 1}k → {0, 1}2k is a pseudorandom against size s and bias ε, then for every
circuit A of size s: ∣∣Pr[AG(Rk) = 1]− Pr[AR2k = 1]

∣∣ ≤ sε,

where Rn is an oracle that returns a random string of length n on every invocation.

Proof. Suppose there for some A? of size at most s (and therefore makes at most s oracle queries)∣∣Pr[AG(Rk) = 1]− Pr[AR2k = 1]
∣∣ > sε.

We apply a hybrid argument. Consider the hybrid oracle Hi that answers its first i queries as
G(Rk) and the other s− i queries as R2k. Then there must exist some i such that∣∣Pr[AHi−1 = 1]− Pr[AHi = 1]

∣∣ > ε.

Since the oracle answers are independent, the following circuit B is a distinguisher for G:

B: On input z, simulate A by answering its first i − 1 queries as G(Xj) for a random
string Xj , 1 ≤ j ≤ i− 1, its ith query by z, and its last s− i queries as Yj for a random
string Yj , i + 1 ≤ j ≤ s.

Then B(G(X)) is identically distributed with AHi−1 , while B(Y) is identically distributed with
AHi , and so ∣∣Pr[B(G(X)) = 1]− Pr[B(Y) = 1]

∣∣ ≥ ε.

By fixing the optimal choices of Xj and Yj and hardwiring them into B, we can get a circuit B of
size s that performs the distinguishing.

We can now prove Theorem 4.

Proof of Theorem 4. Suppose that for some A of size s′ = Ω(s/tn),∣∣Pr
[
AFK = 1

]
− Pr

[
AR = 1

]∣∣ ≥ snε.

Consider the following family of hybrid functions H0, . . . ,Hn:

5

Hi(x) = Gxn(· · ·Gxi+1(R(xi . . . x1)) · · ·), where R : {0, 1}i → {0, 1}k is a random func-
tion.

Notice that H0 is exactly the distribution FK , while Hn is a random function from {0, 1}n to {0, 1}k.

By the hybrid argument, there must exist an index i such that∣∣Pr[AHi−1 = 1]− Pr[AHi = 1]
∣∣ > sε.

By Lemma 5, to show that G is not pseudorandom it is sufficient to construct a circuit B? of size
s so that ∣∣Pr[BG(Rk) = 1]− Pr[BR2k = 1]

∣∣ > sε

To do this, notice that the functions Hi−1 and Hi differ only in what happens at level i. In Hi−1, the
inputs chosen at this level look like the outputs of G, while in Hi they look random. Intuitively, if we
can distinguish between Hi−1 and Hi, we should be able to distinguish random and pseudorandom
strings of length 2k.

The distinguisher B will do the following:

BO: Simulate the circuit A. When A makes its jth query x,
If this is the first query of A with prefix x1 . . . xi−1,

Query the oracle O to get a string z0z1 ∈ {0, 1}2k.
Answer A’s query by Gxn(· · ·Gxi+1(zxi) · · ·)
and memorize the pair (x1 . . . xi−1, z0z1).

Otherwise,
Find the previously memorized pair (x1 . . . xi−1, z0z1).
Answer A’s query by Gxn(· · ·Gxi+1(zxi) · · ·).

Return the output of A.

As this simulation goes along, BO dynamically builds a random function F : {0, 1}n → {0, 1}k. By
construction, if O is the oracle G(Rk), then F is distributed like Hi−1, and if O is the oracle R2k,
then F is distributed like Hi. It follows that

|Pr[BG(Rk) = 1]− Pr[BR2k = 1]| = |Pr[AHi−1 = 1]− Pr[AHi = 1]| > sε.

The size of B is at most O(tn) times the size of A (every time A calls its oracle, B performs at
most n evaluations of G, each of which takes circuit size t), which is at most s by our choice of
parameters. By Lemma 5, G is not (s, ε)-pseudorandom.

References

Natural proofs were introduced and studied by Razborov and Rudich. Their paper contains an
extensive study of all circuit lower bounds proved before 1995 and shows they all rely on constructive
and small properties (with the exception of the monotone circuit lower bounds such as the ones
from our Lecture 4). Theorem 4 is due to Goldreich, Goldwasser, and Micali.

6

