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In our discussion of probabilistically checkable proofs (PCPs) last time, we saw two equivalent
descriptions of this concept: One was stated in terms of proof verification, the other ones in terms
of reduction to constraint satisfaction. For the proof of the PCP theorem it is more convenient
to adopt the second perspective. Then a PCP of query complexity q and randomness complexity
logm is a polynomial-time reduction that maps instances x of the problem to qCSP instances Ψ
with m constraints such that

If x ∈ YES , then Ψ is satisfiable,

If x ∈ NO , then no assignment satisfies more than half of Ψ’s constraints.

The PCP theorem states that every problem (YES ,NO) in NP has this property.

It will be useful to pay attention to two more parameters of the PCP which we fixed to constants
in the above definition. One is the soundness which is the maximum fraction of satisfied constraint
for NO instances, set to 1/2 above. Another one is the alphabet size: In our definition of qCSPs
we assumed that the variables take boolean values. Today we will also look at CSPs over variables
that take values in some larger alphabet Σ. (In the proof verification view of PCPs this means the
proof symbols come from alphabet Σ.)

1 The proof of the PCP theorem

The starting point of the proof of the PCP theorem is the fact that the NP-hardness of 3SAT
can be viewed as an extremely weak hardness of approximation result: The YES instances are
satisfiable CNFs, and the NO instances are those in which a s = 1−1/m fraction of clauses cannot
be simultaneously satisfied, where m is the number of clauses.

We will start from this statement and design a sequence of transformations that gradually improve
the soundness parameter s, while leaving all the other parameters unchanged. It is more convenient
to prove this reduction for general constraint satisfaction problems.

Ψ (qCSP instance) → Ψ′ (qCSP instance)

number of constraints m → Cm (C is some constant)
completeness Ψ is satisfiable → Ψ′ is satisfiable
soundness 1− δ → 1− 2δ (for δ < 1/C)

If we start with a 3SAT instance and repeat this reduction O(logm) times the soundness drops
from 1− 1/m to a fixed constant, while the size of the instance remains polynomial in m. This is
exactly the PCP theorem. The reduction is implemented by composing several smaller reductions,
where at each stage one of the parameters is improved, but at the expense of the others.

An important theme in the proof of the PCP theorem is to work, whenever possible, with CSPs
over possibly larger alphabet but with only two variables per constraint. The presence of various
constraints in such instances can be encoded by a constraint graph: This is the undirected graph
whose vertices v correspond to variables xv in the CSP and where for each constraint ψ(xu, xv)
in Ψ there is an edge (u, v) in the graph. The satisfiability of CSP instances will turn out to be
closely connected to the expansion properties of this graph, so we take a detour to discuss graph
expansion next.
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2 Graph expansion

An expander is a graph that remains well connected even if some edges from the graph are removed.
We will focus on d-regular n-vertex graphs, where we think of d as a constant and n as a growing
quantity.

Definition 1. A d-regular graph is an α-edge expander if for every subset S of at most n/2 vertices

|E(S, S)| ≥ αd · |S|

where E(S, S) is the set of edges between S and S.

As d|S| is the largest possible number of edges that can come out of S, the definition postulates
that the number of edges coming out of any set is within a constant factor of the maximum possible.

Edge expansion is closely related to a stochastic property of graphs called the spectral gap. A
d-regular graph can be viewed as a Markov chain whose states are the vertices and whose transi-
tions are moves to a uniformly random neighbor. If the graph is not bipartite then the uniform
distribution is the single stationary distribution of this Markov chain.

The transition matrix A of this Markov chain is the adjacency matrix of the graph scaled by 1/d.
This is a symmetric matrix so all its eigenvalues are real. If p is a probability distribution over the
vertices then we can represent p as

p = α1v1 + · · ·+ αnvn

where v1, . . . ,vn is an orthonormal basis of eigenvectors with corresponding eigenvalues λ1, . . . , λn
where we call the largest one λ1. After one step of the Markov chain the distribution becomes

pA = λ1α1v1 + · · ·+ λnαnvn

and after t steps
pAt = λt1α1v1 + · · ·+ λtnαnvn.

Since this must eventually converge to the uniform distribution, it is not difficult to deduce that
λ1 = 1, |λi| < 1 for all other i and α1v1 is the uniform distribution u. It then follows that

‖pAt − u‖ ≤ maxi≥2 |λi|t

so the value λ = maxi≥2 |λi| ∈ [0, 1) is a bound on the speed of convergence to the uniform
distribution. If λ is bounded away from 1 then convergence takes time logarithmic in the number
of vertices. The value 1− λ is called the spectral gap of the graph.

Now suppose p puts all its probability mass at a single vertex. In order for the distribution to
converge to uniform in a logarithmic number of steps we would expect the number of vertices
reached by the Markov Chain to grow by a constant fraction at each step. This is guaranteed by
the following lemma, which says that if the spectral expansion of a graph is large then so is its edge
expansion.

Lemma 2. The edge expansion of a graph is at least half as large as its spectral gap.

For every λ > 0 there exists a sufficiently large d such that for every n there exists a d-regular
graph on n vertices with spectral gap at least 1−λ, and therefore edge expansion at least (1−λ)/2.
Random graphs that are d-regular have this property with high probability, but there are also
“explicit” constructions that produce such graphs in time polynomial in the number of vertices.
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3 PCP transformations

The proof of the PCP theorem performs the following sequence of reductions on CSP instances:

reduction size |Σ| queries soundness gap degree spectral gap

m 2 q = C δ
query reduction ×C 2q 2 ÷C large
degree reduction ×C 2q 2 ÷C C small
expanderizing ×C 2q 2 ÷2 d = 2C 1/4

gap amplification ×dt 2qd
t

2 ×t/|Σ|4
alphabet size reduction × exp(2qd

t
) 2 q ÷2

Here size refers to the number of constraints, and degree and spectral gap refer to the underlying
constraint graph.

The only quantities that are non-constant throughout this sequence of transformations are the size
(initially m) and the soundness gap (initially δ). When the parameters are chosen appropriately (t
is a sufficiently large constant in terms of C), the soundness gap is doubled, while the size of the
instance increases only by a constant factor, giving the desired conclusion.

3.1 Query reduction

The goal of this transformation is to turn a qCSP Ψ (for some constant q) into a 2CSP Ψ′. Suppose
Ψ has n variables x1, . . . , xn and m constraints over alphabet {0, 1}. Ψ′ is specified as follows:

• Variables of Ψ′: The instance Ψ′ has variables x1, . . . , xn, y1, . . . , ym, where xi takes values
in {0, 1} and yi takes values in Σ = {0, 1}q. The intended value of yi is xi1 . . . xiq , where
xi1 , . . . , xiq are the variables participating in the constraint ψi of Ψ.

• Constraint graph of Ψ′: For each constraint ψi of Ψ and each variable xij that participates
in ψi, there is a constraint-edge (xij , yi). The corresponding constraint is satisfied if yi satisfies
ψi and the jth entry in yi equals xij .

Clearly, if Ψ is satisfiable, so is Ψ′ (we just assign yi = xi1 . . . xiq for every i). On the other hand,
if every assignment violates a δ-fraction of constraint in Ψ, then every assignment will violate a
δ/q-fraction of constraints in Ψ′. To prove this, assume that some assignment (x, y) violates less
than a δ/q-fraction of constraints in Ψ′. Since every yi is involved in q constraints, it means that
all constraints involving yi are satisfied for at least a 1 − δ fraction of yis. But if all constraints
involving yi are satisfied, it must be that x satisfies ψi in Ψ, so x satisfies a 1 − δ fraction of
constraints in Ψ.

3.2 Degree reduction

After applying query reduction, the constraint graph may have large degree. The goal of the degree
reduction step is to make the degree constant (independent of the instance size), while losing only
a constant factor in the soundness gap.

Let G be the constraint graph of Ψ. We create a new CSP Ψ′ by replacing every vertex i in G of
degree ni by a cloud of ni vertices. So each variable xi of Ψ will give rise to di variables x′i1, . . . , x

′
ini
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in Ψ′. Each constraint in Ψ gives rise to d/2 parallel constraints in Ψ′ between unique vertices in
the corresponding clouds. Within each cloud, we interconnect the vertices by a 1/8-edge expander
and make each expander constraint an equality constraint (i.e. requiring that variables get the
same value). Notice that if Ψ has m constraints, then Ψ′ will have m variables and dm constraints.

Clearly, if Ψ has a satisfying assignment x, we can obtain a satisfying assignment for Ψ′ by setting
x′i1 = · · · = x′ini = xi for every i.

Now we prove soundness. The fact that the soundness gap goes down by at most a constant factor
in this transformation is a consequence of the following claim:

Claim 3. If some assignment x′ the violates at most an ε-fraction of constraints in Ψ′, then there
exists an assignment x that violates at most a 34ε fraction of constraints in Ψ.

The assignment x is obtained from x′ as follows: Within each cloud, let xi be the plurality value (i.e.,
the most representative value) among x′i1, . . . , x

′
ini

. Let εi be the fraction of constraints violated in
cloud i. Then

∑n
i=1 εi · (dni/4) ≤ ε · (dm/2), the total number of violated constraints.

Let Si be the set of variables x′ij that agree with the plurality value xi. Let εi be the fraction of

the dni/4 equality constraints for i violated by the assignment x′. We will argue that |Si| ≤ 8εini:

• If |Si| > ni/2, then |E(Si, Si)| ≥ d|Si|/8. Since all the equality constraints for i between Si
and Si are violated by x′, εi(dni/4) ≥ |E(Si, Si)|, so |Si| ≤ 2εini.

• If ni/4 ≤ |Si| ≤ ni/2, then |E(Si, Si)| ≥ d|Si|/8 ≥ dni/32. Since all the equality constraints
for i between Si and Si are violated by x′, it follows that εi ≥ 1/8, so |Si| ≤ ni ≤ 8εini.

• If |Si| < ni/4, then no value in Σ is taken by more than a 1/4-fraction of the x′ijs, so there
must exist some subset of values Σ′ ⊆ Σ so the number of x′ij taking values in Σ′ is between

ni/4 and ni/2. Just like in the previous case, we get |Si| ≤ ni ≤ 8εini.

Now consider what happens in Φ′ when we replace the assignment x′ with the plurality assignment
x′plur ij = xi for every j. Replacing x′ by x′plur may cause the violation of at most (d/2)|Si| non-
equality constraints for every i. If x′ violates εdm constraints, x′plur will then violate at most

εdm+

n∑
i=1

(d/2)|Si| ≤ εdm+

n∑
i=1

(d/2)(8εini) = εdm+ 16

n∑
i=1

εidni/4 ≤ 17εdm

constraints of Ψ′. This is a 17ε-fraction of all the constraints in Ψ′. Since exactly half the constraints
in Ψ′ are equality constraints, x cannot violate more than a 34ε fraction of constraints in Ψ.

3.3 Expanderizing

The expanderizing transformation starts with a CSP Ψ with two variables per constraint and
(sufficiently large) constant degree d and creates a new CSP Ψ′ with two variables per constraint,
degree 2d, and the property that the constraint graph is an expander with spectral gap at least
1/4.

Suppose the constraint graph G of Ψ has n vertices. Let Z be an expander on n vertices with
degree d and λ ≤ 1/2. The variables of Ψ′ are be the same as the variables of Ψ. The constraints of
Ψ′ include all the constraints of Ψ. In addition, for every edge in Z, we add a “dummy” constraint
in Ψ′ that is satisfied for any assignment to its variables.
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Clearly if Ψ is satisfiable, then Ψ′ is satisfiable by the same assignment. On the other hand, if x
fails to satisfy a δ fraction of the constraints in Ψ, then it will fail to satisfy the same constraints
in Ψ′, which form a δ/2-fraction of all the constraints.

Let G′ be the constraint graph of Ψ′. We now show that if G and Z are regular graph of the same
degree, then λG′ ≤ (λG + λZ)/2 ≤ 3/4. Notice that the adjacency matrices satisfy the relation
AG′ = (AG +AZ)/2. Then for every v ⊥ u, we have

‖vAG′‖ ≤ 1
2

(
‖vAG‖+ ‖vAZ‖

)
≤ 1

2

(
λG‖v‖+ λZ‖v‖

)
= 1

2(λG + λZ)‖v‖.

4 Gap amplification

Fix a constant t. The gap amplification step is a transformation from a 2CSP Ψ with degree d and
λ = 3/4 to a 2CSP Ψ′ with the following parameters:

Ψ → Ψ′

size m → (|Σ|d)5tm

alphabet Σ → Σ1+d+d2+···+dt

completeness Psi is satsifiable → Ψ′ is satisfiable
soundness 1− δ → 1− Ω(tδ/|Σ|4)

Let G be the constraint graph of Ψ. We now define the instance Ψ′. We specify the constraints
as a probability distribution with the interpretation that each constraint is included a number of
times proportional to its probability.

• Variables of Ψ′: For each variable xv of Ψ, there is a corresponding variable x′v of Ψ′.

• Values of x′v: The value of x′v is a collection (tuple) of values in Σ, one corresponding to every
vertex u at distance ≤ t from v in G. We write x′v(u) for the component of x′v corresponding
to u.

• Distribution over constraints of Ψ′: The constraints ψ′p of Ψ′ correspond to paths p of
length at most 5t ln|Σ| in G. (We will identify constraints and the paths they represent.) The
paths are generated from the following distribution:

1. Choose a starting vertex v0 of p. Set i = 0

2. Repeat for at most 5t ln|Σ| times: (1) Set vi+1 to be a random neighbor of vi and
increment i (2) With probability 1/t, stop the repetition.

3. Output the path v0, v1, . . . , vi.

• Constraints of Ψ′: Let (u′, v′) be the endpoints of a path p. The constraint ψ′p(x
′
u′ , x

′
v′) is

satisfied if all of the following hold:

1. For every edge (u, v) in G such that u and v are both within distance t of u′, the
constraint ψ(u,v) is satisfied.

2. For every edge (u, v) in G such that u and v are both within distance t of v′, the
constraint ψ(u,v) is satisfied.

3. For every vertex v that is within distance t from both u′ and v′, x′u′(v) = x′v′(v).
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The size and alphabet size of Ψ′ are easy to check. We need to argue completeness and soundness.
By design, the transformation has perfect completeness. Suppose x is a satisfying assignment of Ψ.
Now consider the assignment x′ of Ψ′ given by x′u(v) = xv. This satisfies all the constraints of Ψ′.

The (relatively) difficult part is to argue soundness. To do this, we must show that for every x′

that satisfies 1− ΩΣ(tδ) constraints of Ψ′, there is an x that satisfies 1− δ constraints of Ψ.

The assignment x is constructed from x′ via the following procedure. For every vertex v,

1. Define the following distribution Dv on vertices. Initially, set v′ = v. Now repeat the
following experiment: With probability 1/t stop, and with the remaining probability, set
v′ = a random neighbor of v′.

2. Set xv to equal the plurality value of x′v′(v), when v′ is chosen from Dv, among those v′ that
are within distance t of v.

We now need to argue that if x′ satisfies 1 − Ω(tδ/|Σ|4) constraints of Ψ′, then x satisfies 1 − δ
constraints of Ψ. In fact, we will argue the contrapositive:

Claim 4. Assume tδ < 1. If x violates δ constraints of Ψ, then x′ violates Ω(tδ/|Σ|4) constraints
of Ψ′.

Before we prove the claim, let us make one simplification. We will modify the distribution over
constraints of Ψ′ so that the path p is not truncated after 5t ln|Σ| steps (see step 2), but can be
of any length. Intuitively, this simplification should not make a difference because long paths are
unlikely. Formally, we will analyze the effect of this simplification later.

Now let’s explain the intuition behind this claim. Let F be the set of constraints of Ψ (which we
also think of as edges of G) that are violated by x (so |F | = δm). Now take a random constraint
ψ′ of Ψ′. What are the chances that this constraint is violated by x′?

Pr[x′ violates ψ′] ≥ Pr[ψ′ intersects F ] · Pr[x′ violates ψ′ | ψ′ intersects F ].

Let’s try to estimate both of these quantities. We expect ψ′ to have about t edges; since |F | = δm,
we expect ψ′ to contain about δt edges of F . Since δ is fairly small, we might expect that most
ψ′ which intersect F intersect only a single edge of F . If this is the case, then Pr[ψ′ intersects F ]
should be about tδ. This is where the soundness amplification happens.

What about the other probability? Let’s now fix an edge (u, v) ∈ F that is contained in ψ′. Now
consider the distribution of the endpoints u′ and v′ of the path ψ′. Since the endpoints of the path
are determined by a Poisson process, it follows that conditioned on (u, v) being in ψ′, the endpoint
v′ is determined by the following distribution: Start from v and at each step (1) with probability
1/t stop and (2) with the remaining probability move to a random neighbor of v and continue. This
is exactly the distribution Dv. Ignoring for now the fact that the path could be too long, we reason
as follows. Since the value xv was defined as the plurality value xv′(v), the two should match with
probability at least 1/|Σ|. For the same reason, xu′(u) and xu should match with probability 1/|Σ|.
But since the constraint ψ(xu, xv) is violated, ψ′(x′u′ , x

′
v′) is then also violated.

To summarize, we expect that the probability that a random constraint of Ψ′ is violated is about
tδ/|Σ|2. In our estimates we made two overly simplifying assumptions. The actual analysis will
have to address the following additional possibilities:

• What happens when ψ′ intersect multiple edges of F?
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• What happens when ψ′ contains more than t edges? In this case, it may happen that ψ′

contains a “bad” edge, but this edge cannot be “seen” from its endpoints.

The analysis will show that both events (1) and (2) happen rarely: Event (1) owing to the expansion
of G and event (2) owing to the small probability assigned to long paths.

4.1 Analysis of gap amplification

Now let us do the actual analysis. Call an edge (u, v) faulty (with respect to ψ′, x′, x) if (1)
(u, v) ∈ F , (2) d(u′, u), d(v, v′) < t, and (3) x′u′(u) = xu and x′v′(v) = xv, where u′, v′ are the
endpoints of ψ′. If some edge in ψ′ is faulty, then ψ′ is violated as the inconsistency between xu
and xv can be seen either by x′u′ or by x′v′ .

Let N denote the number of faulty edges of ψ′, where ψ′ is chosen at random. By the Paley-
Zygmund inequality,

Pr[ψ′ is violated] ≥ Pr[N > 0] ≥ E[N ]2/E[N2]. (1)

The first moment. We first estimate E[N ]. For f ∈ F , let If denote the number of occurrences
of f in ψ′, and let Nf = If is f is faulty, and 0 otherwise. Then:

E[N ] =
∑
f∈F

E[Nf ] =
∑
f∈F

∞∑
k=1

Pr[Nf ≥ k] =
∑
f∈F

∞∑
k=1

k · Pr[If ≥ k] · Pr[f is faulty | If ≥ k].

Let us analyze the probability that f is faulty conditioned on If ≥ k > 0. Fix an arbitrary
collection of k occurrences of f in ψ and let u be the left endpoint of the first occurrence and v
be the right endpoint of the last occurrence. As discussed above, u′ follows the distribution Du,
and v′ independently follows the distribution Dv. In this distribution, the probability that u′ is at
distance more than t from u is ≤ (1−1/t)t < 1/2. Conditioned on this distance being at most t, the
distribution on u′ is exactly the one used to define the plurality assignment xu, so the probability
that x′u′(u) = xu is at least 1/|Σ|. As the same is true for v and v′ independently, for any k > 0

Pr[f is faulty | If ≥ k] ≥
(1

2
· 1

|Σ|

)2

and therefore

E[N ] ≥ 1

4|Σ|2
·
∑
f∈F

∞∑
k=1

Pr[If ≥ k] =
1

4|Σ|2
·
∑
f∈F

E[If ] =
δt

4|Σ|2
,

because the expected number of occurrences of any particular edge in ψ′ is 1/m times the expected
length of ψ′, which is t.

The second moment. We now upper bound E[N2]. To do so, let N ′ be the number of edges in
F that intersect ψ′. Obviously N ≤ N ′ (since N counts the number of such edges that are also
faulty). So we will bound E[N ′2] instead. To do so, let Zi be a random variable that indicates if
the ith edge of ψ′ is in F (if ψ′ has fewer than i edges, then Zi = 0). Then

E[N ′2] =

∞∑
i=1

E[Zi] + 2
∑

1≤i<j
E[ZiZj ]. (2)

It is easily seen that E[Zi] = δ · (1− 1/t)i, so the first summation is at most tδ.

For the second summation, notice that E[ZiZj ] is the probability that both edges i and j are present
in the path and faulty. The probability they are both present is (1 − 1/t)j . Conditioned on them
being both present, the probability they are both faulty is bounded using the following lemma.
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Lemma 5. Let G be a d-regular graph with spectral gap 1− λ and F be a subset consisting of a δ
fraction of the edges of G. The probability that both the first and the last edge of a random walk of
G of length ` ≥ 2 are in F is at most δ2 + δλ`−2.

It follows that E[ZiZj ] ≤ (1− 1/t)j · δ · (δ + λj−i−1). Plugging this in (2) we have

E[N ′2] ≤ δt+ 2δ
∑

1≤i<j
E[ZiZj ]

≤ δt+ 2δ

∞∑
i=1

(1− 1/t)i
∞∑

j=i+1

(1− 1/t)j−i · (δ + λj−i−1)

≤ δt+ 2δ
∞∑
i=1

(1− 1/t)i(δt+ 1/(1− λ))

≤ δt+ 2δt(δt+ 4)

= 9δt+ 2(δt)2.

Second moment calculation. Finally, from (1) we have:

Pr[N > 0] ≥ E[N ]2

E[N2]
≥ (δt/4|Σ|)2

9δt+ 2(δt)2
= Ω(δt/|Σ|4).

The effect of truncation. This calculation was done in the idealized setting where ψ′ can be
arbitrarily long, while it is actually restricted to have length at most 5t ln|Σ|. It is not hard to see
that these long paths contribute little to N . In particular, the contribution from the long paths
can be bounded by

∞∑
`=5t ln|Σ|

E[N | ψ′ has length `] Pr[ψ′ has length `] ≤
∞∑

`=5t ln|Σ|

(δ`) · (1− 1/t)` < E[N ]/2

For the calculation of E[N2], the truncation of long paths only improves this quantity, so the lower
bound on the probability that N > 0 is only affected by a constant.

Proof of Lemma 5. Let A be the (normalized) adjacency matrix of G and A′ be the adjacency
matrix of a graph representing `− 2 steps of a random walk on G. Then A′ = A`−2 and λ′ = λ`−2.

If we write A′ = (1 − λ′)J + E then for every vector v, ‖vE‖ ≤ λ′‖v‖. Here J is the adjacency
matrix of the complete graph on n vertices with self-loops. Now we write

1

2n
|vA′vT| ≤ (1− λ′) 1

2n
|vJvT|+ 1

2n
|vEvT|.

Let v be the vector such that v(u) equals the fraction of edges incident to u that are in F . Then
(vA′vT)/2n equals exactly the fraction of paths with the first and last edge in F , and (vJvT)/2n
equals Eu[v(u)]2 = δ2. For the last term we have

1

2n
|vEvT| ≤ 1

2n
‖vE‖ · ‖v‖ ≤ λ′ 1

2n
‖v‖2 ≤ λ′ 1

2n

∑
u

v(u) = δλ′,

so the desired quantity is at most (1− λ′)δ2 + δλ′ ≤ δ2 + δλ`−2.
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5 Alphabet size reduction

The purpose of alphabet size reduction is to transform a 2-query PCP Ψ over large (but constant)
alphabet Σ into a q-query PCP Ψ′ over alphabet {0, 1}, where q is independent of the size of Σ. We
want to preserve completeness and lose only a constant factor (independent of Σ) in the soundness
gap. On the other hand, the size of the instance is allowed to increase by a constant factor, which
may depend on Σ.

Without loss of generality, we can think of Σ as {0, 1}σ for some constant c. Then we can think of
every variable yi of Ψ as taking values in {0, 1}σ and we can view every constraint ψ(yi, yj) of Ψ
as a function from {0, 1}2σ to {0, 1}.

From the proof verification perspective, Ψ is described by the following proof system. The proof is
a string of length {0, 1}σn which for every variable yi of Ψ contains all the bits of yi. The verifier
chooses a random constraint ψ(yi, yj), reads the bits of yi and yj , and accepts if the constraint is
satisfied. The query complexity of this PCP is 2σ; we would like it to be a constant independent
of σ.

To achieve this effect we apply the PCP from the last lecture to each one of the constraints ψ using
shared encodings to their variables. The PCP then certifies that a random constraint is satisfied.
Since the encodings to the variables are shared among the constraints, they must be consistent
with a single assignment. The randomness complexity of the “inner PCP” is polynomial in the size
of the assignment to ψ, which is 2σ bits long, so it is just a constant depending on |Σ|.

More formally, to implement the PCP construction from last lecture, we want to transform each
constraint ψ(yi, yj) into an equivalent system of quadratic equations Q. Recall that the system Q
will have at most O(22σ)) equations, which in addition to the variables yi and yj involve O(22σ))
auxiliary variables zij .

The proof π in the PCP Ψ′ will now consist of two parts:

1. For each yi taking values in {0, 1}σ, an encoding Ci ∈ {0, 1}2
σ

which is supposed to equal
Ci(a) = 〈a, yi〉 for every a ∈ {0, 1}σ.

2. For every constraint ψ(yi, yj) consider the corresponding quadratic system Q(yi, yj , zij) where

zij takes values in {0, 1}O(22σ). Provide an encoding Cij for zij where Cij(a) is supposed to
equal 〈a, zij〉, as well as an encodingDij ofQ, where for every linear combination b of quadratic
terms in the variables yi, yj , zij , Dij(b) is supposed to equal the value of this combination.

The verifier of Ψ′ chooses a random constraint ψ(yi, yj) in Ψ and runs the PCP from last lecture
on the part of the proof that contains the encodings Ci, Cj , Cij , Dij to verify that the constraint is
satisfied.1

Clearly if Ψ is satisfiable, the verifier of Ψ′ will accept with probability 1. Now we argue that if
Ψ′ rejects with probability at most δ/2, then some sassignment violates at most a δ-fraction of
constraints in Ψ.

Assume Ψ′ rejects with probability at most δ/2. Let yi be the most likely assignment encoded by
Ci (i.e. the one such that the encoding of yi and Ci differ in the smallest number of places, breaking
ties arbitrarily). Then for at least a 1− δ fraction of the constraints ψ, when ψ is chosen Ψ′ accepts
with probability at least 1/2. By the analysis from last time if this is the case, then all of Ci, Cj

1This is not exactly the same PCP. In the last lecture Ci, Cj , and Cij were grouped into a single chunk, while
here they are separate. However we can run the linearity test and local decoding procedures on each part separately
with the same effect.
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and Cij must be 1/8-close to encodings of some assignments y′i, y
′
j and zij so that Q(y′i, y

′
j , zij) is

satisfied and therefore ψ(y′i, y
′
j) = 1. Since yi is the most likely assignment encoded by Ci, it must

be that the encodings of yi and y′i differ in at most a 1/4-fraction of places. But any two distinct
linear functions differ on at least half the outputs, so it must be that yi = y′i. Similarly yj = y′j .
Therefore y satisfies the constraint ψ, so it satisfies a 1− δ fraction of constraints of Ψ.
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