
CSCI 5170: Computational Complexity Lecture 9
The Chinese University of Hong Kong, Spring 2016 15 March 2016

Today we talk about interactive proofs. Usually we think of proofs as immutable objects: A proof
is something you read in a book, think about, and decide if it is correct or not. But suppose you are
suspected of a murder and want to prove your innocence in court. Instead of submitting a written
proof of your story, you are subjected to a cross-examination of lawyers at the end of which a jury
will decide if you are innocent or guilty. How should you go about preparing your case?

1 Interactive proofs

To explain interactive proofs, let’s go back to our definition of NP. A (promise) decision problem
(YES ,NO) is in NP if there is a polynomial-time verifier V and a polynomial p such that

if x ∈ YES , then there is a y, |y| ≤ p(|x|) such that V (x, y) = 1, and

if x ∈ NO , then for all y, |y| ≤ p(|x|), V (x, y) = 0.

So far we have been thinking of y as a witness or a certificate: This is the satisfying assignment
for a boolean formula, or the perfect matching in a graph. Today we will think of this witness as
an object furnished by an external entity called the prover. Then verification can be viewed as a
process: On input x, the verifier V asks to see a proof that x ∈ YES . The prover tries to provide
such a proof. If the prover is honest, it will always be able to provide a correct proof (provided
it exists). The verifier should be complete, namely recognize such proofs as correct. On the other
hand, if the verifier tries to provide a bogus proof (for instance an assignment a such that φ(a) is
false) the verifier should be sound and detect the mistake.

Formally, an NP-prover P is any (computationally unbounded) function that maps inputs x ∈
{0, 1}∗ to proofs y ∈ {0, 1}∗. Then NP is the class of all decision problems for which there exists a
TM V (called a verifier) whose running time is polynomial in the length of x and a computationally
unbounded function P : {0, 1}∗ → {0, 1}∗ (called the honest prover) such that

if x ∈ YES , then V (x, P (x)) = 1

if x ∈ NO , then for all P ∗, V (x, P ∗(x)) = 0.

Now consider the following extension of NP-proofs: After receiving the purported proof, the verifier
is not quite convinced that the prover is correct and asks to see more detail. The prover may then
send a new message to the verifier elaborating on his case. The two keep going back and forth
until at the end of the day, the verifier is either convinced that the proof is correct (and accepts),
or thinks the whole argument is bogus (and rejects).

In this setting the prover and verifier are adaptive: The question that the verifier asks at any given
round of interaction may depend on the answers it received from the prover in previous rounds.
However, the prover himself may choose to adapt his answers based on the previous queries made
by the verifier.

To formalize it we need to introduce interactive Turing Machines. This is a Turing Machine that,
in addition to its input x, receives additional inputs (y1, z1, . . . , yk, zk) which represent the messages
sent and received in the first 2k rounds of interaction. Here, y1, . . . , yk are the messages sent by the
machine itself, and z1, . . . , zk are the responses received from the other party. (y1 may be empty if
the other party goes first.) On this input, the machine produces the next message yk+1 or possibly
accepts/rejects.

1

Given two interactive Turing Machines A and B we define the interactive computation of (A,B)
in the natural way: On input x, A(x) outputs y1, B(x, y1) outputs z1, A(x, y1, z1) outputs y2, and
so on, until A accepts or rejects.

A (polynomial-time) deterministic interactive proof for a decision problem (YES ,NO) is a pair of
Turing Machines (V, P) where V runs in time polynomial in the input x, and

if x ∈ YES , then (V, P)(x) accepts

if x ∈ NO , then for all P ∗, (V, P ∗)(x) rejects.

The verifier’s messages are called questions, and the prover’s messages are called answers.

Clearly the model we just introduced is at least as powerful as NP, which requires no interaction.
But is it really any more powerful? A simple argument shows that it is not, at least in the case
when V is deterministic. The reason is that on input x, the prover can predict in advance which
questions the verifier is going to ask, so it can answer all of them in the first round. Therefore the
whole interaction can be emulated by a one-round interaction, and the decision problem in question
is in NP.

2 Interaction and randomness

Now let’s supposed that the verifier is randomized. In this case, it is no more the case that the
prover can predict the verifier’s questions.

Definition 1. A (polynomial-time) interactive proof for (YES ,NO) is a pair of Turing Machines
(V, P) where V is a randomized TM that runs in time polynomial in the input x, and

if x ∈ YES , Pr[(V, P)(x) accepts] ≥ 2/3

if x ∈ NO , Pr[(V, P ∗)(x) accepts] ≤ 1/3 for all P ∗.

An r-round interactive proof is one in which the prover and verifier exchange at most r messages
on any input and any setting of the randomness.

As usual there is nothing special about the constants 2/3 and 1/3, by the same argument we had for
BPP. However there is one subtlety: Repeating the protocol several times may increase the number
of rounds. What we can do instead is run the protocol p(n) times in parallel (using independent
randomness), and accept if a suitable fraction of runs accept. This amplifies the probabilities from
any pair of constants c > s to 1− 2−Ω(n) and 2−Ω(n), respectively. We won’t give the proof.

We now give an example of a problem that has a two-round interactive proof, but is not known
to be in NP. Two graphs G1 and G2 on n vertices are isomorphic if there is a permutation of the
vertices of G1 so that, after permuting them, they both look the same. Formally, the permutation
π has the property that (u, v) is an edge of G1 if and only if (π(u), π(v)) is an edge of G2. Look at
the following question:

GI (graph isomorphism): Given a pair of graphs (G0, G1), are they isomorphic?

There are some obvious tests you can try for isomorphism, for instance checking that they have the
same number of edges and the same degree sequence (i.e. they have the same number of vertices of
any given degree). However it should be easy to convince yourself that two graphs can pass these

2

tests and still not be isomorphic. There are more sophisticated tests like checking that G0 and G1

have the same eigenvalues. Yet it turns out that they can still be non-isomorphic.

On the other hand, GI is clearly in NP – the isomorphism permutation can serve as a witness. But
what about the opposite problem:

GI (graph nonisomorphism): Given a pair of graphs (G0, G1), are they non-isomorphic?

While GI is not known to be in NP, there is a simple two-round interactive protocol for it:

Interactive proof for graph non-isomorphism

On input (G0, G1):

V: Choose a random i ∈ {0, 1} and a random permutation π on n elements. Create a
graph G by applying π to the vertices of Gi and permuting its edges accordingly
(i.e., (π(u), π(v)) is an edge in G iff (u, v) is an edge in Gi). Send G to the prover.

P: Answer 0 if G is isomorphic to G0 and 1 if G is isomorphic to G1.

V: If the prover answered i accept, otherwise reject.

We now argue that the above is indeed an interactive proof for GI. If G0 and G1 are not isomorphic,
then G is isomorphic to Gi, so it cannot be isomorphic to the other graph. So the honest prover will
always answer i, and the verifier will always accept. Now assume G0 and G1 are not isomorphic.
We have to argue that no matter what the prover P ∗ answers, V will reject with probability at least
1/2. The key insight is that when G0 and G1 are isomorphic, the random graph G is (statistically)
independent of the random value i. Therefore no matter what the prover does, the chances that
he guesses the correct value of i is exactly 1/2.

3 Round reduction and public-coin proofs

So we seem to be getting evidence that interaction helps us prove more things. It seems reasonable
to think that if two rounds of interaction are more powerful than no interaction, then three rounds
should be even more powerful than two rounds. However, it turns out that this is not the case:

Theorem 2. For every constant r, if f has an r-round interactive proof, then it has a two-round
public-coin interactive proof.

To prove this theorem and explain what “public-coin” means, it turns out it is convenient to first
convert the interactive proof in a special form. To explain what this special form is, let’s look back
at our example of graph non-isomorphism. The reason the verifier is convinced that G0 and G1

are not isomorphic after running this protocol is that the if they were isomorphic, then the value
i chosen by the verifier at the very beginning is completely hidden from the prover. This is an
example of a private coin protocol: The soundness of the protocol relies on the fact that the verifier
has some private (random) value that the prover cannot guess.

We can also consider a more restricted kind of protocol, where everything the verifier does is in
plain view of the prover. Without loss of generality, this kind of protocol, called a public coin
protocol, works in the following way: The prover and the verifier get together in a room and toss
some random coins together. The coin tosses serve as the verifier’s first question. The prover then
answers this question, and they get together again, toss some coins, and this is the second question.
After sufficiently many rounds of interaction the verifier has to accept or reject.

3

This seems like a very strange thing to do. How much can the verifier learn by asking random
questions? But here is an example of an interesting promise problem that can has a two-round
public-coin proof. A nondeterministic circuit C : {0, 1}n → {0, 1} is a circuit that, in addition to
its regular input x ∈ {0, 1}n, a witness w. We say such a circuit C accepts x (or x is a satisfying
assignment of C) if there exists a w such that C(x,w) = 1.

MSAT (many satisfying assignments):
Input: A nondeterministic circuit C and numbers s (in binary) and 1a (in unary),
Yes instances: (C, s) such that C has at least s satisfying assignments.
No instances: (C, s) such that C has at most (1− 1/a)s satisfying assignments.

MSAT is at least as hard as SAT, since if we set s = 1 and say a = 2 it asks exactly for the presence
of a satisfying assignment. If we set s to say 2n/2 then the problem is not known to be in NP.

Claim 3. MSAT has a two-round public-coin interactive proof.

Proof. We first show how to do this when 1− 1/a is replaced by 1/8. In the first round, the prover
and verifier choose a random hash function h : {0, 1}n → {0, 1}k, where 2k−2 ≤ s ≤ 2k−1. Recall
that h can be specified by a random string of length 2n. The prover is then supposed to send x
such that C accepts x and h(x) = 0. If such an x is sent, the verifier accepts, otherwise it rejects.
By Lemma 7 from Lecture 6, for a yes instance such an x exists with probability at least 1/8.

For a no instance, the probability that the verifier can provide an x such that C(x) = 1 and h(x) = 0
is at most the number of satisfying assignments to C times 2−k by a union bound. This is at most
(s/8)2−k ≤ 1/16, so the probability that the prover can choose such an x is less than 1/16.

To do this for larger values of a, the verifier and prover run the above protocol on the circuit

C ′(x1, . . . , x3a) = C(x1) and · · · and C(x3a)

with size parameter s3a. If C has at least s satisfying assignments then C ′ has at least s3a satisfying
assignment and the protocol accepts with probability 1/8. If C has fewer than (1−1/a)s satisfying
assignments, then C ′ has fewer than (1− 1/a)3as3a ≤ sm/8 satisfying assignments.

While this protocol seems quite specialized, it turns out that the idea can be used to turn any
private-coin protocol into a public-coin one.

Theorem 4. If f has an r-round interactive proof, then it has a public-coin interactive proof with
at most r + 2 rounds.

We won’t show how to do this, but let us give some intuition about how this theorem relates to
the graph non-isomorphism protocol. Let us make the additional assumption that we have the
promise the graphs G0 and G1 have no automorphisms. If G0 and G1 are isomorphic, then there
are n! possible first messages sent by the verifier, one for each permutation of the vertices. If they
are not then there are 2n! possible messages, n! for permutations of G0 and n! for permutations of
G1. Now let C be the nondeterministic circuit that on input G accepts if and only there exists an
isomorphism between G and G0 or between G and G1. Then proving G0 and G1 non-isomorphic
amounts to proving that (C, 2n!, 2) is a yes-instance of MSAT.

Round reduction Now we sketch how to turn an r-round public-coin interactive proof for any
constant r > 2 into a two-round public-coin proof. We will do it iteratively, reducing the number
of rounds one by one. In such a protocol, the verifer starts by asking a random question r1, then

4

the prover answers by some string a1 and the verifier responds with r2. We will sketch how to
flip the order of the second and third round of interaction without affecting the completeness and
soundness of the protocol. The result is a protocol with one less round.

Let’s assume that each message is k bits long, where k grows at a rate polynomial in the input size.

V P

r1

a1

r2

a2

...

Consider what happens if in the third round of the protocol, the verifier “forks” m independent
executions of it in parallel (we’ll give the value of m later): Namely, instead of asking a single
question r2, it asks m such questions r21, . . . , r2m independently at random. It then expects m
answers a21, . . . , a2m from the prover, and so forth. At the end, it computes m different answers,
and accepts if the majority of them are accepting.

V P

r1

a1

r21

a21

...

r2m

a2m

...

· · ·

To analyze what happens it helps to assume the probability of accepting for the yes instances is
at least 8/9 and the probability of rejecting the no instances is at most 1/9. Let’s look at the
yes instances first. It then follows that for at least a 2/3 fraction choices of the first message r1,
for any fixed response a1 by the prover, the probability that the verifier accepts in the rest of the
interaction is at least 2/3. Let’s fix a message r1 with this property. Then by the Chernoff bound
the probability that fewer than half of the parallel interactions accept is at most 2−m/6.

Now let’s look at the no instances. These accept with probability at most 1/9, so there is at least
a 2/3 fraction of messages r1 such that for any fixed response a1 by the prover, the rest of the
interaction rejects with probability 2/3. Let’s fix a message r1 with this property. Again by the
Chernoff bound the probability that more than half of the forked interactions accept is at most
2−m/6.

In either case, as long as r1 is “good”, we have that for any fixed prover response a1, the probability
that fewer than half of the forked interactions do the right thing is at most 2−m/6. But there are
at most 2k possible responses a1; so by a union bound we get that the probability that there exists
a1 that makes fewer than half of the forked interactions do the right thing is at most 2k−m/6. We
choose m = 6k + 18 to make this probability as small as 1/8.

But now look at what we proved: Regardless of what the prover’s message a1 is, the rest of the
protocol succeeds with probability 7/8. So we can now delay the message a1 to come after the
questions r21, . . . , r2m. This allows us to combine the first and second rounds of questions into a
single round, and even the first two rounds of answers into a single round, and reduce the number
of rounds by two.

5

V P

r1

r21 r2m

a1

a21 a2m

...
...

· · ·

· · ·

By repeating this transformation any polynomial-time interactive proof with a constant number of
rounds can be turned into a polynomial-time interactive proof with two rounds and public coins.
One last simplification we can make is to turn any proof into one with perfect completeness.

Definition 5. The class AM consists of those decision problems that admit a two-round interactive
proof (V, P) such that

if x ∈ YES , Pr[(V, P)(x) accepts] = 1

if x ∈ NO , Pr[(V, P ∗)(x) accepts] ≤ 1/2 for all P ∗.

So any constant-round interactive proof can be “compiled” into this very special form: The verifier
asks a single random question; for a yes instance, the prover can always make the verifier accept,
but for a no instance, the verifier will reject with high probability.

Moreover, since all the transformations we described are efficient, we obtain the following. A
reduction from promise decision problem A to promise decision problem B is a function that maps
yes instances of A to yes instances of B and no instances of A to no instances of B.

Theorem 6. Any f that has a constant-round interactive proof polynomial-time reduces to MSAT
even if we fix s to equal the number of all possible assignments and a to one.

4 Derandomizing interactive proofs

After all these simplifications it is natural to ask if constant-round interactive proofs are really all
that much more powerful than ordinary (non-interactive) proofs. By our standard simulation of
Turing Machines by circuits, every f in AM has a polynomial-size family of randomized nondeter-
ministic circuits {Cm}, namely

if x ∈ YES , Prr[Cm(x, r, w) accepts for some w] = 1

if x ∈ NO , Pr[Cm(x, r, w) accepts for some w] ≤ 1/2.

The randomness of these circuits can be eliminated just like in the proof of Theorem 12 in Lecture
5, leading to the following analogue of that result.

Theorem 7. Every decision problem in AM has a polynomial-size family of nondeterministic
circuits.

So in the circuit model, randomness and a constant number of interaction rounds do not increase
the power of polynomial-size verifiers. For algorithms, we can attempt to replace the randomness
of Cm by the output of a suitable pseudorandom generator. An analysis analogous to the proof of
Theorem 3 in Lecture 7 gives the following result.1

1A weaker-looking assumption is in fact sufficient.

6

Theorem 8. If there is a problem f decidable in time 2O(t) but not decidable by nondeterministic
circuits of size 2δt even on a 1/2 + 2−δt/2 fraction of uniformly chosen inputs for some δ > 0 then
AM = NP, even for promise problems.

If you believe the assumption this sounds quite strange. Think of the example of graph non-
isomorphism. We saw a simple interactive method that can be used to prove any two given graphs
are non-isomorphic, but nobody knows if there are short written proofs of graph non-isomorphism.
Theorem 8 gives evidence that such proofs are in fact likely to exist!

One last word of warning: Our discussion here applies only to proof systems whose number of
rounds is constant, that is independent of input size. Proofs of unbounded round complexity are
much more powerful. In particular they can be used to refute the existence of solutions to NP
problems, something we will talk about in the next lecture.

References

Interactive proofs were invented independently by Goldreich, Micali, and Wigderson and by Babai,
who only considered public-coin proofs. The MSAT problem was introduced and Theorem 2 was
proved by Goldwasser and Sipser; it also holds when the number of rounds is unbounded. Round
reduction was proved by Babai and Moran. They show, more generally, that the number of rounds
can be halved with a polynomial increase in verifier complexity. The derandomization of interactive
proofs was first proposed by Klivans and van Melkebeek in a paper titled Graph Nonisomorphism
Has Subexponential Size Proofs Unless The Polynomial-Time Hierarchy Collapses. The hardness
assumption was simplified and the running time of the derandomization improved in a sequence
of works leading to a general result of Shaltiel and Umans. Last year Babai showed that graph
isomorphism and non-isomorphism have quasi-polynomial time algorithms.

7

