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A central goal of computational complexity is to understand the amount of time necessary to solve
various computational problems. In the 1960s it was realized that some seemingly simple tasks
would take an inordinate amount of time to solve on any computer, even though solutions can in
principle be found. The inherent difficulty of these problems had nothing to do with the computing
technology that was available in the 1960s. With today’s technology we can do no better, and it is
quite possible that in a hundred years time we will still be stuck. It appears that nature imposes
intrinsic obstacles at performing certain computations.

1 Computational problems

There are several different types of problems that are interesting from the computational point of
view. In the next few lectures we will focus on decision problems and search problems. (There are
also other types like optimization problems, counting problems, sampling problems, and games.)
Let’s see some examples.

Decision problems A decision problem is one that can be answered by yes or no:

PMATCH Given an undirected graph, does it contain a perfect matching, i.e. a collection of edges
that covers every vertex exactly once?

CLIQUE Given an undirected graph GG and a number k, does G contain a clique of size k, i.e. a
subset of k vertices of which ever pair is connected by an edge?

SAT (Boolean formula satisfiability) Given a boolean formula in conjunctive normal form (CNF),
for instance
(x1 OR T3) AND (21 OR 23V T1) AND (T3 OR T3) AND (T7)

is there an assignment that satisfies the formula (i.e. it satisfies all the clauses simultaneously)?
For instance the assignment 1 = 1,29 = 0,23 = 1, x4 = 0 satisfies the above formula.

As usual we represent inputs to decision problems as binary strings. A decision problem can then
be represented as a partition (YES, NO) of the set {0,1}* of all possible inputs. For example, the
YES instances of PMATCH are those graphs (represented say by a list of indicators for each of the
(g) possible edges) that do contain a perfect matchings, while the NO instances are those that do
not.

An issue that arises with this representation is that it is not obvious how to classify instances that
do not represent valid inputs at all. (In our graph example, these would be inputs whose length
is not a number of the form (Z)) One possibility is to disqualify such instances by relaxing the
requirement that the sets YES and NO partition all possible strings and allow for a third possibility
that certain instances are invalid. This leads to the notion of promise problems, to which we will
come back later in the course. For now we will adopt the convention that invalid inputs be classified
as INO instances of the decision problem.

A vpartition (YES, NO) of the set {0,1}* of all possible inputs can also be viewed as a function
f:{0,1}* — {0,1} where f(x) =1if x € YES and 0 if z € NO. So decision problems can also be
represented by functions from {0,1}* to {0, 1}.



Search problems In a search problem we not only want to know if a solution exists, but find
the actual solution as well:

PMATCH Given a graph, find a perfect matching, if one exists.
CLIQUE Given a graph G and a number k, find a clique of size k in G, if one exists.
SAT Given a boolean formula, find an assignment that satisfies it, if one exists.

We will represent search problems as relations S over pairs of strings (x,y) € {0,1}* x {0,1}*.
The input z represents the problem (the graph) while y represents potential solutions (the perfect
matching). The pair (z,y) satisfies S if y is a solution of = (graph x contains the matching y).

Now let us jump ahead a little bit and see what kind of insights complexity theory can give us
about these problems. At a very general level, we are looking at problems of the following kind: We
are given some object (a graph, a formula) and want to check if the object contains structures of a
certain type (a matching, a clique of a given size, a satisfying assignment), and find this structure
if it exists. In principle, we can solve all these problems by trying out all possible structures of
interest. However, even for moderately sized objects this would take too much time even on very
fast computers.

In 1965 Edmonds found an ingenious way of finding perfect matchings in graphs that takes much
less effort than looking at all possible matchings in the graph. For an n vertex graph, Edmonds’
algorithm performs a sequence of about n3 operations which consist of marking certain edges in the
graph and looking at their neighbors, at the end of which the maximum matching is highlighted.
With today’s technology we can run this algorithm on graphs with hundreds of thousands of nodes.

In contrast to the matchings, for clique and formula satisfiability we know of no better algorithm
than one that essentially performs an exhaustive search of all possible solutions. Most computer
scientists believe that no amount of ingenuity will help us here. Rather, it is a fundamental fact of
our current state of knowledge or a fundamental limitation imposed by nature (depending on who
you ask) that these problems do not admit algorithms that substantially outperform exhaustive
search in the worst case. Is this really true?

This is the famous P versus NP question, the most famous problem in complexity theory, and one
that we will not be able to answer. Our goal will be more modest: We will try to understand
the relationships between problems like matching, clique, and satisfiability with respect to different
solution concepts (decision versus search), complexity measures (worst-case versus average-case),
and algorithms (deterministic, randomized, quantum).

2 Models of computation

To reason rigorously about the complexity of computations we need a model that faithfully captures
the resources that we have at our disposal. This appears somewhat difficult as the resources we
have available change dramatically over time. In the early 1800s the mathematician Gauss was
admired for his prowess at performing difficult calculations. In the early 1900 mechanical calculating
devices put the best humans to shame, and by the 1950s electronic computers were already doing
calculations that noone thought possible before. Today a mobile phone can do much much more
than a computer from the 1990s. Given such huge disparities among the devices at our disposal,
how can we hope to make any sort of general statement about computation?

Complexity theory takes the perspective that the difference in resources between various computa-
tional devices is insignificant compared to the vast gap between the tractable and the intractable.
Then it does not really matter what model of computation we use, as long as it is a reasonable one



in the sense that it can both simulate and be simulated by a realistic computational device in a
relatively efficient way.

A standard model which is convenient for most purposes in complexity theory is the Turing Machine.
This is a device with a finite control unit and a one-sided infinite tape whose cells are populated
by symbols from some fixed alphabet (that contains the input/output alphabet symbols 0 and 1
and the empty cell symbol ). which is initialized with the input and terminates with the output.
The tape contains a moving head, and at each step of computation the machine decides what to
do (e.g., move to a different control state, move the head left or right, modify the current cell of
the work tape) as a function of its current control state and the content of the tape cell that the
head points to. At some point the machine goes into a special halting state and the computation
is over. The computation time of a Turing Machine on a given is the number of steps that it takes
for the halting state to be reached. The computation space is the index of the rightmost cell of the
tape accessed during the computation.

We say that a Turing Machine solves decision problem f if at the end of the computation the tape
contains the value f(x) (1 if = is a YES instance, 0 if it is a NO instance). A Turing Machine
solves search problem S if for every input = the machine outputs a y such that (x,y) € S provided
such a y exists.

3 P and NP

The convention in complexity theory is to consider a computation efficient if its running time of
the computation is bounded by some polynomial of the input length.

There are several reasons for choosing polynomial time as a notion of efficiency. First, we want
to do better than exhaustively running through all possible solutions, a procedure that typically
takes time exponential in the size of the inputs. Polynomials grow slower than exponentials, so
an algorithm that runs in polynomial time must be using something about the structure of the
problem in question that allows it to sidestep the ”brute force” procedure of going through all
possible solutions. Another reason for the popularity of polynomial time as a measure of efficiency
is a belief in the Cobham-Edmonds thesis (also known as the extended Church-Turing thesis), which
states that any reasonable model of computation can be simulated on any other with a slowdown
that is at most polynomial in the size of the input. Finally, polynomial-time computations enjoy
nice closure properties: For example, if the output of one polynomial-time algorithm is the input to
another algorithm then their composition also runs in time polynomial in the length of the input.

It is important, however, to keep in mind that not all computations that can be done in polynomial
time are considered efficient in practice, but also that there are interesting algorithms whose running
time is somewhere between polynomial and exponential.

For decision problems, computation with worst-case polynomial time complexity is captured by the
class P: The class P consists of those decision problems that are solved by some Turing Machine
that runs in time O(|z|¢) for every input = and some constant c.

A relation S is an NP-relation if it is efficiently computable and it describes a search problem whose
solutions are short (if they exist). In other words,

1. There is a polynomial-time algorithm that, on input (z,y), decides if (z,y) € S, and

2. There is a polynomial p such that if (z,y) € S, then |y| < p(|z|).

If (x,y) € S, then y is called a witness or certificate for x. For example in the SAT problem, x



is a boolean formula and y is a satisfying assignment for x; thus y witnesses the fact that x is
satisfiable.

The decision version of a search relation S is the decision problem whose Y E.S instances are those
x for which there exists a y such that (z,y) € S. (We call such x yes instances of S.) A decision
problem is an NP decision problem if it is the decision version of some NP-relation. The class NP
consists of all NP decision problems. In other words:

Definition 1. The class NP consists of all decision problems (YES, NO) for which there exists a
polynomial-time Turing Machine V" and a polynomial p such that € YES if and only if V accepts
input (z,y) for some y of length at most p(|z|).

We call Turing Machine V' the verifier. Its task is to verify that the NP-relation is satisfied by the
instance z and the candidate solution y.

4 NP completeness

Many problems in the class NP appear to be difficult in the same way: There is no better way of
finding a solution than doing an exhaustive search over all possible witnesses. NP-completeness
gives a partial explanation of this phenomenon. We will focus on search problems.

For two search problems S and T, we say S polynomial-time reduces to 1" if there exist polynomial-
time computable functions inst and sol such that (1) if = is a yes instance of S then inst(z) is a
yes instance of T" and (2) if y is a solution of T" then sol(x,y) is a solution of S. Polynomial-time
reductions are transitive: If S reduces to T" and T reduces to U then S also reduces to U. A search
problem C' is NP-complete if C' is an NP-relation and every NP-relation polynomial-time reduces
to C.

A reduction is a useful tool for proving that search problem T is computationally at least as hard
as search problem S. For if we had a polynomial-time algorithm for 7" we could then also solve S:
Given instance = of S, first convert it to instance inst(z) of T', solve inst(z) to obtain solution v,
and then apply sol to (z,y) to get back a solution for x.

Polynomials and circuits Before we see some examples of NP-complete problems it will be
helpful to relate the computational power of algorithms and circuits. These are objects of different
type as the set of possible inputs to an algorithm is infinite, while in the case of circuits inputs
have an a priori fixed length. We can, however, simulate an algorithm by an infinite circuit family
{C1,Cy, ...} where circuit n takes inputs in {0, 1}".

Theorem 2. For every Turing Machine M that runs in time at most t(n) and space at most s(n)
on all inputs of length n there exists an AND/OR circuit family {C1,Co, ...} where Cy(z) = M(z)
for every input z € {0,1}" and C,, has size O(t(n) - s(n)).

A Turing Machine that runs in time ¢ on a given input must also run in space at most ¢ as it moves
one cell at a time. In particular if M runs in time polynomial in its input length, C), also has size
polynomial in n: Polynomial-time algorithms can be simulated by polynomial-size circuit families.

In the other direction, it is not true that every polynomial-size circuit family can be simulated by
a polynomial-time algorithm. The reason is that the set of functions computed by polynomial-
size circuit families is uncountable, while the number of Turing Machines is countable as a Turing
Machine is fully described by its finite control unit.



Proof Sketch. The computation tableau of M on input z is a table of dimensions #(n) x s(n) that
describes the transcript of the computation: The cell 4, j of this tableau contains the contents of
the jth cell of the tape at time 7, including a special marker that designates the state if the head
of the Turing Machine happens to access cell j at time 7. (Some of the cells may be marked blank
if the Turing Machine takes less time or space.)

We associate a variable z;; with cell (4, ) of the tableau. The value in cell ¢ at time j is then
determined by a function

zij = Cij(Zi-1,j-1,Zi—1j, Zi—1,j+1)

that determines the contents of cell 4, j as a function of the contents of the three cells above it (only
two if i =1 or ¢ =t). Since C;; is a function from one finite alphabet to another one, independent
of the input length, it can be represented by a DNF of constant size. We now create a circuit C' by
“cascading” the circuits C; ; whose inputs are the first n elements in the top row and the outputs
are the relevant elements in the last row. The resulting circuit has size O(t(n) - s(n)). O

Some NP-complete problems Our first example of an NP-complete search problem is circuit
satisfiability (CSAT): Given a circuit C': {0,1}"™ — {0,1} as input, find an assignment y € {0, 1}"
such that C(y) = 1 if such an assignment exist.

Theorem 3. CSAT is NP-complete.

Proof Sketch. Take any NP-relation S with verifier V. We will show that S reduces to CSAT. Let
n and m denote the length of the input and solution, respectively, and let C be the circuit that
simulates V' on input-solution pairs (z,y) of length n and m, respectively, given by Theorem 2.
The map inst(z) outputs the circuit C,(y) = C(x,y) obtained by hardwiring the input z into C
and sol simply outputs the solution y.

If x is a yes instance of S then C,(y) = V(x,y) must accept for some y, so C, is a yes instance
of CSAT. In the other direction, any solution y such that C;(y) = 1 is also a solution of x with
respect to the search problem S. Therefore S reduces to CSAT.

It remains to argue that inst and sol are polynomial-time computable. For sol this is clearly true.
Regarding inst, inspecting the proof of Theorem 2, we can conclude that the circuit C' does not
merely exist, but its description can in fact be printed in time polynomial in the running time of
V on input (z,y). Since m is polynomially bounded in n, C, can be computed in time polynomial
in the length of x. O

The search problem 3SAT is the same as SAT, but its yes instances are CNF's of width at most 3,
namely with at most 3 variables per clause.

Theorem 4. 3SAT is NP-complete.

Proof. By transitivity of reductions it is enough to show that CSAT polynomial-time reduces
to 3SAT. Given a circuit C: {0,1}" — {0,1} the map inst produces a CNF ¢ over variables
T1,..Tny Y1, -+ - Ym, Where the x;s and y; represent the inputs and gates of C, respectively. For
each gate G of C' whose inputs are represented by literals ¢ and b and output is represented by
literal ¢, ¢ contains four CNF clauses that are simultaneously satisfied when and only when the
constraint ¢ = G(a, b) holds. For example if G is an AND gate then the four clauses are a OR b OR ¢,
a ORDORGE, @ORDORE, @ORbOR c. The map sol outputs x1,...,z,. The formula ¢ also contains
the clause y,,, assuming y,, represents the output gate of C.



Both inst and sol are polynomial-time computable. If x is a satisfying assignment for C', and y;
is the value of the corresponding gate when C' is evaluated on input x then (x,y) is a satisfying
assignment for ¢. Also, if (z,y) satisfies ¢ then x must be a satisfying assignment of C' and y must
encode the values at the corresponding gates, so the reduction is correct. O

Theorem 5. CLIQUE is NP-complete.

Proof. We show that 3SAT polynomial-time reduces to CLIQUE. Given a formula ¢, inst(¢) is the
following graph G and number k: For each clause ¢ of ¢ with v variables, ¢ contains 2¥ — 1 vertices
representing all satisfying assignments of c. Such assignments to a clause can also be viewed as
partial assignments of ¢. There is an edge between partial assignments if and only if the two are
not inconsistent (they do not assign opposite values to the same variable). The number £ is set to
the number of clauses in ¢. For example, if ¢ is the CNF

(x1 OR T32) AND (x1 OR x3) AND (T3)

then k = 3 and G is the graph

00 014

104 102 03
114

1T r1T3 €3

The vertex labels represent assignments to clauses: For example, 10; is the partial assignment
1 = 1,22 = 0 to the first clause of ¢. There is no edge between 00; and 10, because their
assignments to x1 are inconsistent.

Given a clique C of size k in G, sol(¢,C) outputs an assignment to ¢ that is consistent with all
the partial assignments in the clique. In the above example, if C' is the clique {107, 102,03} then
sol would output the assignment x; = 1,29 = 0,23 = 0.

Both inst and sol are computable in polynomial time. We now argue correctness. If ¢ has a
satisfying assignment x and for each clause we choose the vertex indexed by the assignment z then
the corresponding set of vertices is a clique of size k in G. In the other direction, if C is a clique of
size k in G then C' must include one vertex for each clause of ¢ and the assignments represented
by these vertices must be consistent. So sol(¢,C) is a satisfying assignment for ¢. 0

By Theorem 5, if we can design a polynomial-time algorithm for finding cliques in graphs then we
would also obtain polynomial-time algorithms for finding satisfying assignments to CNF's of width
3. We do not know of such algorithms. The best currently known algorithms for 3SAT, which
is a very well studied problem, take time 22(") in the worst case. From the proof of Theorem 5
it follows that the existence of an algorithm for CLIQUE on n vertex graphs that runs in time
2°(") would imply the existence of an algorithm for 3SAT that runs in time 2°"), where n is the
number of variables. This is one reason why the existence of a 2°(") algorithm for CLIQU E (and
by Theorem 2 a circuit family for CLIQU E of the same order of growth) is thought to be unlikely.



Search versus decision for NP problems Suppose we have an algorithm that finds perfect
matchings in graphs that are guaranteed to have one. We can use this algorithm to decide if a
perfect matching in a graph exists: Run the algorithm and accept if the solution checks out. This
reasoning holds for SAT, CLIQUE, and every problem in NP: If we can solve any NP search
problem in polynomial time, we can also solve its decision variant.

What about the other direction? There are examples of problems in NP for which the decision
version is easy but we do not know of any efficient algorithms for finding solutions. Consider for
example the search problem given by the relation S given by

(z,(y,2)) € S if x,y, z are integers greater than 1 such that x = yz.

To solve the decision version of S we need to find out if = is composite and there is a polynomial
algorithm for this. To solve the search problem we need to factor x and no polynomial-time
algorithm for this is known.

However, if any NP-complete problem can be decided in polynomial time then solutions to all NP
problems can also be found in polynomial time:

Theorem 6. If NP = P then all NP search problems have polynomial-time algorithms.

Proof. 1If NP = P then in particular CSAT has a polynomial-time decision algorithm D. Then
CSAT also has the following polynomial-time search algorithm S: On input C': {0,1}" — {0, 1}
obtain the circuits Cp, Cy: {0,1}*~! — {0,1} by substituting the values 0 and 1 for z; in C,
respectively. Run D on inputs Cy or Cy. If D accepts Cp, set x1 to 0 and recursively find a
satisfying assignment for Cy. Otherwise, set z; to 1 and recursively find a satisfying assignment
for C1. If D runs in polynomial time so does S, and if C' has a satisfying assignment then so must
at least one of Cy and C and S is guaranteed to find it by an inductive argument.

By Theorem 3 all NP search problems polynomial-time reduce to CSAT, so if NP = P then all such
problems have polynomial-time algorithms. ]

5 Randomized algorithms

One aspect in which our model of an efficient algorithm is too restrictive is that it does not allow
for the use of randomness. The following extension gives the Turing Machine access to an ideal
uniform source of random numbers.

A randomized Turing Machine contains, in addition to its other tapes, a special random tape which
is initialized with a sequence of random and uncorrelated bits ri, 7o, -+ ~ {0,1}. As soon as we
allow the algorithm access to a random tape, its behavior is no longer completely determined by
the input . Now for every = the output of the Turing Machine is a random variable M (x) that
depends on the contents r of the random tape. When we want to make this dependence on r
explicit we will write M (z;r). We will say that a randomized Turing Machine runs in time at most
t on a given input if its running time is at most ¢ for all possible settings of the random tape.

For decision problems, we will think of a randomized algorithm as solving the problem (in the worst
case) as long as it behaves correctly on all inputs for “most” choices of the randomness. There
are several possible definitions depending on how we require the algorithm to behave on the bad
choices. We will adopt the most liberal one leading to the notion of bounded-error probabilistic
polynomial time.



Definition 7. We say that randomized Turing machine M decides decision problem f if for every
x € {0,1}*,
Pr[M(z) = f(z)] >2/3

where the probability is taken over the setting of the random tape of M. The class BPP consists
of all decision problems f that are decided by some randomized polynomial-time Turing Machine.

We will soon see that the choice of the constant 2/3 is irrelevant and in fact any number strictly
between 1/2 and 1 leads to the same class of problems. If we replace 2/3 with 1/2 then the definition
becomes meaningless as it is satisfied by any f (as M can output a random coin flip as its answer).
If we replace 1/2 with 1 then M is required to always output the correct answer so it can pretend
the value of its random tape is fixed say to zero. So in particular all (decision) problems in P are
also in BPP.

There are not too many examples of decision problems for which we know randomized efficient
algortihms but no equivalent deterministic algorithm. The simplest (and most famous) example is
polynomial identity testing.

Polynomial identity testing An arithmetic formula over the integers is an expression built up
from the variables z1,...,z,, the integers, and the arithmetic operations '+’ and ’x’, for instance:

(z1+4 x 23 X 24) X ((x2 — 23) X (22 +23)) — 3 X 20

We say that F' is identically zero, in short F' = 0, if when we expand the formula and carry out all
cancellations we obtain 0.

Polynomial identity testing (PIT) is the following decision problem: Given an arithmetic formula
F with integer coeflicients, decide if F' is identically zero. The above formula is not identically zero,
while this one is:

($1+$2) X(CEl—l-:L’Q)—(xl—l‘Q) X (.731—.%2)—4><:E1 X I9

Theorem 8. PIT has a randomized polynomial-time algorithm (i.e., it is in BPP).

Proof. Let m be the number of multiplications in F'. Consider the following randomized algorithm
for PIT:

A: On input F,
Choose values ay, ..., a, independently at random from the set {1,...,3m}.
Evaluate b = F(a1,...,a,).
If b # 0, reject; otherwise, accept.

If F is identically zero, A accepts F with probability 1. Now we show that if F' is not identically
zero then A rejects F' with probability at least 1/3. This follows directly from the next lemma
and the fact that an arithmetic formula with m multiplications computes a polynomial of degree
at most m.

Lemma 9 (De Millo, Lipton, Schwarz, Zippel). For any nonzero polynomial p of degree d over the
integers and every set S C Z,

Pral,...,anNS[p(alv B a‘n) = 0] <ia



In our case, F' is a polynomial of degree at most m and S is a set of size 2m, so the algorithm will
detect that F # 0 with probability at least 1/2. O

Proof of Lemma 9. We prove it by induction on n. If n = 1 then p is a nonzero univariate polyno-
mial of degree d. Such a polynomial can have at most d roots so if a was chosen at random from a
set S, p(a) equals zero is at most d/|S|. If n > 1 then we can expand p as

p(x1, .y ) = xclll -p1(x2y .y Tp) + :E‘lh_l cp2(x2y ey Tp) + oo+ PR(T2, ooy Tp)
and consider two possibilities: Either pj(ag,...,ay,) evaluates to zero or it doesn’t. By the law of
conditional probabilities,

PI'[p(ah ""an) = 0} < Pr[pl(a27 ...,CLn> = O] + Pr[p(ah s 7an) =0 | pl(CLQ, "'7a‘n) 7& 0]

By the induction hypothesis, the first term is at most (d —dy)/|S|. For the second one, conditioned
on p1(ag, ..., a,) being nonzero, for any fixing of ag, ..., a,, p(z1,as,...,ay,) is a univariate polyno-
mial of degree d;. By our analysis of the case n = 1, p vanishes with probability at most dy/|S]|
over the choice of z;. Therefore

d—dy dy d

Prip(a,...,a,) = 0] < — = — O
plar, —oan) =01 < =g+ 15 = )

Reducing the failure probability We now argue that the quantity that determines the failure
probability of randomized algorithms for decision problems can be made arbitrarily small. In fact,
any “polynomial” gap between the acceptance probability of yes and no instances can be amplified
to a gap that is exponentially close to 1.

Theorem 10. Let (YES, NO) be a decision problem and A be a polynomial-time algorithm such
that

r€ YES — Pr[A(z)=1]

@ (ED)
re NO — Pr[A(z)=1]

s(lzl),

IN IV

c(n) — s(n) > 1/q(n) for some polynomial q, and the values c(n),s(n) are computable in time
polynomial in n. Then for every polynomial p there exists a polynomial-time algorithm A’ such that

re YES — Pr[A'(z)=1>1-27PD

=1
re NO — Pr[Ad(z)=1<1- o—p(lz])

We now prove the theorem. On input z, the algorithm A’ runs A independently for sufficiently for
a number of times m to be determined later and keeps track of what fraction of the runs accept.
If this fraction is closer to ¢(n) than it is to s(n) then A’ accepts z, otherwise it rejects z.

Let X; be an indicator random variable for the event that the ith run accepts and X = X1+ - -+X,,.
If x is a yes instance then the expected value E[X] is at least m - ¢(n), and if z is a no instance
then u < m-c(n).

The Chernoff bound tells us that if m is large, then X is very close to its expectation with extremely
high probability. There are several variants of this bound and we will apply the following one:

Theorem 11 (Chernoff bound). Let X1, Xs, -+, X, are independent indicator random variables
such that Pr[X; = 1] = p for all i. Then for every e > 0,

PrUX —pm| > em] < 9e~2e%m



We set € = (¢(n) — s(n))/2 to obtain the following consequence:

x€ YES — Pr[X < (c(n)+s(n))m/2] < 9e—0(n)m
reNO — PrX > (c(n) + s(n))m/2] < 2¢700m

where §(n) = (c¢(n)—s(n))?/2 > 1/2q(n)?. Setting m = 2p(n)q(n)?+1 gives the desired conclusion.

Randomized algorithms and circuits In the proof of Theorem 2 we showed an efficient simula-
tion of deterministic algorithms by circuit families. In the setting of decision problems, randomized
algorithms can also be efficiently simulated by circuit families.

Theorem 12. Every (decision) problem in BPP has a polynomial-size circuit family.

Proof. Let f be a decision problem in BPP and M be the polynomial-time randomized Turing
Machine that decides it. By Theorem 10, we may assume without loss of generality that for every
z €{0,1}*,

Pr,.[M(z;r) # f(x)] <2712,

By Theorem 2 there exists a polynomial-size circuit family {C},Cs,...} such that Cy,(z,7r) =
M (x;r) for every input z and setting of the random tape r and m = |z| + |r|. So for every =z,
Cyn(z;7) differs from f(z) with probability less than 27" where n is the length of x.

Let’s now fix an input length n. By a union bound, the probability that C,, (z;r) differs from f(x)
for some x of length n is less than 2" - 27" = 1 over the choice of r. In particular, it follows that
for every n there exists a choice of r such that Cy,(z;r) = f(z) for all z of length n. If we fix the
randomness r into the circuit C,, we obtain a new polynomal-size circuit family that decides f on
all inputs. O
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