
CSCI 5170: Computational Complexity Lecture 3
The Chinese University of Hong Kong, Spring 2016 26 January 2016

In Lecture 2 we proved that that computing PARITY on n inputs requires unbounded fan-in depth
d circuits of size 2n

Ω(1/d)
. When d is a fixed constant, the required circuit size for PARITY grows

exponentially in the input size. However, if we set d to equal log n/ log logn, this bound does not
say anything and for a good reason: PARITY on n bits can be computed by a circuit of depth
log n/ log logn and size O(n). Similar considerations apply for MAJORITY .

What happens when the depth of the circuit becomes logarithmic in the input size? To make
things a bit easier, today we will look at circuits of bounded fan-in, that is a circuit in which each
gate takes in a constant number of inputs from previous layers. For such a circuit to meaningfully
compute a function on n bits, its depth must be at least Ω(log n), for otherwise it would be too
small to examine all its inputs. To obtain the simplest “reasonable” model of such circuits we will
think of the depth as growing at the rate of K log n for some constant K. Which functions require
large circuits of this type?

Surprisingly, we do not know of a single “explicit” function that provably requires circuits of
this type of size that grows even super-linearly in n (even though there are many examples of
functions for which this is believed to be true). Nevertheless, such circuits are quite interesting
for the following reason. One of our motivations for studying restricted depth circuits was to
understand parallel computation; however, bounded fan-in circuits of logarithmic depth turn out
to be equivalent to branching programs, a model of sequential computation.

1 Circuits and formulas

To be concrete, we will assume that our bounded-depth circuits have fan-in 2. This is mostly for
convenience and without much loss in generality:

Claim 1. If a function can be computed by a circuit of size s, depth d, and gates of any type of
fan-in at most c, then it can also be computed by a circuit of fan-in 2, size s, and depth (c+log c)d.

An unbounded fan-in AND/OR/PARITY circuit of size s and depth d be converted into a fan-in 2
circuit of size O(s log s) and depth O(d log s) after we replace each of the AND, OR, and PARITY
gates by a complete binary tree of gates of fan-in 2 of the same type. In particular, the PARITY
function on n bits has a linear-size fan-in 2 circuit of depth log n. The MAJORITY function on
n bits has a fan-in 2 circuit of size O(n log n) and depth O(log n): It recursively computes the sum
x1 + · · ·+ xn.

A formula is a circuit in which every gate (but not necessarily the inputs) has out-degree 1. In
general, formulas seem less powerful than circuits as they are not allowed to reuse previously
computed values. However, when depth is logarithmic in size, we show that the minimal size of
a bounded depth circuit, a bounded depth formula, and an unbounded depth formula for a given
function are polynomially related. For the rest of this lecture both circuits and formulas will be
assumed to have fan-in 2.

Although formulas will not be used in what we do next, they are simpler to think about than
circuits so I think it is useful to prove their equivalence to circuits in the bounded depth setting.
First, any circuit can be converted into a slightly larger formula while preserving depth:

Lemma 2. If f has a circuit of size s and depth d, then it has a formula of size s2d and depth d.

1

Proof. By induction on the depth d. Let C be the circuit for f of size s and depth d and look at the
topmost gate G of C. Then C(x) = G(f1(x), f2(x)), where f1 and f2 are the functions computed
by the gates that connect into G. By assumption, f1 and f2 each have circuits of size at most s− 1
and depth at most d − 1, so they can be computed by formulas of size (s − 1)2d−1 each. Putting
these two formulas together we obtain a formula for C of size 2(s− 1)2d−1 + 1 < s2d.

A slightly more surprising fact is that any formula, regardless of depth, can be converted into one
of bounded depth:

Lemma 3. If f has a formula of size s, then it has a formula of size O(slog3/2 4) and depth O(log s).

We will need the following claim:

Claim 4. In every binary rooted tree with s nodes it is possible to remove an edge so that both
remaining components have at most d2s/3e nodes.

Proof of Lemma 3. By Claim 4 there is a wire in the formula that splits the other gates into sets
of size at most 2s/3 each. Suppose this wire goes out of gate G. Let g be the formula computed by
G and f0, f1 be the formulas obtained when G is replaced by the constants 0 and 1, respectively
(and the formula is simplified). Then we can write the expression

f(x) = (f0(x) and g(x)) or (f1(x) and g(x))

All of the formulas f0, f1, g, and g have size at most d2s/3e, so we can recursively apply the same
argument to them to obtain a formula of depth 2 log3/2 s for f . The size of the new formula obeys

the recursive relation size(s) ≤ 4 · size(d2s/3e) + 3, which solves to size(s) = O(slog3/2 4).

Proof of Claim 4. Consider the root-to-leaf path that at every point follows the edge leading to
the larger of the two subtrees (breaking ties arbitrarily). Consider the sequence of subtrees rooted
along this path. The first tree in the sequence has s nodes. If a tree in the sequence has n nodes,
the next one must have at least (n − 1)/2 nodes. So after the last tree in the sequence of size
exceeding d2s/3e must come one whose size is at least d2s/3e/2 ≥ s/3. This tree has between s/3
and d2s/3e nodes. If its outgoing edge is removed, both remaining components have at most d2s/3e
nodes.

2 Branching programs

A branching program is a device with some small number of states. Before it starts its computation,
the device decides how it is going to process its input: Maybe first it looks at the input bit x5,
then x2, x7, x2 again, and so on. At each time step, it updates its state as a function of its current
state and the input bit it was looking at. The device can use different update rules in different time
steps.

Definition 5. An (oblivious) branching program on n inputs of width w and length ` consists of
a sequence of input positions k(1), . . . , k(`) ∈ {1, . . . , n} and transition functions f1, . . . , f` : [w] ×
{0, 1} → [w].

The branching program of width w computes a function f : {0, 1}n × [w] → [w] as follows: On
input (x, s0), ` steps of computation are performed, where in step t the state is updated from
st−1 to st = ft(st−1, xk(t−1)). The output is the value of s`. (If the function of interest is of the

2

type f : {0, 1}n → {0, 1}, we restrict the number of states in the first and last layer to 1 and 2
respectively.)

Branching programs model sequential computation with a bounded amount of memory. When w
is of the form 2k, we can think of the memory as represented by a fixed set of registers R1, . . . , Rk

taking 0, 1 values. The program then consists of ` “instructions f1, . . . , f`, where each instruction
is of the type “look up some input bit and update the registers depending on its value”.

The PARITY function can be computed by a width 2 branching program of length n: The input
positions are k(t) = t and the transition functions are ft(xt, s) = s ⊕ xt. A more natural way to
describe this branching program is to say that it reads the input from left to right and maintains the
parity of the input bits read so far in a single boolean-valued register. Similarly, the MAJORITY
function can be computed by a width n branching program which reads the input from left to right,
maintains the sum of the input bits read so far, and accepts if it exceeds n/2. Can MAJORITY
be computed by a narrower branching program of reasonable length?

Let us start with small widths. An oblivious branching program of width two cannot even compute
MAJORITY on 3 bits, regardless of its length.1 In contrast, every function can be computed in
width 3 and length n2n by the following claim:

Claim 6. A DNF of size s and width w can be computed by an oblivious branching program of
width 3 and length ws.

Proof. The branching program has 3 states labeled 0, 1, and accept. The branching program reads
the clauses of the DNF in order and the variables within each clause in order. The transitions
can be chosen so that at any given point, the state is accept if at least one previously seen clause
has been satisfied, and otherwise to the current value of the current clause. So the accept state is
reached if and only if the input is a satisfying assignment to the DNF.

In principle MAJORITY can be therefore computed by a width 3 oblivious branching program of
exponential size. It is not known, but it is widely believed, that exponential size is necessary for
this case. It is also not known what happens for width 4, but it turns out that MAJORITY has
width 5 oblivious branching programs of size polynomial in its input!

3 Barrington’s theorem

Barrington’s theorem says that any small-depth circuit, in particular one for the MAJORITY ,
can be simulated by a branching program of width 5:

Theorem 7. If f has a depth d circuit of fan-in 2 then it has a branching program of width 5 and
size 2O(d).

We will prove Barrington’s theorem but with the constant 5 replaced by 8. Recall that a branching
program of width 8 can be viewed as a machine with 3 registers taking values in {0, 1}. Let’s call
them A, B, and C.

Proof. Assume f has a circuit of depth d. We begin by changing the and , or , and xor gates
in the circuit into × and + gates. These gates compute multiplication and addition over the binary

1I did not verify this. In principle, it should be possible to iteratively calculate a list of all functions on 3 bits that
are computable by width 2 branching programs. But I would prefer a more insightful proof.

3

field F2, respectively. We can represent any gate of fan-in 2 using × and + gates and the following
rules:

x = 1 + x x xor y = x+ y x and y = x× y x or y = 1 + x× y.

After this transformation, we obtain a formula for f with × and + gates and depth O(d). This
formula has some extra leaves that are labeled by the constant 1.

We now design a branching program for the formula f . We will prove the following statement
by induction on the depth d of f : There is a branching program of width 8 and size 4d so that
when the branching program starts with register contents A, B, and C, it ends its computation
with register contents A, B, and C + f(x1, . . . , xn)B. The theorem then follows by initializing the
registers to A = 0, B = 1, and C = 0.

We prove the inductive statement by looking at the top gate of f . If this gate is the constant 1 or
a literal xi or xi, then there f can be computed by a branching program of length 1. If f = f1 +f2,
then we obtain a linear length branching program for g by combining the programs P1 for f1 and
P2 for f2 like this:

(A,B,C)
P1−→ (A,B,C + f1B)

P2−→ (A,B,C + (f1 + f2)B)

By inductive hypothesis, each of P1 and P2 has length 4d−1, so f has length 2 · 4d−1 ≤ 4d. If
f = f1 × f2, we combine P1 and P2 again as follows:

(A,B,C)
P1−→ (A+ f1B,B,C)

P2−→ (A+ f1B,B,C + f2(A+ f1B))

P1−→ (A,B,C + f2A+ f1f2B)
P2−→ (A,B,C + f1f2B).

In each of the steps, the program P1 or P2 is applied but the registers are permuted in some order.
Using the inductive hypothesis, f has length 4 · 4d−1 = 4d, concluding the inductive argument.

The converse of Barrington’s theorem also holds:

Theorem 8. If f has a branching program of width w and length ` then it has an AND/OR formula
of depth (logw + 1)(log `).

Therefore the size of the shortest formula, the size of the smallest circuit of depth logarithmic in
its size, the length of the shortest branching program of width 5, and the length of the shortest
branching program of width 100 for the same function are all polynomially related.

Proof. Let P : {0, 1}n × [w] → [w] be the branching program for f . We give a formula for the
function

φ(s, t, x) =

{
1, if on input x, B goes from state s to state t

0, otherwise.

To construct φ, we split P in two parts P1 and P2 of equal length. Suppose we have already
constructed formulas φ1 and φ2 for them. Then we write

φ(s, t, x) = ORw
u=1(φ1(s, u, x) and φ2(u, t, x))

which describes the fact that if on input x, B goes from state s to state t, then it must do so thru
some state u in the middle. The depth of φ is then bigger than the maximum depth of φ1 and φ2
by logw+ 1. Since φ1 and φ2 describe branching programs of half the length, we can continue the
construction recursively and obtain a circuit of depth (logw + 1)(log `) for B. (In the base case
` = 1, φ depends on only one bit of x so it can be computed by a circuit of depth 1.)

4

4 Streaming computation

A read-once branching program (or ordered binary decision diagram) is a branching program in
which every input bit is read at most once. A fixed-order read-once branching program is one
in which the inputs are read in the canonical order x1, x2, . . . , xn. This is a model of streaming
computation: At any point in time, the computation can only store a small amount of information
about the “big data” stream x1, . . . , xn.

A fixed-order read-once branching program of width 2n can compute any function f : {0, 1}n →
{0, 1}, as its n state registers can remember the values of all n input bits read in order. The
branching programs for PARITY and MAJORITY on n bits that we saw have width 2 and n,
respectively. Here is an example of a function that requires a large branching program:

Claim 9. The function EQUAL(x, y) = (x1 = y1) and · · · and (xn = yn) requires a read-once
branching program of width 2n under the ordering x1, . . . , xn, y1, . . . , yn.

Proof. Let B be a branching program of width less than 2n. Then there must be two distinct
strings x, x′ ∈ {0, 1}n such that B reaches the same state on inputs x and x′ in the first n steps of
computation. For every y ∈ {0, 1}n, B must produce the same answer on inputs (x, y) and (x′, y).
But for y = x, EQUAL(x, y) and EQUAL(x′, y) have different values, so B cannot compute
EQUAL.

Both the upper and lower bounds can be improved to show that a fixed-order read-once branching
program of width O(2n/n) can compute any function on n bits, but there is an explicit function
that requires programs of width Ω(2n/n).

Instead of pursuing this direction, let us look at a more general type of streaming algorithm, one
that makes several passes over its input stream. A fixed-order read-k-times branching program is a
branching program of length nk that reads its variables in order x1, . . . , xn k times in a row. When
k is equal to n, such a branching program can emulate a read-once branching program without
restriction on the order, and in particular it can compute the EQUAL function on n input bits
even in width 3. When k is much smaller, it is difficult to see how the additional passes over the
input can help, so EQUAL looks like a plausible hard function for this model. To prove it is, we
will give a property that all small branching programs of this type have, but the EQUAL function
does not.

Theorem 10. If f : {0, 1}n × {0, 1}m → [w] is computed by a read-k-times branching program of
width w in the order x ∈ {0, 1}n followed by y ∈ {0, 1}m then {0, 1}n × {0, 1}m can be partitioned
into sets X1 × Y1, . . . , Xw2k × Yw2k , Xs ⊆ {0, 1}n, Ys ⊆ {0, 1}m such that such that f is a constant
function on Xs × Ys for all s.

Proof. Let u0, v1, u1, . . . , un−1, vn be the states of the branching program at times 0, n, n+m, . . . , kn+
(k− 1)m, k(n+m), respectively. For each such sequence s = (u0, v1, u1, . . . , vn) let Zs be the set of
inputs (x, y) for which the branching program visits this sequence of states in this order. Clearly
the sets Zs partition {0, 1}n+m, f is constant on each Zs (as its value is determined by the final
state) and there are w2k possible sequences s (as the start state is fixed and at most w choices for
every other state).

It remains to show that each Zs is of the form Xs × Ys. Let Xs and Ys be the projections of Zs on
{0, 1}n and {0, 1}m, respectively. Then Xs×Ys contains Zs. To show that Xs×Ys is also contained
in Zs, take any pair x ∈ Xs and y ∈ Ys. Because Xs and Ys are projections, there exist x′ and
y′ such that (x, y′) ∈ Zs and (x′, y) ∈ Zs. This means the branching program visits the sequence

5

of states s both on inputs (x, y′) and (x′, y), so it must also visit this sequence on input (x, y). It
follows that (x, y) is in Zs.

Corollary 11. If the EQUAL function can be computed by a read-k-times branching program of
width w in the order x1, . . . , xn, y1, . . . , yn then w ≥ 2n/2k.

In particular, constant streaming algorithms for the EQUAL function of this type require a linear
number of passes over the input.

Proof. By Theorem 10, if a branching program of the desired type exist then there are sets Xs, Ys
with the stated properties such that EQUAL(x, y) is constant on each Xs× Ys. Each such set can
contain at most one input of the type (x, y = x), because EQUAL is not constant on any product
set that contains two inputs of this form. It follows that the number of set-pairs w2k must be at
least as large as the number of inputs of the form (x, x) which equals 2n.

4.1 Randomized streaming algorithms

A more realistic model of streaming computation is one in which the algorithm has access to a
reasonably long sequence of random bits. Under this relaxation, the EQUAL function becomes
much easier to compute. For a 2n bit input, the algorithm chooses independent random strings
r1, . . . , rh in {0, 1}n and accepts if and only if IP (x, ri) = IP (y, ri) for all i between 1 and h. Here
IP (x, r) is the inner product modulo 2 function

IP (x, r) = 〈x, r〉 = x1r1 + · · ·+ xnrn mod 2.

If x is equal to y then the algorithm always accepts. If x is not equal to y the algorithm sometimes
errs in its decision, but the probability it does so is quite small. The key insight is that if x and y
are different, then the probability that IP (x, r) and IP (y, r) are equal is exactly 1/2 over the choice
of r. To see this, notice that IP (x, r)− IP (y, r) = IP (x− y, r), so even after all bits of r are fixed
except the one in which x and y differ, this expression is equally likely to be zero and one. After
repeating this for h times the probability of making an error goes down to 1/2h. It is also easy to
see that this algorithm can be implemented by a fixed-order read-once branching program of width
22h as the algorithm only needs to track the 2h values IP (x, r1), IP (y, r1), . . . , IP (x, rh), IP (y, rh),
each of which is a parity in x or y and can be implemented with one bit of memory.

A randomized branching program is a branching program in which the output of every transition
can also depend on the value of some random string r ∈ {0, 1}∗. We say a randomized branching
program B computes a function f with error at most ε if for every input x, Prr[B(x; r) 6= f(x)] ≤ ε,
where B(x; r) denotes the output of branching program B on input x and randomness r.

We just saw that the EQUAL function is fairly easy for fixed-order multiple-read branching pro-
grams of this type. On the other hand, the IP function itself is hard for this model. To show this,
we first generalize Theorem 10 to randomized branching programs. To do this we will need the
following simple lemma.

Lemma 12. If a randomized branching program computes f with error at most ε then for every
distribution D on {0, 1}n there exists a deterministic branching program B of the same width and
the same read pattern such that B(x) differs from f(x) with probability at most ε when x is sampled
from D.

Proof. If for every x, Prr[B(x; r) 6= f(x)] ≤ ε, then by averaging for every distribution D on inputs,
Prx∼D,r[B(x; r) 6= f(x)] ≤ ε. There must then exist at least one r such that Prx∼D[B(x; r) 6=

6

f(x)] ≤ ε. If r is fixed, B(x; r) becomes a deterministic branching program that computes f with
error at most ε.

Combining Theorem 10 and Lemma 12 we can prove:

Theorem 13. If f : {0, 1}n × {0, 1}m → [w] is computed by a randomized read-k-times branching
program of width w with error ε in the order x ∈ {0, 1}n followed by y ∈ {0, 1}m then there exists
subsets X ⊆ {0, 1}n and Y ⊆ {0, 1}m with |X| · |Y | ≥ 2n+m/2w2k and a constant c such that
Prx∼X,y∼Y [f(x, y) 6= c] ≤ 2ε.

Proof. By Lemma 12, under the assumption there exists a deterministic branching program B of
the given type that B(x, y) differs from f(x, y) with probability at most ε when x, y are chosen
from the uniform distribution. By Theorem 10, {0, 1}n+m can be partitioned into w2k sets Xs×Ys
on which B is constant. The sets of size less than 2m+n/2w2k cover less than half the points of
{0, 1}n+m. Conditioned on (x, y) falling into one of the other sets, B(x, y) therefore differs from
f(x, y) with probability at most 2ε. So there exists at least one set X × Y that is both of size
at least 2n+m/2w2k and such that Pr[f(x, y) 6= B(x, y)] ≤ 2ε. B is constant on X × Y and the
theorem follows.

On the other hand, the inner product function is far from constant on large product sets:

Theorem 14. For every pair of sets X,Y ⊆ {0, 1}n, Pr[IP (x, y) = 0] and Pr[IP (x, y) = 1] are at
most 1

2 + 1
2

√
2n/|X||Y |, where x and y are sampled independently and uniformly from X and Y ,

respectively.

Combining Theorems 13 and 14, it follows that a randomized fixed-order read-k-times branching
program can compute IP with error ε only if

1

2
+

1

2

√
2n

22n/2w2k
≥ 1− 2ε

which is equivalent to w2k ≥ 2n−1(1− 4ε)2. In particular for error ε = 1/8, the branching program
requires width Ω(2n/2k).

The proof of Theorem 14 is not difficult, but it may look mysterious if you haven’t seen Fourier
analysis before.

Proof. We can rewrite the conclusion Pr[IP (x, y) = 0],Pr[IP (x, y) = 1] ≤ 1
2 + 1

2

√
2n/|X||Y | as

|Ex∼X,y∼Y [(−1)〈x,y〉]| ≤
√

2n/|X||Y |.

Let f and g be the probability mass functions of X and Y , namely:

f(x) =

{
1/|X|, if x ∈ X
0, otherwise

g(y) =

{
1/|Y |, if y ∈ Y
0, otherwise

We can write:

|Ex∼X,y∼Y [(−1)〈x,y〉]| =
∑

x,y∈{0,1}n
f(x)g(y)(−1)〈x,y〉

=
∑

x∈{0,1}n
f(x) ·

∑
y∈{0,1}n

g(y)(−1)〈x,y〉

≤
√∑

x∈{0,1}n
f(x)2 ·

√∑
x∈{0,1}n

(∑
y∈{0,1}n

g(y)(−1)〈x,y〉
)2
.

7

where the last step follows by the Cauchy-Schwarz inequality. The first term equals 1/
√
|X|. For

the second term, we can write∑
x∈{0,1}n

(∑
y∈{0,1}n

g(y)(−1)〈x,y〉
)2

=
∑

x∈{0,1}n

∑
y,y′∈{0,1}n

g(y)(−1)〈x,y〉 · g(y′)(−1)〈x,y
′〉

= 2n
∑

y,y′∈{0,1}n
g(y)g(y′) Ex∼{0,1}n [(−1)〈x,y+y′〉]

For fixed y, y′ the expectation vanishes when y 6= y′ and evaluates to 1 when y = y′, so the sum
simplifies to 2n

∑
g(y)2 = 2n/|Y |. Therefore

|Ex∼X,y∼Y [(−1)〈x,y〉]| ≤

√
1

|X|
·

√
2n

|Y |
=

√
2n

|X||Y |
.

References

The proof of Barrington’s theorem presented here is due to Ben-Or and Cleve. The presenta-
tion borrows from lecture notes of Madhu Sudan. Our treatment of read-once and multiple-read
restricted branching programs is based on a connection between branching programs and commu-
nication complexity. Some of the material is covered in the book Communication Complexity by
Eyal Kushilevitz and Noam Nisan.

8

