
3-D Floorplanning Using Labeled Tree and Dual Sequences

Renshen Wang† Evangeline F. Y. Young‡ Yi Zhu†
Fan Chung Graham† Ronald Graham† Chung-Kuan Cheng†

†Department of Computer Science and Engineering, University of California, San Diego
‡Department of Computer Science and Engineering, The Chinese University of Hong Kong

rewang@cs.ucsd.edu fyyoung@cse.cuhk.edu.hk {y2zhu, fan, graham, ckcheng}@ucsd.edu

ABSTRACT
3-D packing is an NP-hard problem with wide applications
in microelectronic circuit design such as 3-D packaging, 3-
D VLSI placement and dynamically reconfigurable FGPA
design. We present a complete representation for general
non-slicing 3-D floorplan or packing structures, which uses
a labeled tree and dual sequences. For each compact place-
ment, there is a corresponding encoding. The number of
possible tree-sequence combinations is (n + 1)n−1(n!)2, the
lowest among complete 3-D representations up to date. The
construction of placement from an encoding needs O(n2) in

the worst case, but in practical cases we expect O(n4/3 log n)
time on average for circuit blocks with limited length/width
ratios. Experimental results show promising performance
using the labeled tree and dual sequences on 3-D floorplan
and placement optimizations.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-aided design

General terms - Algorithms, Design

Keywords - 3-D packing, labeled tree, sequence

1. INTRODUCTION
The 3-D packing problem is a classic combinatorial prob-

lem. The basic formulation of 3-D packing is to place a set
of cuboidal blocks in a box such that no two blocks overlap
and the box volume is minimized. In microelectronic cir-
cuit design areas, there are similar problems on block place-
ment with various applications besides minimizing volume,
such as optimizing wire length and heat distributions. Also
in dynamically reconfigurable FPGAs, the resources can be
reused for different tasks, and the task scheduling is a 3-D
packing problem regarding time as the third dimension.

2-D and 3-D packing are NP-hard problems because they
reduce to the NP-complete 1-D bin packing. Some approxi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’08, April 13–16, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-60558-048-7/08/04 ...$5.00.

mation algorithms with bounded performance ratio (in terms
of volume or dimension) are devised in theoretical works
like [5]. For some floorplan optimizations on more strict or
complex objectives, we often need search schemes like sim-
ulated annealing based on a compact encoding called floor-
plan representations. A representation encoding decides the
geometric relationships among the blocks and thus deter-
mines the structure of a floorplan. A good representation
should be easy to operate and efficient for the optimization
approaches.

1.1 Previous Works on 2-D and 3-D
Representations

2-D floorplan representations are first developed. Sequence
based models like Sequence pair [7], Corner block list [4],
tree based models like O-tree [3], Twin binary tree [11] and
graph based model like Bounded slice grid [8], Transitive
constraint graph [12], etc are proposed.

These 2-D representations are all complete for non-slicing
structures, which means that any compact placement has
an instance in the encoding set of the representation. The
transformations between placement and encoding are mostly
in linear time or O(n log log n). Together with local search-
ing algorithms, the 2-D representations are very effective
tools for current placement optimization in microelectronic
designs.

3-D VLSI circuits and packaging are emerging, because
first, the signal delay are dominated by interconnections,
which can be reduced by stacking chips in the third dimen-
sion; second, 3-D integration technologies are now being put
into practical use. One of the big challenges in 3-D IC in-
dustry is in the design tools.

Previous works of 3-D representations include Seq-triple
[10], Seq-quintuple [10], which are extended from Seq-pair
[7], and other representations like 3-D subTCG [12], 3-D
BSG [13], 3-D CBL [6], etc. Each one is extended from
the corresponding 2-D model. A problem with most of the
extended models is that the completeness property in the
original 2-D model is lost: the special “cyclic” cases (Fig.1,
more discussed in section 2) are missing in most represen-
tations. The complete 3-D models among them are Seq-
quintuple, which are highly redundant by using 5 sequences,
and subTCG which is a direct copy of the geometric rela-
tions.

Results of previous research indicate that there is some
inherent complexity in 3-D packing. A more compact and
efficient encoding on the 3-D geometric relations is desired
for effective optimization algorithm on 3-D placement.

54

1.2 Contributions
We use a labeled tree [1] and two sequences to encode a

packing process of 3-D placement. The idea is similar to
the 2-D O-tree [3] representation: the blocks are sequen-
tially pushed into position and thus the placement can be
recovered from the encoding.

The advantages of the labeled tree and dual sequences in-
clude: it is a complete representation of compact 3-D place-
ments; the total number of combinations is (n + 1)n−1(n!)2,
so it has a smaller solution space to search within; to trans-
form the encoding into a placement needs at most O(n2)

time, which can be lowered to O(n4/3 log n) in average cases
of circuit blocks with limited length/width ratios. These
properties are the key factors for optimization algorithms to
find better solutions in shorter time.

The rest of the paper is organized as follows. Section
2 states the 3-D floorplanning problem and some difficul-
ties for representations. Section 3 describes the labeled tree
and dual sequences representation we propose. Section 4
discusses the conversions between packing instances and en-
codings. Finally, experimental results and conclusions are
in sections 5 and 6.

A BC xy A CBz y x
Figure 1: 2-D and 3-D packing

2. PROBLEM STATEMENT
A set of cuboidal blocks B = {B1, B2, . . . , Bn} lying par-

allel to the coordinate axes. Each block Bi has 3 dimensional
sizes (wi, li, hi). A placement P = {(xi, yi, zi) : 1 ≤ i ≤ n}
is an assignment of coordinates at the lower-left-front point
of each block such that no two blocks overlap each other. A
representation of a placement is the encoding E from which
the placement can be recovered together with {(wi, li, hi)}.

A compact placement is defined as a placement where each
block is pushed to the lower-left-front corner, so that for each
Bi, the 3 surfaces at its −x,−y and −z side are all touch-
ing either the boundary or another block. Fig.1 shows a 2-D
compact placement as well as a 3-D one. For most optimiza-
tion objectives such as volume and interconnections, good
solutions are usually compact because we always need the
solution to be as small as possible. Even for the interconnec-
tion objective, where sometimes we need non-compact place-
ment, the optimal solution can be obtained from a compact
solution by small movements on some blocks.

A loop of cyclic geometric relations exists in the 3-D place-
ment in Fig.1, which is among block A, B and C, “A ⇒y B”,
“B ⇒x C”, “C ⇒z A”. Here “α ⇒d β” means α’s +d surface
has a d-coordinate value no greater than β’s −d surface, and
the two surfaces have overlapping projections on d’s orthogo-
nal plane. In this way, the three blocks prop up one another,
and none of them can reach the corner point (0, 0, 0). The
packing process of this case has a cyclic dependency prob-
lem: To place block A, we need to know the coordinates of

C; to place C we need to know B; to place B we need to
know A. Therefore it is not feasible to sequentially push the
blocks one by one to the (−x,−y,−z) corners.

The cyclic case does not exist in 2-D placement where
the lower-left corner on the boundary is always occupied
by a block. This is one of the reasons why sequence based
representations which work perfectly for 2-D placement fail
to encode 3-D placement in the same way. We need to take
special care of the cyclic dependency issue when extending
2-D representations.

By the statements above, we need a representation model
with following properties:
• Completeness. Every possible compact placement of

blocks can be represented.
• The number of combinations should be as small as pos-

sible so that the optimization algorithm can search in a rel-
atively small solution space.
• Operations on the encoding are fast and convenient.
Based on the representation model, various algorithms can

be applied to search for best solutions in terms of low vol-
ume, low wire length (interconnection delay & power), or
low concentration of heat sources, etc.

3. REPRESENTATION OF LABELED TREE
AND DUAL SEQUENCES

We introduce a representation using a labeled tree [1] and
two sequences, which is complete for 3-D compact placement
with relatively small solution space, and is easy to operate.
The completeness of this encoding is due to the separation of
z coordinate encoding: once the coordinate values on z axis
is decided, the dependency cycle is broken and the “cyclic
case” in section 2 can be represented. Details of the tree and
sequences are described in the following subsections.

3.1 Labeled Tree
First, a labeled tree L specifies the z coordinates of the

blocks. A labeled tree [1] is an unordered tree with a label
on each node. For an n-block case, we use a labeled tree
with n + 1 nodes, one label indicating the root node and
others each indicating a block Bi.

z

x Bi Bj
zj=zi+hiy

cba de fg
Figure 2: A labeled tree which decides z coordinates

The root of L is the lower boundary zroot = 0 with zero
height hroot = 0. The children are on the +z side of their
parents with zero separation distance. For each tree branch
Bi → Bj , zj = zi + hi. As shown in Fig.2, a set of blocks
are piled up in z direction. We construct the labeled tree
by connecting each block Bi to its parent which is the block
touching Bi’s −z surface. On the other hand, by traversing
the tree, the z coordinate of each block can be recovered.

The way a labeled tree determines z coordinates is just
like an O-tree [3] determines x coordinates. The difference
is that the nodes in the O-tree have an order which can

55

determine the y coordinates, while the nodes in the labeled
tree are unordered. For example in Fig.2, if we exchange the
positions of the two branches of node c, “f”and“e → g”, the
resulting tree is equivalent to the original one. We choose
the unordered tree because the traversal orders in trees are
not enough to cover the packing orders in 3-D placement. As
a result, we have fewer combinations than those of ordered
trees. For the tree with n + 1 nodes, the total number of
combinations is (n + 1)n−1 by the results in [1].

In summary, we use labeled tree L to decide the z coor-
dinates with the idea of O-tree [3]. The z coordinates are
determined separately, independent of the x and y coordi-
nates. Thus the relations of cyclic dependency among the
blocks are broken, and the rest part of the representation
needs to pack the blocks to decide their x and y coordinates.

3.2 Permutation and X-sequence
The x and y coordinates are decided by two sequences.

We use a permutation P [1 · · ·n] and a number sequence
X[1 · · ·n] to decide the packing process, and thus decide the
placement of each block. Since the cyclic relation problem
is resolved, the blocks can be packed in a sequential order
like in 2-D packing: Push the blocks one by one, each to a
corner until the block cannot be pushed further towards −x
or −y.

The order in which the blocks are pushed is by the per-
mutation P , and the x coordinates are decided by X: each
block P [i] is placed upon block P [X[i]] on the x axis, i.e.
xP [i] = xP [X[i]] + wP [X[i]], where 0 ≤ X[i] < i and block
P [i] is touching the −x boundary if X[i] = 0. Number X[i]
has the same effect as a branch in the labeled tree. By its
definition, the X-sequence has n! combinations, same as the
number of permutations.

With (x, z) known, the y coordinate of each block is de-
termined by pushing the block towards −y direction until it
touches the boundary or another block. For block Bi, its y
coordinate yi = maxk∈ψ(i) yk + hk, where ψ(i) is the set of
blocks covered by Bi, i.e. set of Bk which is placed previ-
ously and has a non-zero area overlapping with Bi. The −y
boundary is regarded as a block B0 with y0 = 0 and h0 = 0.A CBy xz

Block DProjectionof Block D
Figure 3: Pushing a block towards −y

An example of the pushing process is shown in Fig.3.
Block A, B and C are placed and block D is pushed towards
−y with its projection covering B and C. In this case, the y
coordinate of D should be the height of B. With n pushing
processes, a compact 3-D placement can be recovered from
the encoding. A complete representation of the example in
Fig.2 is shown in Fig.4.

In summary, 3-D placement can be represented by a la-
beled tree L, a permutation P and a number sequence X.

The total number of combinations is (n + 1)n−1(n!)2. To
recover the placement, we first traverse labeled tree L to
compute z coordinates, and then follow permutation P and
sequence X to push the blocks into position. If the blocks
have limited length/width ratio, the entire placement can

be recovered in average O(n4/3 log n) time by maintaining a
map on the +y surface.

P = (a b d c g f e)X = (0 1 0 2 3 5 3)
L = cba de fga b cd g fezxy

Figure 4: Full representation of an example

4. CONVERSIONS BETWEEN ENCODING
AND PLACEMENT

In floorplan optimization algorithms, an important prop-
erty of the representation is completeness, i.e. every possible
placement can be represented in the encoding. The conver-
sion from any compact 3-D placement to our representation
(L, P, X) is shown in section 4.1.

On the other hand, an efficient conversion from encoding
to placement is crucial for a representation, because heavy
amount of these conversions are needed in optimization al-
gorithms. In our representation of labeled tree and dual
sequences, we maintain a 2-D map on the height of each
block that can be seen from top view (Fig.5). The blocks
are placed one by one with the map updated with each block.

4.1 Placement to Representation
Given any compact placement of blocks, we can always

generate a labeled tree and dual sequences by their defini-
tions in the last section.

Theorem 1. The representation of labeled tree and dual
sequences is complete for 3-D compact placement.

Proof. First, the labeled tree can be constructed from
the placement. Since the placement is compact, each block
must be touching a neighbor or the boundary on its −z
surface. Take each block and the boundary as a node, and
connect each block to its parent which is the touching neigh-
bor at −z direction (in case of multiple neighbors, connect
to one of them). The result is a tree rooted at the boundary
node, because each node has one and only one parent except
for the boundary node.

The permutation and X sequence are then constructed
from the x and y coordinates of the blocks. By the defini-
tion of the sequence, we reverse the pushing process (from
P [n] to P [1]): at each step we pick a block as P [i] which
has the largest x coordinate from the set completely view-
able from +y top view, i.e. the set {Bk : Bk /∈ ψ(j) for j /∈
{P [i + 1], . . . , P [n]}}. Clearly the “cover” relation is non-
cyclic and the set is always non-empty at each step. After
the permutation is constructed, we find each block’s touch-
ing neighbor at −x direction and thus construct the X se-
quence.

56

With the completeness guaranteed, we can apply this rep-
resentation in automatic searching algorithms, and the op-
timal compact packing solution is always included in the
searching space. However, not all the instances in the rep-
resentation are compact placements. So there is still some
redundancy in this encoding, which also exists in O-tree ([3],
“non-admissible”). This indicates that more efficient encod-
ing is possible.

4.2 Representation to Placement
To recover a placement from representation, we need a

pushing process for the placement of each block, which in-
volves a set of blocks being covered on a 2-D map. The map
needs to be stored in some data structure and be maintained
by certain operations. When block Bi is being pushed, we
need to know ψ(i), the set of blocks covered by Bi, and then
add Bi into the map.

For general cases with arbitrary blocks, there are some
packing instances with O(n2) pairs of blocks in “cover” rela-
tion, and we need at least O(n2) time for the entire packing
process. However, these cases are not common. In prac-
tice, the blocks usually have a limited length/width ratio,
because practical boxes or circuit modules are usually not
too “long” or “thin”. With the ratio limit set as k, maintain-
ing the 2-D map in average cases needs O(n4/3 log n) time.
The details of the algorithm are as follows.

4.2.1 Data Structure
The map can be treated as a 2-D mosaic floorplan [4]

[11] consisting of a set of rectangular blocks. The geometric
information of the blocks can be stored as a corner stitching
graph [9] G = (V, E) where each node in V is a block and
has at most 8 edges: 2 contacting neighbors at each corner
times 4 corners. Each block has a y value as its height in
the 2-D map.

To quickly locate the blocks covered by Bi, we also con-
struct a quaternary search tree (same idea as the binary
search tree in [2]) which contains all the block corners. Each
tree node has x and z coordinates as index values. For node
V0 with coordinate (x0, z0), the four children are the roots
of four subtrees:
· the upper-left subtree with nodes {P : xp ≤ x0, zp > z0},
· the upper-right subtree with nodes {P : xp > x0, zp > z0},
· the lower-left subtree with nodes {P : xp ≤ x0, zp ≤ z0},
· the lower-right subtree with nodes {P : xp > x0, zp ≤ z0}.

The center point of each area can be taken as the root of
the subtree. Average time for adding and deleting a node in
the quaternary search tree is O(log n).

After locating a block covered by Bi, the corner stitching
structure helps to find all the blocks in ψ(i) in linear time
by the neighbor finding algorithms in [9].

4.2.2 2-D Map
With the basic data structure and operations of the 2-

D map, we can recover the 3-D placement by sequentially
pushing the blocks onto the map. The y coordinate of each
block BP [i] is the highest block it covers on the map, with
its x and z coordinates computed from L, P and X.

The map is updated each time a block is pushed. The new
block BP [i] is included in the new map, replacing the area it
covers. Fig.5 shows an example of map updating: block A
and B are already placed and block C is newly added. Orig-
inally, there are block A and B plus three “filling” blocks

Ay=10B y=3 y=0y=0y=0
xz Ay=10B1 y=3

y=0
y=0y=0

xz Cy=8B2 y=0y=0Addblock C
Figure 5: Top view of a 2-D map

which fill the empty space. When a new block C is added,
it covers part of block B and two filling blocks. The y coor-
dinate of C is decided by the highest covered block which is
B. Then we add block C into the map, while we also need to
update the blocks covered by C. There are basically 3 cases
for a block (Bk) in the map covered by another block:

1) Completely covered: delete Bk from the map;
2) Partially covered, with a rectangular remaining part:

update the corners’ coordinates and neighbors;
3) Partially covered, with non-rectangular remaining part(s):

partition the remaining part into rectangular small blocks
and add new blocks into the map.

In case 3 above, we keep the map always consisting of rect-
angular blocks by partitioning each non-rectangular shape
into rectangular parts (as in Fig.5). The upper bound of
the length/width ratio helps to bound the average number
of blocks in the map.

Theorem 2. If all the blocks appearing in the map have
length/width ratio bounded by k, the total number of 2-D
blocks in the map does not exceed (k + 5)n.

(a) Corner induced (b) Non-corner induced

a1
a2

b1
b2

Figure 6: Two cases of partitioning

Proof. Starting from the flat 2-D map which is a big
rectangle, we add n blocks, and each block may produce
additional blocks because of partial covering. Two cases of
partial covering can induce additional blocks:

1) Non-rectangular shape by corners (Fig.6a). Each cor-
ner induces at most one additional block. With n blocks, the
number of corner induced blocks is bounded by 4n. Consider
that the first block must touch the −x boundary, we can re-
duce the upper bound to 4n− 1.

2) Block partitioning by segments (Fig.6b). A block cross-
ing another block on the map with no corner involved. As-
sume the dimensions of these blocks are a1 × b1 for B1 and
a2×b2 for B2. The crossing area of the two blocks is a1×a2,
which occupies a2/b1 of B1’s upper surface and a1/b2 of B2’s
lower surface. Since the length/width ratio is limited by k,
the sum of these two proportions of occupied areas

a1/b2 + a2/b1 ≥ a1
ka2

+ a2
ka1

≥ 2
√

a1
ka2

a2
ka1

= 2/k

57

If we add the occupied proportions of all the crossing areas,
the result is at most 2n because each block has one upper
surface and one lower surface. The number of crossing ar-
eas, which is also the number of non corner-induced blocks,
is therefore no larger than 2n/ 2

k
= kn.

Adding the numbers together, the total number of blocks
does not exceed 1 + n + (4n− 1) + kn = (k + 5)n

(a) Top view (b) Front view
Figure 7: Consecutive “long” blocks in the map

By the deduction of theorem 2, the linear upper bound
(k+5)n holds if there are only two layers of blocks, with one
layer covering the other. However in actual cases there are
most likely O(n1/3) layers of blocks, because the n blocks
with limited shapes are packed in a box of average size
O(n1/3)×O(n1/3)×O(n1/3). The additional blocks on the
map induced by partial covering do not necessarily have
bounded length/width ratio. We may have a set of “long”
blocks as in Fig.7a. The only way to form a consecutive long
block set is to stack the blocks in +y direction as in Fig.7b.
With O(n1/3) layers, the size of the set is also O(n1/3) and

each new block produces at most O(n1/3) times more new
blocks on the map than in theorem 2. Thus, in average cases
the estimated number of blocks appearing in the 2-D map
is O(n4/3).

4.2.3 Algorithm
Based on the 2-D map manipulations, the algorithm to

convert the labeled tree and dual sequences instance to a
placement is in the following chart.

Encoding to Placement (Labeled tree L,
Permutation P, Sequence X)

1. Compute z coordinates by traversing L
2. For i = 1 to n {xP [i] ← xP [X[i]] + wP [X[i]]} endfor
3. Initialize quaternary search tree Q

and 2-D map G=(V,E)
4. For i = 1 to n
5. ψP [i] ← the blocks covered by BP [i]

6. yP [i] ← maxk∈ψ(P [i]) yk + hk

7. Update Q and G for BP [i] and Bk ∈ ψP [i]

8. Endfor

By quaternary search tree Q, locating a block covered by
BP [i] needs O(log n) time. By theorem 2 and the corner
stitching graph G [9], finding ψ(P [i]) needs average time

O(n1/3), and updating tree Q and graph G needs average

time O(n1/3 log n). The total estimated time added up is

therefore O(n4/3 log n).

5. EXPERIMENTAL RESULTS
Based on the representation, optimization algorithms can

be applied on a set of blocks to search for a placement with
minimum volume, minimum interconnect length, minimum
number of hot spots, or combinations of the three, etc.

We use simulated annealing as the basic optimization al-
gorithm. Besides the standardized annealing scheme, we
need a perturbation routine on a representation instance so
that the neighbor of an instance can be randomly generated.
The perturbation includes five basic operations:

1) Rotation of a block. A cuboidal block parallel to coor-
dinate axes has 24 directions. For volume minimization, we
can reduce them to 6 directions.

2) Exchanging two nodes in L.
3) Moving a leaf node to another node in L, which changes

the tree structure.
4) Exchanging two nodes in P .
5) Changing a number in sequence X.
The five operations guarantee that any instance is reach-

able from an arbitrary initial instance. Each operation is
based on random selection of nodes or numbers. Together
with the completeness of representation in theorem 1, the
simulated annealing algorithm is capable of finding good so-
lutions. The results of our implementation are as follows.

We use two sets of benchmarks: one is the “Beasley &
OKP” cases used in previous works for dead space mini-
mization; another one is from MCNC benchmarks with in-
terconnection optimization.

Table 1 is the comparison of results from previous works
and our experiments in comparable running times. The dead
space in a solution is Packing volume − total block volume

Packing volume
and

the time consumptions of our program are listed in the last
column. The results of previous works are from [13]. Col-
umn“#xyz-loops”of Table 1 is the number of cyclic relation
loops (Fig.1) in our solution. Since most of other representa-
tions exclude some cyclic relations, this number indicates the
effectiveness of our encoding scheme. Though our results on
the relatively small “Beasley” cases are not significantly bet-
ter, on the larger“OKP”cases, where the searching space be-
comes super-exponentially large, our “Tree+Seq2” produces
greatly improved results than other representations.

Figure 8: Packing solution of case OKP5

Another set of benchmarks are based on two cases of the
MCNC benchmarks. Since the blocks have only two dimen-
sions, we add a third dimension which is the average of the
other two, i.e. “Height = Length+Width

2
”. The wire length of

a net is (xmax−xmin)+(ymax−ymin)+(zmax−zmin)
2

, where each
pin’s coordinate (xp, yp, zp) is assumed to be at the center
of the block. We test “ami33”, “ami49” and other two cases
which are produced by duplicating the blocks 10 times. In
the “×10” cases, each pin on the block is connected with the

58

Table 1: Dead space comparison among various representations
Test case #blocks Total volume Seq-Triple 3D-subTCG 3D CBL 3D-BSG Tree+Seq2 #xyz-loops Time
beasley1 10 6218 28.6% 17.1% 23.5% 17.1% 19.3% 1 4s
beasley2 17 11497 21.5% 7.2% 7.0% 14.7% 15.1% 2 9s
beasley3 21 10362 35.3% 18.0% 17.0% 12.9% 12.0% 6 11s
beasley5 14 16734 26.4% 11.5% 13.5% 12.3% 12.6% 3 8s
beasley6 15 11040 26.3% 16.3% 15.4% 16.8% 14.8% 1 9s
beasley7 8 17168 30.1% 16.5% 24.6% 16.5% 28.5% 0 3s
beasley10 13 493746 25.2% 14.2% 15.2% 17.5% 20.3% 18 8s
beasley11 15 383391 24.8% 12.6% 13.2% 10.9% 16.3% 6 11s
beasley12 22 746158 29.9% 21.5% 21.2% 18.9% 17.3% 21 19s

okp1 50 124358256 42.6% 28.4% 29.1% 24.6% 18.2% 7 151s
okp2 30 85445223 33.2% 22.3% 27.0% 18.9% 17.5% 12 58s
okp3 30 123808466 33.1% 23.0% 26.3% 20.1% 17.2% 33 61s
okp4 61 238860881 42.8% 27.3% 28.6% 26.6% 16.8% 91 238s
okp5 97 189874755 57.7% 35.8% 36.2% 20.4% 16.3% 224 570s

Average 33.7% 20.7% 22.6% 17.7% 17.3%

Table 2: Experiments on minimizing wirelength
Test case #blocks #nets Total volume Packing dimensions Wire length

ami33 33 123 261857750 758× 756× 770 1428
ami49 49 408 1271919696 3542× 5152× 4690 7662

ami33×10 330 123 2618577500 1918× 1526× 3255 5960
ami49×10 490 408 12719196960 10623× 8414× 14233 28364

same net, so each net has 10 times number of pins. Table 2
shows the results on wire length minimization.

6. CONCLUSIONS
We introduce an encoding scheme of compact 3-D place-

ment by a labeled tree and dual sequences. It is not the only
choice of 3-D representation. Following the idea of O-tree[3],
we have encoding schemes such as 3 labeled trees, 2 labeled
trees + 1 sequence (similar to [10]), and 1 labeled trees + 2
sequences (adopted in this paper).

More efficient encoding of 3-D placement is possible since
our representation still has redundancy in most of the in-
stances. Future work may explore more encoding schemes
and further reduce the total number of combinations while
preserving the completeness of the encoding. Faster pack-
ing algorithms are also helpful to improve the overall 3-D
placement optimization.

7. ACKNOWLEDGMENTS
We would like to acknowledge the support of NSF CCF-

0618163 and California MICRO Program.

8. REFERENCES
[1] A. Cayley. A theorem on trees. Quart. J. Math.,

23:376–378, 1889.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Second Edition,
pages 311–317, 2001.

[3] P. N. Guo, T. Takahashi, C. K. Cheng, and
T. Yoshimura. Floorplanning using a tree
representation. IEEE Trans. on CAD, 20(2):281–289,
Feb. 2002.

[4] X. Hong et al. Corner block list: An effctive and
effient topological representation of non-slicing

florplan. Int. Conf. on Computer-Aided Design, pages
8–12, Nov. 2000.

[5] K. Li and K. H. Cheng. On three-dimensional packing.
SIAM J. Computing, 19(5):847–867, oct. 1990.

[6] Y. Ma, X. Hong, S. Dong, and C.K.Cheng. 3D CBL:
an efficient algorithm for general 3-dimensional
packing problems. Midwest Symp. on Circuits and
Systems, pages 1079–1082, 2005.

[7] M. Murata, K. Fujiyoshi, S. Nakatake, and
Y. Kajitani. VLSI module placement based on
rectangle-packing by the sequence pair. IEEE Trans.
on CAD, pages 1518–1524, Dec. 1996.

[8] S. Nakatake et al. Module packing based on the
BSG-structure and IC layout applications. IEEE
Trans. on CAD, pages 484–491, Jun. 1998.

[9] J. K. Ousterhout. Corner stitching: a data structuring
technique for VLSI layout tools. Technical Report
UCB/CSD-83-114, EECS Department, University of
California, Berkeley, 1983.

[10] H. Yamazaki, K. Sakanushi, S. Nakatake, and
Y. Kajitani. The 3D-packing by meta data structure
and packing heuristics. IEICE Trans. Fundamentals,
pages 639–645, Apr. 2000.

[11] B. Yao, H. Chen, C. K. Cheng, and R. Graham.
Floorplan representations: complexity and
connections. ACM Trans. on Design Automation of
Electronic Systems, pages 55–80, Jan. 2003.

[12] P. H. Yuh, C. L. Yang, Y. W. Chang, and H. L. Chen.
Temporal floorplanning using 3D-subTCG. Asia and
Pacific Design Automation Conf., pages 725–730, Jan.
2004.

[13] L. Zhang, S. Dong, X. Hong, and Y. Ma. A fast
3D-BSG algorithm for 3D packing problem. Int. Symp.
on Circuits and Systems, pages 2044–2047, May 2007.

59

