
CSCI 5060: Techniques in the theory of computing Lecture 2
The Chinese University of Hong Kong 18 January 2012

In the last lecture we looked at error correcting codes in the regime where the distance is small
in terms of the block length. We used these codes towards a randomness-efficient construction of
variables of bounded independence. Bounded independence can substitute for full independence in
various scenarios, for example when we argued the existence of two-source hitters. Recall that an
(N,K) two-source hitter is a function f : [N]× [N]→ {0, 1} so that f is not constant on S × T for
every pair of sets S, T of size at least K. Here [N] ≡ {0, 1}n represents the possible pairs of data
sequences, and K is the smallest possible number of uncertain outcomes in each data sequence.

We showed the existence of (N,K = 2 logN+1) two-source hitters via the probabilistic method: A
random function f whose values are chosen uniformly and independently of one another is a hitter
with nonzero probability. Yet finding such a hitter by brute-force search requires examining 222n

possible functions f . To improve upon this, we observed that it is not necessary for our analysis that
the values of f be fully independent, but K2-wise independence suffices. So if we could get hold of
a K2-wise independent distribution of much smaller support, this would improve the running time.
This led us to the study of t-wise independent random variables. We showed a close to optimal
construction of such variables when t is small and used them to reduce the size of the search space
down to 2n

3+o(n3).

Can we do even better? Our construction of t-wise independent distributions is close to optimal in
support size (when t is not too large in terms of n), so it appears unlikely that the same approach can
yield much bigger gains. But maybe t-wise independence is too strong a property for our purposes.
In this lecture we will see an even weaker property, called almost t-wise independence, which can
sometimes be used to approximate t-wise independence but admits more efficient implementations.

From what you know so far it seems that to get an improvement, we should take a closer look
at what happens to linear codes at small distances. However, it turns out that instead of looking
deeper, we get a more useful perspective by going broader: We will need to understand what
happens to codes when the distance is large. How many messages can we encode in such a regime?

1 The Plotkin bound and the Hadamard code

Recall the pigeonhole bound which tells us that in an [n, k, d] code we must have k ≤ n − d + 1.
Last time we looked at the regime where d was small and asked about the best value of k we can
actually achieve. Today let’s start at d = n and see what happens when we start moving d to the
left.

When d is close to n we cannot expect to have too many codewords that are all at distance d from
one another. In fact, even if d = 2n/3 + 1, C can have at most two codewords. For suppose C has
three distinct codewords c1, c2, c3. Then c1 and c2 differ on more than 2n/3 coordinates and so do
c1 and c3. It follows that c2 and c3 must match on more than n/3 coordinates – the coordinates
on which c1 differs from both c2 and c3, a contradiction.

The following bound shows that k is quite small all the way down to distance n/2. The proof is
very short, but to understand what really goes on it helps to have a geometric view of codewords.
To get the right geometric picture in mind we apply a very useful trick. Instead of thinking of

1

codewords as strings of 0s and 1s, we will think of them as vectors in {−1, 1}n. If two such vectors
differ in 2n/3+1 positions, it means the angle between them has to be obtuse. Our low-dimensional
intuition suggests that we cannot pack too many such vectors inside Rn.

Theorem 1 (Plotkin bound). Let ε > 0. If C is an [n, k, (1 + ε)n/2] code, then k ≤ log(1/ε+ 1).

Proof. We will view the code C as a subset of not {0, 1}n, but {−1, 1}n. Then for every pair of
codewords c 6= c′, their inner product 〈c, c′〉R can be upper bounded by

〈c, c′〉R ≤
(1 + ε)n

2
· (−1) +

(1− ε)n
2

· 1 = −ε

and so

0 ≤
∥∥∥∑
c∈C

c
∥∥∥2

=
∑
c∈C
‖c‖2 +

∑
c6=c′

〈c, c′〉R ≤ K −K(K − 1)ε

where K = 2k. It follows that K ≤ 1/ε+ 1.

For a fixed ε > 0 the Plotkin bound tells us that we can have only a constant number of codewords
at distance (1 + ε)/2 no matter how large n is. This is not terribly useful so we will instead look at
what happens when the distance is just under n/2.

What happens at distance exactly n/2? Theorem 1 doesn’t give us anything for ε = 0 but we can
do a heuristic argument. Since the distance is an integer, ε takes values in multiples of 1/n so for
ε > 0 we get that k ≤ log(n+ 1). This suggests k should depend logarithmically in n when ε = 0.
Indeed it can be shown that if C is an [n, k, n/2] code then k ≤ log 2n, and [n, log 2n, n/2] codes
exist for infinitely many n.

An important example of a [n, log n, n/2] code when n is a power of two is the Hadamard code.
Recall that the linear functions from Fk

2 to F2 are those functions of the form

`a(x) = 〈a, x〉 = a1x1 + · · ·+ akxk

where a is a string in Fk
2 and the addition is modulo two. There are 2k such functions. The

Hadamard encoding Had(x) of x ∈ {0, 1}k consists of the evaluations of all n = 2k linear functions
`a(x) as a ranges over Fk

2. The Hadamard code is linear (Had(x+ y) = Had(x) +Had(y)), so its
minimum distance equals the smallest weight of a nonzero codeword. Again it will be helpful to
work with codewords over {−1, 1} instead of {0, 1}; we achieve this via the substitution c→ (−1)c.
When x 6= 0 and a ∼ {0, 1}n is chosen at random, we have

Ea∼{0,1}n [(−1)`a(x)] = E[(−1)x1a1+···+xnan] =
∏

i : xi=1

E[(−1)ai] = 0

and so every nonzero codeword in the Hadamard code must have an equal number of zeros and
ones.

2 The Gilbert-Varshamov bound

We now look at codes whose distance is a little bit less than n/2. We will parametrize it by setting
d = (1− ε)n/2 and ask for the asymptotically best value of k when ε is small and n is large. Some
interesting phenomena occur in this range of parameters.

2

From the Plotkin bound we would expect that the rate k/n should approach zero as the relative
distance d/n moves closer towards 1/2. The singleton bound is too weak to support this intuition;
it only tells us that k/n < 1/2. The volume bound gives the better but unsatisfying k/n ≺ 0.188.
Obtaining a good upper bound on the rate in this regime is surprisingly tricky, so let us start with
some examples of codes instead.

Theorem 2. There exists a linear [n, k, d] code whenever k/n ≤ 1−H(d/n).

Here H(p) = log 1/p+ (1− p) log 1/(1− p) is the binary entropy function.

We will show the existence of such codes via the probabilistic method: We argue that a random
linear code has the proscribed distance with nonzero probability.

Proof. Let H be a random (n − k) × n matrix whose entries are uniform independent values in
{0, 1}. We think of H as the parity check matrix of a code C. We will show that for a suitable
value of k, the probability that C has distance less than d is strictly less than one. Recall that if
Hx 6= 0 for any nonzero vector x of hamming weight less than d, then H has distance at least d.
Therefore

PrH [C has distance less than d] = PrH [Hx = 0 for some x of weight less than d, x 6= 0]

≤
∑

x : 0<wt(x)<d

PrH [Hx = 0] = 2−n+k
d−1∑
k=1

(
n

k

)

When d ≤ 1/2 we have the elegant estimate

d∑
k=0

(
n

k

)
≤ 1

dd(n− d)n−d

d∑
k=1

(
n

k

)
dk(n− d)n−k =

nn

dd(n− d)n−d
= 2nH(d/n).

It follows that C has distance less than d with probability less than 2k−n(1−H(d/n)) ≤ 1 as long as
k/n ≤ 1−H(d/n).

Let’s see what happens for d = (1 − ε)n/2 and small ε. Recall the Taylor expansion log(1 + x) =
x+O(x2), we get that

H((1− ε)/2) ≥ 1−Kε2 for K sufficiently large

which shows the existence of linear codes of distance (1− ε)/2 and message length k = O(ε2n).

Where can we find such codes? One way is by doing brute force search over all possible linear codes.
A linear map C : {0, 1}k → {0, 1}n can be described by a k × n matrix, so the desired code can
be found by going over all 2kn = 2O((εn)2) such matrices. This brute-force search can be improved
a bit using the “method of conditional probabilities”, and in fact the code can be found in time
poly(n)2n. You will do this in the homework.

We will now see an explicit construction that achieves somewhat worse tradeoffs between k, n and
ε.

3

3 Concatenation

As for the case of small distances, a good starting point are the Reed-Solomon codes, which are
optimal but unfortunately require a large alphabet. Recall that the Reed-Solomon code [n, k, d]F
over a field F achieves the pigeonhole bound d = n− k + 1 as long as |F| ≥ n.

When d was small, we managed to turn the Reed-Solomon code over Fn, n = 2m into a pretty good
binary code B simply by replacing each field element by its binary representation. How does this
binary code behave at large distances? Let us attempt a heuristic argument. In a Reed-Solomon
codeword, at most a k/n fraction of positions are zero, and these map to a sequence of zeros in the
binary representation. For the nonzero positions, we may expect that their binary representation
contains about the same number of zeros and ones. So we may expect the relative distance – that
is the fraction of zeros in B – to be about k/n+1/2 · (1−k/n) = 1/2+k/2n. This suggests starting
with a Reed-Solomon code with k ≈ εn and d ≈ (1− ε)n.

However this intuition is incorrect, as we made the optimistic assumption that on average, a nonzero
element of a Reed-Solomon codeword over F2m will have a balanced representation over F2 (with
roughly the same number of zeros and ones). It is possible to construct Reed-Solomon codewords
whose F2-representation is very sparse, and the relative distance of the resulting code will be far
from half. How do we prevent such sparse representations from occurring? The idea is to encode
the symbols in the Reed-Solomon encoding themselves by a new code.

Let us model this scenario more generally. We are given two codes: An outer code Cout over some
alphabet Σout, and an inner code Cin that encodes messages of length kin over some alphabet Σ,
where each symbol of Σout is represented by kin symbols in Σ. The codewords of the concatenated
code C = Cout ◦ Cin are obtained by replacing the symbol of each codeword cout of Cout by its
encoding in Cin. We view C as a code over alphabet Σ.

Suppose Cout and Cin are [nout, kout, dout]Σout and [nin, kin, din]Σ codes, respectively. Then the
codeword length of C is noutnin and its message length (over Σ) is koutkin. What about the
distance? Two distinct codewords in Cout must differ in dout positions, and each one of these gives
rise to at least din differences in C, so the distance is also doutdin.

Theorem 3. Suppose Cout is an [nout, kout, dout]Σout code and Cin is a [nin, kin, din]Σ code where
Σout ≡ Σkin. Then Cout ◦ Cin is a [noutnin, koutkin, doutdin]Σ code.

At large relative distances, notice that if the relative distance of the outer code is 1− εout and the
relative distance of the inner code is 1/2(1 − εin), then the relative distance of the concatenated
code is at least 1/2(1− εout − εin).

When Cout is linear over Fn, n = 2kin and Cin is linear over F2, you can check that Cout ◦ Cin will
also be linear over F2 under the standard representation of elements in Fn as vectors in Fkin

2 .

The advantage of concatenation is that it splits task of constructing a large code over a small
alphabet, like F2 into two simpler parts: An outer code which should be large, but can use a large
alphabet and an inner code which must be over a small alphabet, but can be small. For the outer
code we have good candidates, like the Reed-Solomon code. Since the inner code is small, we may
be able to find it by brute force search, or sometimes even highly suboptimal constructions may be
adequate. Here are some examples:

• By concatenating the Reed-Solomon code RS : Fk
n → Fn

n, n = 2m, k = εn with the Hadamard

4

code Had : Fm
2 → Fn

2 we obtain an [n2, εn log n, (1− ε)n2/2] code.

• Take the Reed-Solomon code with RS : Fk
n → Fn

n, n = 2m, k = εn/2. By Theorem 2, we
know there exists an inner code GV that maps m bits into O(m/ε2) bits of relative distance
1/2 − ε/4. The concatenated code maps k = εmn bits into O(k/ε3) bits and has relative
distance (1− ε)/2.

How do we get hold of such a code? The bulk of the work is in finding the required inner
code GV . A brute force search over all such codes takes time 2O(m2/ε2), and in the homework
you will show an improvement to 2O(m/ε2) = nO(1/ε2).

Later in the class we will see a faster (more explicit) construction which achieves comparable
parameters.

4 Small-bias distributions

Let C : {0, 1}k → {0, 1}n be any binary linear code of relative distance (1− ε)/2. We can represent
this code by a k × n generator matrix C(x) = Mx. Then the codewords of C are the different
linear combinations of the rows of M . Take any nonzero such linear combination

`a(x) = a1x1 + · · ·+ akxk

what happens when we evaluate this linear combination on the different columns of M? Since C
has relative distance (1− ε)/2, it means that `a(x) = 0 on at most a (1− ε)/2 fraction of columns
x of M .

Now suppose that in addition of C having relative minimum distance (1 − ε)/2, we could also
guarantee that C has relative maximum distance (1 + ε)/2. Then by the same reasoning we can
say that

1

2
− ε

2
≤ Prx[`a(x) = 1] ≤ 1

2
+
ε

2
(1)

for any nonzero linear combination `a, where the probability is taken over the choice of a random
column x of M . If x was a truly random {0, 1} vector, then the probability would be exactly 1/2;
so from the point of view of linear functions `a, a random column of M looks like a truly random
vector in {0, 1}n.

Definition 4. A probability distribution D over {0, 1}k is ε-biased if condition (1) holds for all
nonzero linear functions `a.

Essentially all our discussion about codes so far applies to maximal distance as well as minimal
distance and the constructions we discussed so far (the Hadamard code, the Gilbert-Varshamov
argument, and the concatenations) yield small-biased distributions.

Here is one reason why condition (1) is interesting and significant. As we said, a truly uniform
distribution is 0-biased. The converse is also true: If a distribution over {0, 1}k is 0-biased, then
it must be uniform. So we can view ε-biased distributions as approximations of the uniform
distribution. However, to specify a uniformly random string in {0, 1}k requires k bits of randomness;
in contrast, to specify a sample from an ε-biased distribution we merely need to index a column
of the generator matrix M , which requires log n bits, which is often much smaller. For example,

5

if C is the concatenation of the Reed-Solomon and Hadamard codes, then n ≤ (k/ε)2, so log n =
O(log(k/ε)).

One specific property of the uniform distribution which we found useful for two-source extractors is
that it is t-wise independent for every t. Small-bias distributions enjoy the following approximate
t-wise independence property:

Lemma 5. If the random variable X taking values in {0, 1}k is ε-biased, then

2−t − ε ≤ Pr[Xi1 = a1 and . . . and Xit = at] ≤ 2−t + ε

for every subset {i1, . . . , it} ⊆ [k] and values a1, . . . , at ∈ {0, 1}.

Proof. The trick is to use the identity c = (1− (−1)c)/2 for c ∈ {0, 1}. Then condition (1) can be
rewritten as

|E[(−1)〈a,X〉]| = |E[1− 2`a(x)]| = |1− 2 Pr[`a(x) = 1]| ≤ ε for every nonzero a ∈ {0, 1}k.

Now to simplify notation let us assume i1 = 1, . . . , it = t. We arithmetize as in the previous lecture:

Pr[X1 = a1 · · · and · · ·Xt = at] = E
[t∏
j=1

1− (−1)Xj+aj

2

]
= 2−t

∑
S⊆[t]

E
[∏
j∈S

(−1)j+Xj+aj
]

= 2−t
∑
S⊆[t]

(−1)
∑

j∈S aj E
[
(−1)

∑
j∈S Xj

]
.

The term S = ∅ gives a contribution of 2−t. Each of the other 2t − 1 terms contributes at most
ε2−t in absolute value, so the value of the expression must be between 2−t − ε and 2−t + ε.

Now let us go back to the existence proof for two-source extractors and see what happens if the
values of the candidate extractor f were chosen from an ε-biased distribution instead of the uniform
one:

Pr[f is not a two-source hitter] = Pr[∃S, T, b : f(x, y) = b for all x ∈ S, y ∈ T]

≤
∑
S,T,b

Pr[f(x, y) = b for all x ∈ S, y ∈ T]

≤
∑
S,T,b

(2−K
2

+ ε) = 2

(
N

K

)(
N

K

)
(2−K

2
+ ε).

if we chose ε = 2−K
2

we would have to pay a factor of two in this probability, which you can check
is negligible in the final estimate. Using the small-bias set construction based on the concatenation
of Reed-Solomon and Hadamard codes, we can very efficiently obtain an ε-biased sample space of
size O(N222K2

). Recalling that K = 2 logN + 1 = n + 1, we conclude that the resulting search
space has size 2O(n2), which is an improvement over the K2-wise independent space of size 2n

3
.

6

	The Plotkin bound and the Hadamard code
	The Gilbert-Varshamov bound
	Concatenation
	Small-bias distributions

