
CSCI 5060: Techniques in the theory of computing Lecture 1
The Chinese University of Hong Kong 11 January 2012

The goal of this course is to introduce and study some tools and techniques that, for whatever
reason, turn out to be important and often essential in (theoretical) computer science. It is a
bit different from the kinds of courses that you have studied before. When you take a course on
advanced algorithms you may expect to find out what is the fastest algorithm for computing, say,
maximum flow; if this is too complicated, you would at least hope to discover some ingredients that
would go towards building such an algorithm. If you study cryptography, you could begin with the
goal of constructing a public-key encryption scheme and then learn about ideas that go into the
construction and analysis of such schemes.

In contrast, in this course we will not aim to become experts at any specific topic. Instead we will
try to introduce some ideas and techniques that may enable you to look at your favorite problem
from a new perspective. Computer science is a vast field, but a few basic themes show up time
and again, in places where you usually don’t expect them to play a role. Some examples we’ll see
in this class are error-correcting codes, boolean functions, and expander graphs. There are many
others like convex programming, metric geometry, additive combinatorics and so on. Many of these
originate from outside fields like information engineering, operations research and various branches
of mathematics. Why they turn out to be so important in computer science is somewhat mysterious
and a source of great research projects.

Tolstoy famously said that all happy families are alike, but every unhappy one is unhappy in its own
way. Research is the opposite: Experienced researchers have their own way of solving problems,
but beginners often share the same suffering. You hear about a great research problem, think about
it for a couple of days, and you get stuck. What should you do? There is rarely a magic formula
that will give you the solution. What works better is a new perspective and and some tools you
can try to apply, so that even if you are not making progress right away at least you may come up
with some new insights.

In the first few lectures we will talk about coding theory. We will not do a comprehensive study of
the subject but focus on some aspects of it that are commonly used in computer science. Although
codes were invented in information theory, the ways they are used in computer science are often
different than the ones envisioned by the information theorists. We will see some examples of this.
But first, let us introduce a problem in theoretical computer science from the area of randomness
extraction that on the surface has nothing to do with error-correcting codes. Yet knowing some
coding theory can help us come up with better solutions.

1 Randomness extraction

Many computer applications depend on the use of randomness. It is used in physical systems as
well as in low-level communication protocols. Randomness is especially important in cryptography;
without it there would be no secrets and no security.

Yet coming up with random numbers is not a trivial task. Computers have access to a variety of
processes that look random, but it is not always clear how to take advantage of them. For instance

1

consider the following sequence of data

19 15 15 17 18 19 22 20 15 13

These are the mean temperatures measured in Hong Kong in the first ten days of December last
year. These temperatures certainly look random, but they also contain a large amount of non-
random information – they are certainly correlated to one another and close to the annual mean
winter temperature for the city.

How should we go about “extracting” the hidden randomness out of this data? Let’s make things
simple and suppose we want just one random bit, something that is 0 or 1 but we expect it to be
unbiased. One idea could be to compute the sum modulo two of the data

19 + 15 + 15 + 17 + 18 + 19 + 22 + 20 + 15 + 13 mod 2 = 1.

Now let’s look at another data sequence

4 6 5 6 3 3 6 9 4 0

which records the number of acquaintances of each person among a party of ten people. Surely this
data also looks random, so if we want to get a random bit out of it we can again try to compute

4 + 6 + 5 + 6 + 3 + 3 + 6 + 9 + 4 + 0 mod 2 = 0.

Now repeat this experiment in different groups of people and you will discover that no matter which
group you are looking at you will always get the answer 0, which is not random at all! There is
a simple explanation for this: Every pair of acquaintances was counted twice, so it is not surprise
the sum is always an even number.

So the “randomness extraction” procedure that gave us a random bit out of a sequence of temper-
atures did not work for the sequence of acquaintance numbers. As computer scientists, we would
like to have a universal procedure that we can apply to any data, provided the data contains some
randomness. This is the problem of randomness extraction. Let’s come up with a model for it and
see what we can do.

Let us represent the random data as a sequence in {0, 1}n (as usual in computer science we work
with binary representations). There must be some uncertainty in the choice of the sequence, for
otherwise there work be no randomness to extract from it. To keep our model simple, we will view
this uncertainty as a subset S ⊆ {0, 1}n of values that X could be taking. In the acquaintances
example, S could comprise all the degree sequences that we may expect to observe at a random
10-person party. What we want to do now is extract some randomness out of the sequence; but we
don’t really know what the set S is, as this depends on the specifics of the data collection procedure.
All we know is that since the sequence has some randomness in it, S should not be too small.

Let’s think of the extraction procedure as a function f : {0, 1}n → {0, 1} which maps our data to
a supposedly random bit. To begin with let us make a very weak requirement on randomness –
just ask that sometimes H takes the value 0 and sometimes it takes the value 1. This suggest the
following problem:

Come up with a function f : {0, 1}n → {0, 1} such that for every subset S {0, 1}n of size
at least K, f does not take a constant value on S (i.e. there exist x0, x1 ∈ S such that
H(x0) = 0 and H(x1) = 1).

2

A moment’s thought shows that this is impossible unless K is very large: No matter what H is,
let S be the larger one of the sets {x : H(x) = 0} and {x : H(x) = 1}. Then S has size 2n−1 and H
is constant on S. So S must have size at least 2n−1, which is not very interesting.

Two-source hitters This is bad news, so we need to make some additional assumptions about
our data if we are to extract any randomness out of it. One possibility is to make some additional
assumptions on what the set S should look like. But today we will look at something different.

In the scenario we looked at the function Ext had access to one random sequence. But suppose
instead that it had access to two such independent data sets – say a sequence of temperatures as
well as a sequence of acquaintance numbers. Can we extract some randomness out of both these
sequences?

In its simplest incarnation, we model the data as strings in {0, 1}n and the uncertainty as a pair
of subsets S, T ⊆ {0, 1}n, each of size at least K. Now each pair of data items x ∈ S, y ∈ T is
a possible outcome. Our goal is to “extract” a random bit without knowing what S and T are.
As before, we will for now settle with the simpler requirement that both the values 0 and 1 occur
as possible outcomes at least once. The object we are looking at is called a two-source hitter in
computer science (or bipartite Ramsey graph in mathematics).

Definition 1. An (N,K) two-source hitter is a function f : [N]× [N]→ {0, 1} such that for every
pair of subsets S, T ⊆ [N] of size K, f is not constant on S × T (i.e. there exist (x0, y0), (x1, y1) ∈
S × T such that f(x0, y0) = 0 and f(x1, y1) = 1).

Here [N] denotes the set {1, . . . , N}. For the application we have in mind we set N = 2n and we
identify the set [N] with {0, 1}n. We just saw that “one-source hitters” do not even exist; how
about two-source hitters?

Obtaining two-source hitters The existence of two-source hitters was shown by Erdös in 1946
in one of the earliest uses of the probabilistic method. Erdös showed that for a suitable choice
of K = K(N), if the function f is chosen uniformly at random, then the probability that f is a
two-source hitter is strictly greater than zero. So at least one f must be a two-source hitter.

A random function f is chosen by picking each value f(x, y) uniformly and independently at
random from {0, 1}. Instead of lower bounding the probability that f is a two-source hitter, it will
be easier to upper bound the probability that a random f is not a two-source hitter. Unwinding
the definition, this means that there exists a pair of sets S, T of size K and a number b ∈ {0, 1}
such that f(x, y) = b for all K2 pairs x ∈ S, y ∈ T . We can now write

Pr[f is not a two-source hitter] = Pr[∃S, T, b : f(x, y) = b for all x ∈ S, y ∈ T]

≤
∑
S,T,b

Pr[f(x, y) = b for all x ∈ S, y ∈ T]

=
∑
S,T,b

2−K
2

= 2

(
N

K

)(
N

K

)
2−K

2
.

The inequality follows from the union bound. To show that two-source hitters exist, we need that
this probability be strictly less than one. We use the basic estimate

(
N
K

)
≤ NK to obtain that

Pr[f is not a two-source hitter] ≤ 22K logN−K2+1 < 1

3

as long as K ≥ 2 logN + 1. This bound is tight up to the factor 2.

So now we know that (N,K = 2 logN + 1) two-source hitters exist. But how do we get our hands
on one? The simplest thing to do is to go over all possibilities and check which one works. This
means going over all possible functions f : [N]× [N] → {0, 1} until we come up with the one that
has the desired hitting property. There are 2N

2
= 222n such functions, which is a lot of time to

waste looking for a hitter. Can we do better?

2 Error-correcting codes

Error-correcting codes concern a simple setting. Alice wants to send Bob a message, but some of
the symbols may be corrupted in the transmission. How should Alice “encode” her message to
ensure that Bob can recover it despite the errors? This scenario has been studied in detail for more
than fifty years, and despite the simplicity many basic questions remain unanswered. Fortunately
there have been many insights throughout the years, and we will see how these are relevant for
computer science.

We model this problem as follows. Alice wants to send Bob a k-bit string, namely an unknown
message x coming from the space {0, 1}k. To this end Alice sends a longer string C(x) ∈ {0, 1}n,
which we call the codeword of x. When Bob receives C(x) part of it may have been corrupted and
his goal is to recover x given this corrupted codeword c.

Unless we put some restriction on how corruptions happen, this is certainly impossible even if
Alice wants to send just one bit of information. In many applications it makes sense to consider
probabilistic noise: The string C(x) is corrupted in some known stochastic manner that models the
effect of the environment on the transmission. The simplest such corruption model, proposed by
Shannon, changes every bit of C(x) independently of all the others with some small probability p.

Even though probabilistic noise models are adequate for engineering, in computer science applica-
tions it is typically more useful to consider noise that is chosen adversarially, but limit the amount
of noise. The corrupted codeword c will be obtained from C(x) by changing at most r different
coordinates of C(x).

Now fix the parameters n, k, and r and a candidate code C. Recall Bob’s objective: No matter
which x Alice wants to send to Bob, given a corrupted codeword c that differs from C(x) in at most
r positions, Bob should be able to recover x uniquely from c. Obviously, this can happen if and
only if every two codewords are at distance at least 2r + 1. We call this quantity the (minimum)
distance of the code C.

Definition 2. A code with block length n, message length k, and distance d is a function C : {0, 1}k →
{0, 1}n such that for every x 6= x′, C(x) and C(x′) differ in at least d positions (i.e. have distance
at least d).

(We will call such codes [n, k, d] codes.) Alternatively, we can view an the code C as the set of 2k

points {C(x) : x ∈ {0, 1}k}; then we require that the distance between any pair of points in this set
is at least d. Thus a code can be either viewed as a function (from messages to codewords) or a set
(of codewords).

The most fundamental question about codes asks which values of n, k, and d can be achieved
simultaneously. This answer is not completely known. Let us start with some examples first. The

4

parity check code
x1, . . . , xn−1, x1 ⊕ · · · ⊕ xn−1

is an [n, n− 1, 2] code. It is easy to check that the following construction by Hamming is a [7, 4, 3]
code:

x1, x2, x3, x4, x1 ⊕ x2 ⊕ x3, x1 ⊕ x2 ⊕ x4, x1 ⊕ x3 ⊕ x4.

To get a better feel about which values of n, k, and d are achievable, let us first identify some natural
limitations. In many computer science applications it is natural to view k and d as functions of n
and study these parameters asymptotically as n goes to infinity. Two particular regions will be of
interest: When d is small (and we try to make k as large as possible) and when k is small (and we
try to make d large). Today we focus on small values of d.

Bounds on codes at small distances If we are encoding 2k different messages in {0, 1}n, by
the pigeonhole principle at least two of the codewords will agree on their first k − 1 coordinates.
Since this pair of codewords must be at distance d we must have n− k + 1 ≥ d, or d ≤ n− k + 1.
Thus the parity check code is optimal for distance 2.

What about somewhat larger distances? The ball of radius r centered at x ∈ {0, 1}n is the set of
all points in {0, 1}n within distance r of x. Then the balls of radius b(d− 1)/2c centered at the 2k

different codewords cannot overlap, so we must have 2kVn(b(d − 1)/2c) ≤ 2n, where Vn(r) is the
volume of the ball of radius r. It turns out that no constructions match this bound for n ≥ 24 and
d ≥ 3.

When d is constant, Vn(b(d− 1)/2c) = Ω(nb(d−1)/2c) and we get the upper bound⌊d− 1

2

⌋
≤ n− k +O(1)

log n
(1)

which is tighter than the bound d ≤ n−k+1 when n and k are sufficiently large. Can we construct
codes that match this bound asymptotically?

Instead of doing this directly, let us first show how to achieve the impossibly tight bound d = n−k+1
but in a more relaxed setting. To do so we will introduce a more general setting where the message
and more importantly codeword symbols come not from {0, 1} but from a larger alphabet.

3 Reed-Solomon codes

Just like in the binary case, an [n, k, d]Σ code over alphabet Σ is a function C : Σk → Σn such that
every two images C(a), C(a′), where a 6= a′, differ in at least d coordinates. We will particularly
be interested in the case when Σ is a finite field F. For now you can think of F as the prime field
{0, . . . , p−1} where p is a prime number with the operations of addition and multiplication modulo
p, where p ≥ n.

Let S = (s1, . . . , sn) be an ordered subset of F. We will view the message a = (a0, . . . , ak−1) as the
coefficients of a polynomial pa(x) = a0 + a1x + · · · + ak−1x

k−1. The Reed-Solomon encoding of a
(over S) is the vector RS(a) = (fa(s1), . . . , fa(sn)) in Fn.

We claim that the Reed-Solomon code has distance n− k + 1. To do this first we observe that the
code is linear: RS(a + a′) = RS(a) + RS(a′). (In particular, RS(0) = 0.) For linear codes, the

5

distance of the code equals the hamming weight of the shortest nonzero codeword: if two codewords
c and c′ are at distance d, then c−c′ has hamming weight d; in the other direction, if c has hamming
weight d, then the distance between c and the zero codeword is at most d.

So to show that d ≥ n − k + 1, we must argue that for a 6= 0 at least n − k + 1 of the values
fa(si) are non zero, or equivalently that at most k − 1 of the fa(si) are zero. This is a general
property of polynomials over finite fields: If f is a nonzero polynomial and f(s) = 0, then we can
write f(x) as x− s times a polynomial of strictly lower degree. If f has k zeros, then f(x) equals
(x− s1) . . . (x− sk) times some polynomial, so f has degree at least k, a contradiction.

For this construction it was essential that the field F has at least size n, so that we can choose n
distinct points where to evaluate the polynomials. What can we do over smaller alphabets? One
simple thing we can do is to represent the field elements as bit strings: For example if p = 5 we
can represent the field elements by the strings 0, 1, 2, 3, 4 by the bit strings 000, 001, 010, 011, 100,
respectively. But when p is prime this representation does not look very efficient as some of the
patterns are never used. For this reason – and more important ones that will become apparent
later – it will be more convenient to work over fields whose size is a power of two.

Extension field arithmetic Let’s do a short review of the arithmetic of finite field F2m , m ≥ 1.
A good example to keep in mind is the field F4 = F22 . This field has four elements, which we call
0, 1, α, and 1 + α. The elements 0 and 1 come from F2. Arithmetic is the same in F2, except that
α2 + α + 1 = 0; so every time we see α2 we apply the substitution α2 = α + 1. (If you like fancy
algebra you can say that F4 is isomorphic to the quotient field F2[α]/(α2 + α+ 1).) In particular,
this gives α2 = 1 + α and α3 = 1, so the sequence (α, α2, α3) covers every nonzero element of F4

exactly once.

In general, we represent the elements in F2m as formal linear combinations x0+x1α+· · ·+xm−1α
m−1,

where x0, . . . , xm−1 take values in F2 and q(α) = 0 for some (primitive) polynomial of degree m.
Then α is a generator of F2m : The sequence of values α, α2, . . . , α2m−1 covers all nonzero elements
of F2m exactly once. This forces α2m−1 = 1 and gives a multiplicative inverse for every nonzero
element: The inverse of αi is α2m−i−1.

Binary codes Now let n be a power of two and consider the [n, k, d]F Reed-Solomon code over
Fn. To obtain a binary code B, represent every symbol x = x0 + x1α + · · · + xm−1α

m−1 in the
Reed-Solomon encoding by the binary string (x0, x1, . . . , xm−1). Since each element of F represents
log n bits, B has message length k log n and block length n log n. Moreover the distance of B is at
least d: Every disagreement between codewords in the Reed-Solomon encoding spawns at least one
disagreement in B.

In other words, B is a [n′ = n log n, k′ = k log n, d′ = d] code. Since d = n− k + 1, we get that

d′ − 1 ≥ n′ − k′

log n′

which approaches the bound (1) by factor of two. We will soon see how to improve upon this
bound; but before we do that let us see what such codes have to do with two-source hitters. First
we have to discuss d-wise independent probability distributions.

6

4 The parity check matrix and bounded independence

A sequence of correlated random variables Z1, . . . , Zn taking values in {0, 1} is t-wise independent if
for every subset {i1, . . . , it} ⊆ [n], the random variables Zi1 , . . . , Zit are independent. Even (n−1)-
wise independence is a weaker property than full independence: Choose Z1, . . . , Zn−1 uniformly
and independently from {0, 1} and set Zn = Z1⊕· · ·⊕Zn−1. Then it is easy to see that any subset
of n − 1 of the Zi will be independent, although all n of them are not as they satisfy the relation
Z1 ⊕ · · · ⊕ Zn = 0.

This example looks a lot like the parity check code of distance two and the connection is not
incidental. We will give a general way to obtain d-wise independent distributions from linear codes
of distance d. A code C : Fk

2 → Fn
2 is linear if the map C is linear. There are two ways to describe

such codes. One is by giving the map C; the other is by giving a basis of linear constraints that all
codewords in C must satisfy. For example, the parity check code which was given by the map

x1, . . . , xn−1 → x1, . . . , xn−1, x1 ⊕ · · · ⊕ xn−1

can also be represented by the linear constraint

y1 ⊕ · · · ⊕ yn = 0.

All the codewords satisfy the linear constraint, and conversely all vectors that satisfy the linear
constraint are codewords.

Similarly, the [7, 4, 3] Hamming code can be described by the following three (linearly independent)
constraints:

y1 ⊕ y2 ⊕ y3 ⊕ y5 = 0

y1 ⊕ y2 ⊕ y4 ⊕ y6 = 0

y1 ⊕ y3 ⊕ y4 ⊕ y7 = 0.

In general, a code C : {0, 1}k → {0, 1}n (of positive distance) can be described by n − k linearly
independent constraints. We can write these constraints as an (n− k)×n matrix H called a parity
check matrix of C. Then the codewords in C are those vectors c ∈ {0, 1}n that satisfy Hc = 0.

Theorem 3. Suppose C is a linear code of distance d ≥ 2 and let H be a parity check matrix of
C. Let u be a uniformly random row vector in {0, 1}n−k. Then the bits of Y = uH are uniformly
random and (d− 1)-wise independent.

Proof. Let z be any vector of hamming weight less than d. Then Hz is nonzero, and so the
expression E[(−1)uHz] must equal zero. On the other hand,

0 = E[(−1)uHz] = E
[∏
i : zi=1

(−1)Yi

]
.

This condition is sufficient (and in fact equivalent) to saying that Y1, . . . , Yn are d-wise independent
because

Pr[Yi1 = a1 · · · and · · ·Yid−1
= ad−1] = E

[d−1∏
j=1

1− (−1)Yij
+aj

2

]
= 2−(d−1)

∑
S⊆[d−1]

E
[∏
j∈S

(−1)j+Yij
+aj
]

= 2−(d−1)

because the only surviving term in the product is the term for S = ∅.

7

Improved construction of two-source hitters In our analysis of two-source hitters, we argued
that a random function f is a two-source hitter with probability strictly greater than zero. The
values of f were chosen uniformly and independently of one another. Looking back at the proof,
we can see the only place independence is used was for the equality

Pr[f(x, y) = b for all x ∈ S, y ∈ T] = 2−K
2

since the values f(x, y) as x ranges over S and y ranges over T are independent of one another.
But notice that the same equality holds if the values f(x, y) are not fully independent but merely
K2-wise independent!

By Theorem 3, a sequence of N2 bits that are K2-wise independent can be obtained from the
distribution uH, where H is the parity check matrix of an code of block length N2 and distance
K2. If we plug in the code B from the previous section, we get that the dimension of u is at most
(1 + o(1))K2 logN .

What is the advantage of using this distribution of limited independence? By the same analysis as
before we are guaranteed that one of the functions f is a two-source hitter. Before we had to sift
through 2N

2
such functions to find a good one; but now the number of functions we have to look at

is determined by the number of possible choices for u. Since u has dimension (1 + o(1))K2 logN ,
we only need to consider 2(1+o(1))K2 logN choices of u. For N = 2n and K ≈ 2 logN this is a vast
improvement: We can find a hitter in singly exponential instead of doubly exponential time.

5 BCH codes

We now show how to improve the distance of B by a factor of two (when d is small) by another
construction of codes called BCH codes. To do so it will be useful to first look at the Reed-Solomon
code (for a suitable set S) from the parity check perspective.

Now let n be of the form 2m−1 and choose S be the set of all nonzero values in F2m . We can write
S = {1, α, α, . . . , αn−1}, where α is a generator for F2m . Consider the message a = (0, . . . , 1, . . . , 0),
where the only nonzero entry occurs in the ith coordinate, 0 ≤ i < k. The corresponding polynomial
is fa(x) = xi and the Reed-Solomon encoding is the vector

(c0, . . . , cn−1) = (1, αi, . . . , α(n−1)i)

which for every 1 ≤ j ≤ n− k satisfies the constraint

c0 + c1α
j + · · ·+ cn−1α

(n−1)j = 0. (2)

This is because 1 + x+ · · ·+ xn−1 = 0 for every x 6= 0, 1 in F2m . It turns out these constraints are
linearly independent, and since there are n − k of them they span the parity check matrix of the
Reed-Solomon code.

Recall that the Reed-Solomon code is optimal; the only issue is that it works over F2m instead of
F2. The BCH code is defined by enforcing the constraints (2) when c0, . . . , cn−1 comes from F2.
Then we can view each linear constraint in (2) as a collection of n linear constraints over F2: The
constraint `0(c) + `1(c)α+ · · ·+ `n−1(c)αn−1 over F2m gives rise to the m = log(n+ 1) constraints
`0(c) = · · · = `n−1(c) = 0 over F2.

8

Definition 4. The (binary) BCH code with parameters n = 2m−1 and d consists of all codewords
c ∈ F2n such that

c0 + c1α
j + · · ·+ cn−1α

(n−1)j = 0

for 1 ≤ j < d, where α is a generator of Fn.

The distance of this BCH code is at least d, since every codeword in the BCH code also satisfies all
the constraints (2) for message length n−d+1 (as well as the additional constraints ci ∈ F2). To get
a lower bound on the message length k, we upper bound the dimension of the parity check matrix
of the BCH code. There are d−1 constraints over Fn, which gives (d−1) log(n+1) constraints over
F2, from where k ≥ (d− 1) log(n+ 1). This does not improve our bound on B. The improvement
will come from the fact that these constraints are not linearly independent; in fact about half of
them are redundant.

To see this, let c(x) be the polynomial c0 + c1x+ · · ·+ cn−1x
n−1. It is not hard to check that c(x2)

and c(x)2 is the same polynomial, so all the constraints where j is odd are redundant. This leaves
out at most d(d − 1)/2e log(n + 1) non-redundant constraints that describe the code, and so the
message length is at most n− d(d− 1)/2e log(n+ 1).

By Theorem 3, the BCH code can be used to construct a t-wise independent space of random
variables Y1, . . . , Yn, n = 2m − 1 of size (n+ 1)dt/2e. This bound is almost tight: For constant t, a
t-wise independent set must be of size Ω(nbt/2c).

9

	Randomness extraction
	Error-correcting codes
	Reed-Solomon codes
	The parity check matrix and bounded independence
	BCH codes

