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INTRODUCTION

Proposed in 1962,  the Hough transform (HT)  has 
been widely applied and investigated for detecting 
curves, shapes, and  motions in the fields of image 
processing and computer vision. However,  the HT has 
several shortcomings,  including high computational 
cost,  low detection accuracy,  vulnerability to noise, 
and  possibility of missing objects.   Many efforts target 
at solving some of the problems for decades,  while the 
key idea remains more or less the same.  Proposed in 
1989 and further developed thereafter,  the Random-
ized Hough Transform (RHT) manages to considerably 
overcome these shortcomings via innovations on the  
fundamental mechanisms,  with random sampling in 
place of pixel scanning,  converging mapping in place 

of diverging mapping, and dynamic storage  in place 
of  accumulation array.  This article will provides an 
overview on advances and applications of RHT  in the 
past one and half decades.

BACKGROUND

Taking straight line detection as an example, the upper 
part of Fig.1 shows the key idea of the Hough Transform 
(HT) (Hough, 1962) . A set of points on a line y=kx+b 
in the image are mapped into a set of lines across a point 
(k, b) in the parameter space. A uniform grid is located  
on a window in the (k, b) space,  with an accumulator 
a(k, b) at each bin. As each point (x,y) on the image  is 
mapped into a line in the (k, b) space,  every associated 
accumulator a(k, b) is incremented by 1. We can detect  

Figure 1. From hough transform to randomized hough transform
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lines by finding every accumulator with it’s score a(k, 
b) larger than a given threshold.

The Hough Transform was  brought to the atten-
tion of the mainstream image processing community 
by Rosenfeld (1969). Then Duda and Hart (1972) not 
only introduced the polar parameterization technique for 
more efficient line detection, but also demonstrated how 
a circle can be detected. Kimme, Ballard and Sklansky 
(1975) made circular curve detection significantly more 
effective by using the gradient information of pixels. 
Merlin and Faber (1975) showed how the HT could 
be generalized to detect an arbitrary shape at a given 
orientation and a given scale.  Ballard (1981) eventually 
generalized the HT to detect curves of a given arbitrary 
shape for any orientation and any scale. Since then, a 
lot of applications, variants and  extensions of the HT 
have been published in the literature. A survey on these 
developments of  the HT is given by  Illingworth and 
Kittler (1988). 

However, the HT has several critical drawbacks 
as follows:

a. All pixels are mapped, and every bin in the grid 
needs an accumulator. If there are d parameters, 
each  represented by M bins or grid points, one 
needs Md accumulators. 

b. To reduce the computational cost, quantization 
resolution cannot be high, which blurs the peaks  
and leads to  low detection accuracy.

c. Each pixel activates every  accumulator located on 
a line, but there is only one that represents the cor-
rect one while all the others are disturbances.

d. If the grid window is set inappropriately, some 
objects may locate outside the window and thus 
cannot be detected.

e. Disturbing and noisy pixels cause many interfer-
ing  accumulations.

Many efforts have been made to alleviate these 
problems. Using the gradient information of pixels 
is one of them. Another is analyzing noise and error 
sensitivity (vanVeen, 1981; Brown, 1983; Grimson & 
Huttenlocher, 1990).  The third is the use of hierarchical  
voting accumulation (Li, Lavin & LeMaster,  1986) or 
multiresolution (Atiquzzaman, 1992).  Yet another is 
improving the effect of quantization through the use 
of  kernels (Palmer,  Petrou, & Kittler, 1993) or error 
propagation analysis (Ji & Haralick, 2001), as well as 
hypothesis testing (Princen, Illingworth, &  Kittler, 

1994). However,  none of these suggestions offer any 
fundamental changes to  the key mechanisms of HT.  

Proposed in 1989 and further investigated there-
after (Xu, Oja,  & Kultanen, 1990; Xu & Oja, 1993), 
the Randomized Hough Transform (RHT) tackles the 
above problems by using a fundamental innovation:  
the one-to-many diverging mapping from the image 
space to the parameter (accumulator) space, as shown 
in the upper part of  Fig.1(a),  is replaced by a many-to-
one converging mapping, as shown in the bottom part 
of  Fig.1(a). This fundamental change further enables 
several joint improvements, such as a random sam-
pling in place of pixel scanning,  a small size dynamic 
storage  in place of  the array of Md accumulators, and 
an adaptive detection in place of enumerating all the 
pixels and  picking those accumulators with scores 
larger than a threshold. As a result, not only time and 
storage complexity have been reduced significantly, 
but also the detection accuracy has been improved 
considerably. 

Subsequently, many studies have been made on RHT. 
On one hand,  there are various real applications such 
as medical images (Behrens, Rohr, & Siegfried, 2003),  
range images (Ding, et al, 2005),   motion detection 
(Heikkonen, 1995),  object tracking  for a mobile robot 
(Jean &  Wu,  2004),  soccer robot (Claudia,   Rous,   
& Kraiss, 2004),  mine detection (Milisavljevic, 1999),  
and others (Chutatape  & Guo,  1999). On the other 
hand, there are also many further developments on 
RHT, including an efficient parameterization for ellipse 
detection (McLaughlin, 1998),  extension to motion 
detections (Kalviainen, Oja, &  Xu, 1991; Xu, 2007), 
the uses of local gradient information, local connectiv-
ity and neighbor-orientation for  further improvements 
(Brailovsky,  1999; Kalviainen & Hirvonen,  1997), 
an integration with error propagtion analysis (Ji & 
Xie,  2003), a modification of random sampling to 
importance sampling (Walsha & Raftery,  2002), and 
others (Xu, 2007). Due to space limit, it is not possible 
to provide a complete survey here.   An early review 
on RHT variants is referred to (Kalviainen,  Hirvonen,  
Xu,  &  Oja, 1995), and recent elaborations on RHT 
are referred to (Xu, 2007).

It may also need to be mentioned that the literature 
on RHT studies often includes studies under the name 
of probabilistic HT (Bergen & Shvaytser, 1991; Kiry-
ati, Eldar & Bruckstein, 1991) that also suggests to 
use a random sampling to replace the scanning in the 
implementation of the standard HT and thus shares one 
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of the previously mentioned RHT features. However,  
it will not lose too much generality to regard it as a 
degenerated case of RHT for an understanding purpose, 
though there are some detailed differences.

BASIC RHT MECHANISMS AND 
CHARACTERISTICS

As shown in Fig.1, one pixel is mapped into all the 
points on a line passing  (k,b) by the diverging map-
ping mechanism of HT, which actually incurs the above 
drawbacks (a)-(e). RHT replaces this mechanism with 
a converging mapping mechanism such that  two or 
more pixels are picked to jointly determine a line, 
i.e., mapped into one point (k,b). By this mechanism, 
different points on the same line y=kx+b will  hit the 
same point (k,b), without creating a great number of 
false accumulations. Also, the feature of being mapped 

into one point at a time makes it possible to construct 
accumulators dynamically, with no need of laying  a 
grid on a pre-specified window. We only need to ac-
cumulate a(k, b) at those locations activated by the 
converging mappings. Also, quantization resolution 
may vary for different locations, and each quantiza-
tion bin can be replaced by a kernel. As a result, the 
drawbacks (b),(c),(d) no longer exist.

Without considering the quantization effect,  if 
there is a line consisting of  n  pixels on an image,  we 
get  a peak with n counts in its accumulated scores. 
Assume that in its neighbour there is another peak of 
false line consisting of m < n pixels, then the ratio n/m 
describes a signal/noise ratio of  a reliable detection by 
HT.  In RHT,  assuming that we exhaust all the pos-
sible pairs of pixels, the voting counts for the line will 
be n(n–1)/2 while the voting counts for the disturbing 
false line will be m(m–1)/2, i.e., the signal/noise ratio 
becomes )1(

)1(
−
−
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1
−
−

m
n  times increased compared 

Table 1. Missing probability versus false alarm probability
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to HT. Thus, the above  problem (e) can also be sig-
nificantly improved.

In fact, it is not necessary to exhaust  all the possible 
pairs of pixels for RHT to detect lines.  Via randomly 
sampling two pixels for a converging mapping, we 
only need to have a small fraction of all the possible 
pairs to get the degree )1(

)1(
−
−

mm
nn

 with a high probability, 
which solves the above problem (a) with a significant 
reduction in both time and space complexities. A more 
precise explanation is given in Tab.1. We detect a point 
θ∈Θ as a line if it is hit by more than k0 times, with 
a risk of missing this line by a small probability Pmiss. 
Controlling it below a pre-specified rate, we need to 
only run M > Mc trails. On the other hand, controlling 
probability ηr of taking a false line as a solution, we 
can determine an upper bound M < Mr. Even if a line is 
falsely detected, it can be later discarded by evaluating  
all the detected lines  via  the actual pixels on the im-
age. Thus, a large ηr will not affect  the  performance 
too much, but will only waste computing time. 

RHT GENERAL FORM AND 
EXTENSIONS

In general, RHT is applicable to a curve that can be 
expressed in a parametric equation f (x,y,θ) = 0 with a 
number κ of free parameters. Solving the joint equations 
f (xi,yi,θ) = 0, i = 1,..., κ yields a converging mapping 
into a point θ∈Θ. A general algorithmic form is given 
in Tab.2. 

We can obtain variants and extensions by modify-
ing either one or more of the first four steps in Tab.2. 
First, the converging mapping in Step 1 can be altered 
by varying  either the way of  getting samples, or the 
way of computing θ∈Θ from these samples, or both. 
Instead of random sampling, samples can be obtained 
by searching a candidate solution in Sθ via local connec-
tivity and neighbor-orientation (Kalviainen,  Hirvonen,  
Xu,  &  Oja, 1995; Brailovsky,  1999; Kalviainen & 
Hirvonen,  1997) or by importance sampling (Walsha 
& Raftery,  2002). Instead of solving joint equations, 

Table 2. The general RHT in algorithmic form
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as discussed in (Xu, 2007),  a solution can also be ob-
tained by either a least square fitting,  an Lp norm fitting, 
or  by maximum likelihood estimation. Sometimes, it 
may even  consider  under-constrained equations by 
taking less samples, from which a parametric curve or 
surface in Θ is obtained to implement  an array based 
accumulation  similar to HT.

Second,  there are also alternatives for Step 2 and 
Step 3.  One extreme is returning to an array  based 
accumulation.  The other extreme is that all the mapped 
points in Θ are stored  as they are,  and either cluster 
analysis or kernel based density estimation is made 
on them to find cluster centres and density degrees for 
detecting curves or objects. Between the two extremes, 
we may consider a trade off or their combination (Xu, 
2007).  Third,  Step 4 can also be performed with dif-
ferent choices, including a δ-band test, a fitting error 
threshold, and a hypothesis testing (Xu, 2007). 

Moreover, instead of checking candidate solution 
every time t, we can let the procedure run until t = Mc, 
put those accumulators with a(θ) > k0 into Sθ as can-
didate solutions and examine these candidates at Step 
4. Also, checking and examining candidates can be 
made per a pre-specified period. Furthermore, gradi-
ent information in a grey image may also improve the  
converging mapping.

The last but not the least, RHT has also be extended 
to detect objects by a template as shown in Fig.2. 

FUTURE TRENDS

Challenges to RHT mainly come from the effects of 
noise and quantization. Two types of noise are shown 
in Fig.3. The first type is in Fig.3(a) with disturbing 
pixels added but the original pixels unaffected.  This 
noise type may reduce the signal/noise ratio, resulting 
in  more  computing time and space. However, the 
accuracy of the detected line will be not affected. The 
second type is in Fig.3(b), with  some original pixels 
deviated from the exact line. The quantization effect  
can be regarded as a special case of this type  that  
uniformly distributed noise is added to the coordinates 
of pixels. The second type not only reduces the signal/
noise ratio but also makes the detected line inaccurate. 
As yet,  there lacks a systematic theoretical analysis 
on how the solution accuracy will be affected by this 
second type. More importantly, theoretical guides are 
lacking on how to control the accuracy of detected 
curves and objects. 

The tasks of detecting curves and objects can also 
be performed from the perspective of  mixture based 
learning, which is much more robust in the case of 
the second type of noise (Xu, 2003; Liu, Qiao, & Xu,  
2006;  Xu, 2007). Solving pattern recognition tasks by 
machine learning approaches is a popular trend in the 
past decade and currently. Actually, the machine learn-
ing perspective are complementary to the perspective 

Figure 2.  Use a template to match a shape via translation µ, rotation φ and scaling λ
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of  HT/RHT type evidence accumulation.  A trend is 
integrating the strengths of both.

CONCLUSION

This article provides not only a brief overview on nearly 
two decade developments and applications of RHT for 
detecting curves, shapes, and  motions, but also a tutorial 
and re-elaboration on basic mechanisms, variants,  and 
extensions of RHT, as well as  challenges and future 
trends of RHT studies. Recently, a  general problem 
solving paradigm has been developed and implemented 
by an integration of five essential  mechanisms (Xu, 
2007). Not only the difference between the machine 
learning perspective and HT/RHT perspective can 
be understood via handling two coupled core tasks, 
namely amalgamating evidences and  discriminating 
differences, but also different implementations of these 
mechanisms and differences in a specific integration  
may bring us new results and potential directions for 
future  studies. 
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KEy TERMS

δ Band Test: A pixel is said to fall in the δ band of 
ρ (it denotes a curve or surface ) in the image space if  
the shortest distance from this pixel to ρ is less than a 
pre-specified threshold δ. Pixels falling in the δ band 
of ρ are regarded as belonging to ρ, and a δ band test  
can be designed according to these pixels.

Cluster Analysis: Beyond using an accumulation 
array,  in the cases of  a converging mapping,  every 
mapped point  in Rκ is memorized. After an enough 
number of converging mappings, we get  a set of points 
on which cluster analyses can be made  to find clusters’ 
centre (mean or median).

Diverging Mapping vs. Converging Mapping:  
Given pixels of a number m, a set of under-constrained 
equations specify a curve or manifold of a dimension ≥ 
κ – m in Rκ if m < κ. E.g.,   from  a line y=kx+b pass-
ing a given pixel  in the image, we  have a line b=y-kx 
in R2. This case is called diverging mapping because 
m pixels are mapped diversely to the Rκ space. On the 
other hand, if m ≥ κ, a unique point in the Rκ space 
maybe determined by solving a set of joint equations 
or optimizing a cost when the joint equations are over-
constrained, i.e., we have a converging mapping  that 
maps m pixels into one point in Rκ.

Kernel Estimator: Every mapped point is memo-
rized as the centre of a kernel function, e.g., a bell-shaped 
such as a Gaussian. Collectively, mapped points forms a 
density estimation for a multi-mode distribution,   with 
each mode in place of the above cluster centre.

Random Sampling: Given a set of N pixels, we take 
a number m of pixels with each picked randomly with a 
probability 1/N. Repeating this sampling by an enough 
number of times, a global configuration of N pixels will 
emerge,  without enumerating all the N pixels.

Threshold Based Voting vs. Local Maxima Find-
ing: Given a pre-specified threshold, an accumulator 
in an array is picked if it receives votes larger than 
the threshold, without considering any neighborhood. 
Finding a local maximum means to find an accumulator 
with its votes larger than those of accumulators located 
in its neighborhood area.

Under-Constrained vs. Over-Constrained Equa-
tions:  For a parametric equation of κ free parameters, 
we have a set of under-constrained equations with 
pixels of a number m < κ and a set of over-constrained 
equations with  pixels of a number m ≥ κ in a non-
degenerate way.




