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Projective Clustering by Histograms
Eric Ka Ka Ng, Ada Wai-chee Fu and Raymond Chi-Wing Wong, Member, IEEE

Abstract— Recent research suggests that clustering for high di-
mensional data should involve searching for ”hidden” subspaces
with lower dimensionalities, in which patterns can be observed
when data objects are projected onto the subspaces. Discovering
such inter-attribute correlations and location of the correspond-
ing clusters is known as the projective clustering problem. In this
paper, we propose an efficient projective clustering technique
by histogram construction (EPCH). The histograms help to
generate “signatures”, where a signature corresponds to some
region in some subspace, and signatures with a large number of
data objects are identified as the regions for subspace clusters.
Hence, projected clusters and their corresponding subspaces can
be uncovered. Compared to the best previous methods to our
knowledge, this approach is more flexible in that less prior
knowledge on the data set is required, and it is also much more
efficient. Our experiments compare behaviors and performances
of this approach and other projective clustering algorithms with
different data characteristics. The results show that our technique
is scalable to very large databases, and it is able to return
accurate clustering result.

Index Terms—Projective clustering, histogram, subspace

I. INTRODUCTION

Clustering is being applied to many practical problems such
as image segmentation, pattern recognition, trend analysis, etc.
It is often considered an important method in data mining.
Here, we state the problem of traditional clustering as in [13]
: Given a number of objects, each of which is described by a
set of numerical measures, devise a scheme for dividing the
objects into a number of groups such that objects within the
same group are similar in some respect and unlike those from
other groups. The number of groups and the characteristics of
each group are to be determined.

Surveys on traditional clustering techniques and concepts
can be found in [16]. Traditional clustering algorithms are
different in their terminologies, cluster representations, as-
sumptions for the components of the clustering process and the
contexts in which clustering is used. They are often classified
as hierarchical clustering, partitional clustering, optimization
techniques and density search techniques. However, most of
them are originally aimed for tackling clustering problems
with low dimensional data.

With high dimensional data commonly found nowadays
(e.g. typical relational database contains tens up to hundreds
of attributes), we face the “dimensionality curse” problem,
and most traditional clustering algorithms cannot produce
satisfactory results. Recent theoretical results [17] show that in
high dimensional space (e.g. 10 - 15), distances between every
pair of data objects are almost the same for a wide variety
of data distributions and distance functions. The concept of
proximity and neighborhood can hardly be applied in such
high dimensional space, and thus natural cluster would not
exist in the full dimensional space.
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Fig. 1. Projected clusters on subspace XY and XZ.

The traditional approach to the clustering problem is not
able to meet the challenges in high dimensional space, where
patterns typically exist in small subsets of attributes. Feature
selection techniques or methods such as Principal Component
Analysis (PCA) are proposed to reduce the dimensionality of
the data, by projecting all the data objects onto a subspace
while minimizing the information loss. However, in real life
applications, correlations among dimensions may often be
localized to different clusters. Different patterns can only be
uncovered when we consider projections of the data objects
onto different subspaces. In such cases, any attempt to reduce
the dimensionality of the whole database would bring substan-
tial information loss.

Consider Figure 1 from [4], traditional clustering algorithm
would fail to uncover any cluster in the 3-dimensional space
XYZ. On the other hand, if we do a feature selection or
reduce the whole database to space XY or space XZ only,
one of the patterns would be missed, since each dimension
is relevant to at least one of the patterns. In this scenario,
it is proposed that “projected clusters” [4] would give us
more meaningful information about the underlying clustering
structure. Projected cluster is defined in [5] as the following:

A projected cluster is a set � of orthogonal vectors together
with a set

�
of data points such that the points in

�
are

closely clustered in the subspace defined by the vectors � . The
subspace defined by the vectors in � may have much lower
dimensionality than in the full dimensional space.

Projective clustering algorithms such as PROCLUS in [4],
and ORCLUS in [5], [3] have been shown to give good quality
result, and continue to attract new ideas, such as those in [21].
PROCLUS and ORCLUS aim at discovering projected clusters
with different properties. PROCLUS discovers groups of data
objects located closely in each of the related dimensions in
its associated subspace. In such case, the data objects would
be spread along certain directions parallel to the original axes.
ORCLUS solves a more general problem. It aims to detect
arbitrarily oriented subspaces formed by any set of orthogonal
vectors. The set of orthogonal vectors need not be parallel to
the original axes. For example, for a data set in the 3-d space
ABC, there may exist a projected cluster with 2-d subspace,
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Fig. 2. Subspaces detected by different algorithms

composed by 2 orthogonal vectors ����� ���	��

�����	��������� ���
and ����� ���	��
������ ���������	���

. Neither ��� nor ��� is parallel
to the original axes.

As pointed out in [21], in real life applications, often only
the original coordinate axes are meaningful and are inter-
pretable. For example, suppose a customer database contains
many attributes, and three of the attributes are: age, income and
number of family members. We may discover one projected
cluster in the subspace [age, income], and another projected
cluster in the subspace [age, number of dependents], with the
following interpretation: a typical group of customers with
ages in range A, incomes with range B and independent of
the number of dependents is interested in the new product; an
interesting correlation exists between ages in range C and the
number of dependents in range D. Such interpretations rely
on the meanings of the original attributes (dimensionalities).
Hence the problem definition of PROCLUS is more desirable
in some cases, and this is the focus of a recent work [21], in
which a Monte Carlo algorithm is proposed.

Both methods of PROCLUS and ORCLUS require the users
to provide the number of clusters k, and the dimensionality
l of the subspaces. The clustering quality could be greatly
affected if the user cannot estimate the correct values. OR-
CLUS restricts that the dimensionality of each uncovered
subspaces need to be the same. However, associated subspaces
with different dimensionalities in the same data set are more
realistic. For example, some patterns exist in the 2-d subspace
[age, income], while other patterns may exist in 1-d subspace
[age].

A. Our Contributions.

The objective of our proposed method, which we call EPCH
(Efficient Projective Clustering by Histograms), is focused
on uncovering projected clusters with varying dimensionality,
without requiring the users to input the average dimensionality
of associated subspaces, and the number of clusters that
naturally exist in the data set. Figure 2 illustrates the subspaces
with different properties that can be detected by the three
methods.

EPCH requires very little prior knowledge about the data.
Unlike PROCLUS and ORCLUS, the user of our algorithm
does not need to provide the dimensionality of the sub-

spaces and the number of natural clusters. A general user
need to provide only one input, max no cluster. It represents
the maximum number of clusters the user is interested to
uncover. In case the number of natural clusters is smaller
than max no cluster, it will return all the discovered clusters
(there may be less than max no cluster such clusters). In other
cases, it will return the top max no cluster ranked clusters.
Therefore, an inaccurate estimation of this parameter will not
affect the accuracy of the clustering output. There are some
tuning parameters with default values which can be tuned: (1)
an upper bound � of the spread of a cluster in each projection
domain. (2) a value � to speed up the final clustering process.
A bigger value of � can be set with more system resources.
The idea is that if a user wants at most  clusters, then
�� possible candidates will be considered at the last stage.
(3) Either a threshold of the cluster membership degree for
outlier/noise determination or the percentage of data expected
to be outlier/noise. This is optional, we may also choose not
to return any outlier/noise.

Our method can report the regions (hyper-rectangles) where
the clusters are located in its associated subspace. We believe
that this information is very useful to most users. For example,
reporting that the cluster with subspace [age, income] is
located in

���"!$#�%�&'!(��)+*����������'!$,.-0/21  &'!$���������
can

give the user a good idea on the cluster pattern.
To summarize, our proposed algorithm is efficient and re-

quires less parameters. Our experiments show that it generates
high quality results. In addition, our method can easily handle
clusters of varying densities and/or varying dimensionalities.
Our other contribution is to propose a new measure for the
clustering result quality, known as the “coverage ratio”, which
can complement the inadequacy of previous measures.

II. RELATED WORKS

Previous methods such as DBSCAN [12], OPTICS [9],
BIRCH [26], and STING [25], give promising results for low
dimensional data. However, they do not aim at clustering high-
dimensional data. They become computationally expensive
and also ineffective with growing dimensionality. As pointed
out by [14], the curse of dimensionality has a severe impact
on their resulting clustering quality, and continues to pose a
challenge to clustering algorithms at a fundamental level.

The automatical discovery of interesting subspace is first
studied as the subspace clustering problem in CLIQUE [6].
CLIQUE targets at subspaces defined by axis-parallel do-
mains. CLIQUE has an inherit problem in that there is only
one density threshold for subspaces of all dimensionalities,
which is not justifiable since the sparseness of projected data
naturally increases with the number of dimensions in the
projected subspace. Following that, ENCLUS [10] extends
the idea of subspace clustering by using entropy to further
prune away uninteresting subspaces. These approaches report
”dense” regions in each discovered interesting subspace.

Following that, PROCLUS and ORCLUS are designed to
uncover projected clusters and their associated subspaces.
PROCLUS is targeted to find clusters in subspaces formed by
axis-parallel vectors, while ORCLUS computes clusters with
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arbitrarily oriented subspaces. We aim to solve the similar
problem as PROCLUS and ORCLUS, with higher efficiency,
accuracy and more flexibility. Here we give more descriptions
about the ideas of PROCLUS and ORLCUS.

PROCLUS: PROCLUS employs Manhattan Segmental
Distance as similarity measurement to quantitatively describe
how good a projected cluster is. Specifically, for any two�

-dimensional data points � � ����� ���	��� � � � � � ��� 	�
 and � � ���� ���	�
� � � � � � ��� 	�
 , and for any subset � of the set of dimensions,� � ��� �
, the Manhattan segmental distance between � � and � �

relative to � is given by
��� ���0� � � � 
 �

����������� �! �" �$# �&%'" � � (� � � . Note
that this distance metric tries not to penalize higher dimen-
sionalities by a normalization with the number of dimensions.
With this distance metric, PROCLUS tries to minimize the
intra-cluster distance, which is the sum of distances between
data objects in a cluster and the centroid of the cluster. It works
like a k–Means algorithm, extended with the idea of projected
clustering. First, a greedy approach is applied to select a set of
potential medoids (the centers of the clusters). With the set of
medoids, it estimates the correlated subspace for each cluster
by examining its locality. Locality is defined as the set of
data objects in a neighborhood region in the full dimensional
space. The projections of these data objects on different single
dimensions are examined to find those dimensions that are
having closer average distances to the corresponding medoids.
These are chosen as the dimensions of the correlated subspace.
After the estimation of subspaces, data objects are assigned to
its closest medoid with the distance measured with respect to
the corresponding subspace. The quality of clustering, which
is the sum of intra-cluster distance, is evaluated. Medoids are
replaced in a hill-climbing approach, which targets to give an
improvement on the clustering quality.

One problem we can see is that the full dimensionality
is used in forming the locality. This may not include the
real neighbors in the correlated subspace and may include
unrelated points in terms of the subspace. In fact, according
to [17] it makes little sense to look for neighbors in the
high-dimensional space. Also, the parameters of � and ) , the
dimensionality of clusters, may greatly affect the result quality.

ORCLUS: ORCLUS makes use of Singular Value De-
composition (SVD), which is a well known technique for
dimension reduction, with a least loss of information. SVD
transforms the data to a new coordinate system (defined by
a set of eigenvectors) in which the correlations in the data
are minimized. In contrast, ORCLUS chooses the eigenvectors
with minimum spread (eigenvalue) to do the projection, so that
the greatest amount of similarity among the data points in the
clusters can be detected. ORCLUS works as a hierarchical
merging method, starting with a group of initial seeds. During
the merging process, the dimensionalities of the subspaces
associated with each clusters would be gradually reduced,
by using the SVD technique mentioned above. The merging
would be terminated when the number of clusters and the
dimensionalities of subspaces reach the user input parameters.

The running time of ORCLUS is expected to be much
longer than PROCLUS. In its merging stage, the eigenvectors

with the least spread for each pair of the remaining clusters
have to be computed, which takes *+��,+- 
 time by using
ECF (Extended Cluster Feature Factor), where , is the
dimensionality of the original space. This can be prohibitively
expensive for very large database and high dimensionality.
Another limitation of the method is that the dimensionalities
of all clusters are assumed to be the same and also assumed to
be known beforehand. These assumptions are likely not true
in real cases and from our experiments when the assumptions
are not true, the performance can deteriorate greatly.

[2] proposes a human computer cooperative system for
high dimensional clustering. There are three iterative steps:
(1) determine subspaces with well polarized data, this is by
means of principal component analysis. The step will output
2-dimensional projections for the next step. (2) user interac-
tion to visually separate the clusters in each 2-dimensional
projection from the previous step. (3) store user interactions
in the form of IdStrings, which will lead to the resulting
clusters. In Step (1), potential subspaces (polarized subspaces)
are identified. It is an iterative process, starting with full
subspace and reducing the dimensionality ”gradually” until it
reaches 2. In each iteration, there is a set of k random enchor
points. For each anchor point p, a set of neighboring points.

in the current subspace is located, and this set of data
is subjected to principal component analysis to determine a
subset of dimensions where

.
are tightly located around p.

(In addition to � , there is a user parameter / for the number
of points in

.
.) However, similar to PROCLUS, the initial

neighborhood is determined in the full space. According to
[17], in general it makes little sense to look for neighbors
in high-dimensional space. Therefore, the basic step of the
method is in doubt.

Recently, [21] proposes a Monte Carlo algorithm to approx-
imate an ”optimal projective cluster”. Specifically, the quality
of a projected cluster is defined as 01� � � � � � 23� 
 , where

� � �
is

the number of data objects,
� 23�

is the dimensionality of the
subspace, and 0 is a monotonically increasing function in each
argument. Intuitively, a ”good” cluster should contain as many
points as possible, and associated with high dimensionality.
However, these two objectives are at odds. A 4 -balanced
measure is used to balance the trade-off between these two
objectives. [21] is targeted for axis-parallel clusters as in
PROCLUS.

III. PROJECTED CLUSTERING USING HISTOGRAM

Given 5 data objects, with dimensionality , , let
 # � -01 / )�67/�8 &
9 be the maximum number of clusters of
interest to the user. Assume that

�
-dimensional histograms are

constructed.
Definition 1: A data object �7: is a single data item. It is

represented by a vector of D numerical measurements in the
D-dimensional space : � : �;��� :��	��� � � � � � :�� <1
 , where � :�� = is an
attribute of � : .

Definition 2: A subspace �>: with dimensionality
� : is

defined by a set of
� : orthogonal vectors, where

� : ! , .
Definition 3: A projected cluster, or simply a cluster,

� :
associated with subspace � : is a set of data objects, which are
closely clustered when projected in the subspace � : .
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Definition 4: We call the subspace of a projected cluster
the associated subspace of the cluster. We call the dimensions
being included in the associated subspace the bounded dimen-
sions of the cluster, and others as unbounded dimensions.
Similarly, we call any subset of the associated subspace
bounded subspace. We would use A, B, C etc. to denote
dimension, and AB, ABC etc. to denote subspace.

A. Histograms

During the data summarization process, a histogram is
widely used, which generates an approximation, �� ��� 
 , to the
original measurement of a variable � , � ��� 
 , especially when
the computational efficiency is concerned. Let us first consider
the 1-dimensional case, we divide each dimension into a set of
equisized bins with a binwidth

�
.1 The histogram is defined

by

�� ��� 
 �
�
5 � � number of objects in the same bin as � 


One important parameter of a histogram is the bin width�
, as it controls the trade-off between undersmoothing or

oversmoothing the true distribution. Sturges’ rule [24] suggests
that if the data follows a normal distribution, the number of
equisized bins for an ideal frequency histogram should be� � ) 12% � 5 . For the d-dimensional histograms we suggest to use
� � � ) 12% � 5 
 	 bins. In our implementation, we use a greater
number for the 1-d histograms since the computational cost
is still very low. We use at least � � � ) 12% � 5 
 � bins for 2-
d histograms. Note that Sturges’ rule targets at preserving the
shape of the underlying distribution. Our objective is humbler,
we only want to uncover any dense region, there is no need
to preserve the shape of the distribution. Therefore, we could
use less bins compared to that in Sturges’ rule. If data does
not follow the normal distribution, more bins may be needed
for more skewed data [24] to preserve the shape, however, in
our case more skewed data is actually easier for dense region
detection (see Section 3.1).

A d-dimensional histogram can be constructed in a similar
way, 2 each bin is a

�
-dimensional hypercube (e.g. for 2-

dimensions (2-d), it is a square), binwidth
�

now refers
to the width of each side of the hypercube: �� 	 ��� 
 ������� � number of objects in the same bin as � 


1Before a histogram is built, the dataset must be pre-processed to remove
any extreme points since such points can greatly distort the results, indeed
one such point very far from the other normal data values can force all the
normal values to be inside a single bin, jeopardizing the clustering results.

For simplicity we assume that the domain of each dimension is normalized
so that the full space is a unit hypercube.

2Equisized or equi-width histograms are used here. In query optimization
in RDBMS, histograms are used to approximate the distribution of data.
There the equi-depth approach is in general the better choice. However, our
purpose of using histograms is quite different from that in query optimization
problems. Here we are interested to find the clusters and their locations. In
the equi-depth approach, each partition in the histogram contains the same
number of data objects. Let us consider a single dimension projection. Suppose
we have two cluster projections on this dimension with a wide empty space
in between. With equi-depth, we would likely end up with a partition that
contains the middle space and together with quite a lot of data from both
clusters. This partition will be considered sparse, and would be pruned away.
However, along with the pruning we may also lose significant parts of the
two clusters. This is the reasoning for the choice of the equi-width approach.

Each histogram is related to a subspace. For example,
if we have three dimensions (attributes),


 � � � � � and 2-d
histograms are used, then the corresponding subspaces will
be


�� � 
�� � � � . We assume an arbitrary ordering of the
histograms/subspaces, and we shall denote the subspaces by
� � � �0� � � � � . For example, in the above case, � � equals


��
, � �

equals

 �

, � - equals
� �

. In a histogram, dense regions may
be found.

Definition 5: A dense region ,	�
� �

 associated with sub-

space � : is an intersection of intervals from the dimensions in�7: , in which the data density inside the intersection volume is
larger than a certain threshold. This is intended to contain
the projection from one or more projected clusters on the
subspace. The dense region id of the dense region is given
by  .

Notice that we do not require the user to specify the above
threshold value, it will be derived from the data set.

B. Detecting dense region

For discovering the dense regions, we use different thresh-
olds along different subspaces, the threshold is driven by the
data set distribution. In choosing an appropriate threshold
value, we would like this value to be able to distinguish among
the random noise/outliers and projections of the clusters.
Clusters vary with their underlying distribution, spanning area,
and number of data objects contained.

We explain our method to determine the thresholds with
the help of a single cluster projection. Often a cluster is more
dense in its center, and less dense near the boundary. A more
irregular cluster can have irregular dense areas. An extreme
case is when a cluster has uniform density. Consider two
different cases in Figure 3(a). One projection of the cluster
establishes a ”bell” shape which is denser in the center, while
another one form a ”flat cluster” with constant density. Even
though the two clusters contain the same number of data
objects, the latter is more difficult to be discovered by a single
threshold value. Threshold 1 can detect the ”bell” cluster,
although missing some data objects at the boundary, but it
will miss the ”flat” cluster. In general given projections of
clusters with the same number of data points, projections with
uniform density are more difficult to be detected, since there
are no peak regions with a highest density in the projection.
Therefore, we consider this worst case with a ”flat” cluster in
the following analysis.

Consider Figure 3(b), the total number of data objects is
5 , and the total number of histogram partitions (bins) in the
subspace is � . From the cluster(s), there is a higher density
projection in the subspace which contains a fraction � of
the 5 data objects, where

� � � � �
. Assume that the

projection spans a fraction � of � histogram intervals, where� � � � �
. We establish a theorem which can tell us how

to set the appropriate value of the threshold to detect dense
projections, based on the mean 0 , the standard deviation 
 of
the data distribution, and the users’ expectation on how large
a cluster’s projection would span. Suppose the 1–d histogram
for a dimension , is given by � ����� � � � � � � � � � ����� . Let the
mean value ( �� � � :�� � � : ) be 0 . The standard deviation 
 is
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Fig. 3. Choice of the density threshold

given by � �� � � :�� � � � : � 0 
 � . The density of a projection
is defined as the number of data objects falling onto the
projection divided by the number of intervals the projection
spans.

Theorem 1: Let � be the number of
�
-dimensional his-

togram partitions (bins) in a subspace and suppose a projection
of the data on this subspace consists of � � bins with uni-
formly high density, (

� � � � �
), and the remaining � � � � 


of the � bins have a uniformly low density. Let � be the higher
uniform density, 0 be the mean and 
 be the standard deviation
of the projection distribution. Then � � 0 � � �� � � 
 .

Proof: Without loss of generality, we move the region
covered by the projection with the highest density to the right,
leaving the low density bins to the left of the histogram, as in
Figure 3(b). Let ��� � � � � � � ��� 
 be the histogram values. The
mean of the histogram values, 0 , equals

��
. For the high

density region, the uniform density � equals � �� � , since there
are � � partitions with high density. For the low density region,
the density is

� � # � ( �� � # � ( � , since there are � ��� � 
 � partitions with
low density. The square of the standard deviation 
 can be
expressed in terms of � � � � 5 � � as follows:


 � �
� ��� � 0 
 �

�

� � ��� �� � � �� 
 � � � � � � �
# � ( �� � # � ( � � �� 
 � � � � � 
 �
	
�

� 5 �
� �

� � � � 
 �
� � � � � 


Now, we can derive a relationship of � with respect to 0 � 
 as
follows:

��� � 0 
 � � � � 5� �
� 5
� 
 � � 5 �

� � �
�
�
� � 
 � � 5 �

� � �
� � �
� 
 �

��� � 0 
 � � 
 � �
�
�
� � 

� � � 0 ����� �

�
� ��� 


Corollary 1: For any data distribution, if the projection of
clusters on a

�
-dimensional subspace spans at most � of the

bins in the corresponding histogram, then a threshold of �
set greater than 0 ��� � �� � ��� 
 can be used to detect the
clustering, where 0 is the mean and 
 is the standard deviation
of the projection distribution.

From Figure 3(b) if a threshold is set to be below � ,

then the high density projection will be detected. The above
theorem gives the relation of � to the mean value and the
standard deviation of the entire projection distribution. From
the theorem, � can be expressed as 0 ��/ 
 , and the value of/

can be any value less than � �� � � , where � is the spread
of the high density region in the histogram projection. Note
that the high density occurrence can be in multiple intervals,
i.e. if there are a number of clusters and their projections in
the histogram are not continuous, the theorem still applies.
With this theorem, we can set the threshold to be lower than
0 �"/ 
 to detect the projections with the highest density in the
subspace.3

For example, if the most spreading projections should span
at most �- of partitions, we can set

/ ! � �  � � � ��� � . Note

that Theorem 1 applies to histograms of any dimensions. For
dimensions of 2 and above, a cluster may span much less than
half the bins. This is because a cluster would typically span
a fraction of the domain at each single relevant dimension
and for histograms of higher dimensions, these fractions are
multiplied which results in a much smaller fraction. 4

In case when there are multiple projections on the subspace,
we adopt an adaptive approach to iteratively lower the thresh-
old value until no more dense regions are discovered.

Adaptive approach: To uncover multiple cluster projec-
tions with possibly different densities on a subspace, we adopt
an adaptive approach to iteratively lower the threshold value
until no more dense regions are discovered. Specifically, we set
the initial threshold value to be 0 � / 
 according to Theorem 1.
In the first iteration, projections with densities lower than the
threshold would be treated as random noise or outliers. After
detecting projections above the threshold, their densities and
effects would be removed from the histogram. The new 0 � 
 ,
and the threshold would be calculated. We continue to detect
and remove densities inside the dense regions, until no more
dense regions are discovered, or the process has been repeated

3We emphasize more on being able to detect the existence of any cluster.
The exact span of the cluster is not as big a problem. It is because in the
projective clustering problem, detecting the proper subspaces for the clusters
is a much harder problem than obtaining the clusters after a subspace is found.
Many existing algorithms can handle the clustering problem once the subspace
is identified.

4In our implementation, we find that �������  for 1-d histogram, and ���� 
for 2-d histogram can produce desirable results. If the user wants to determine!

or � , he/she can visually examine some of the histograms to decide on a
suitable value.
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This idea is illustrated in Figure 4. In the figure, the dotted
lines indicate the threshold values used in the iterations. We
use the label ,	� , to label the

,
-th Dense Region sorted by

the starting positions of the dense regions. In the example, we
can also see another detail in the algorithm where adjacent
dense regions are merged to form bigger dense regions. For
example in Iteration 1, the 5th interval is considered dense; in
Iteration 2, intervals 3, 4, and 6, 7 are considered dense. So
in Iteration 2, a bigger dense region of ,	� � is formed which
ranges from interval 3 to interval 7.

Theorem 1 helps to explain why our method works well in
many cases. A natural cluster typically does not span the entire
domain when projected to some low dimensional subspace.
Theorem 1 shows that when projected to one dimension, as
long as the cluster does not span more than half the domain,
the density threshold of 0 � 
 is able to detect it. If the
cluster spans less of the domain, a higher threshold can be
set accordingly.

C. Compressing the data objects and deriving their signatures

In the context of projective clustering, we are interested
to discover dense regions to which the data objects would
belong when projected onto each subspace corresponding to
a histogram. Any unnecessary details can be pruned away.
In order to do so, we compress the data objects from a D-
dimensional vector to a signature with < � 	 entries, where�

is the dimensionality of the histograms we construct in the
previous phase. With these signatures, we could easily group
”similar” data objects from the same projected cluster. (Note
that the signature concept is similar to the IdString in [2] as
described in Section 2.)

Definition 6: Given subspaces � �&� � ��� � � � ��� , where � �
< � 	 , which are the subspaces for the histograms. A signature� : for data object * : is an ordered list of < � 	 entries,
where the ��� � entry represents the dense region, if any, where
the data object is located in subspace ��= . Specifically,

� �
� � � � � � � � � � � ��� 	
where

� = �
�		
 		�
�

if the object does not fall into
any dense region in subspace � = ,9
if the object is located in dense region
,	�

�
�� in subspace � = .
Each non-zero entry corresponds to a bounded subspace, and
each zero entry corresponds to an unbounded subspace. From
the signature, we can estimate the associated subspace of the
projected cluster, in which the corresponding data object is
likely to belong to. Here we call the estimated associated
subspace a derived subspace � , and the actual subspace of
cluster that the data object should belong to as the associated
subspace.

5Note that in the adaptive approach, the same � is used for the density
threshold in all iteration. We explain here the reason. In each iteration, we
remove some parts that are are of higher density, and the remaining parts of the
histogram contains more of the sparse portions (that means parts that are not
the projection of clusters). Hence the projection of clusters on the remaining
parts will be more skewed, or the portion should be less than before. Since �
is for an upper bound on this portion, it can be reused.

Example 1: Suppose there are four dimensions A, B, C,
D, and we have constructed � � � ��� 2-d histograms. The
signatures should contain 6 entries, where the first, second
... entries corresponds to subspaces AB, AC, AD, BC, BD,
CD, respectively. For example, suppose that for object * � , the
signature is [2 0 0 1 0 0]. Its bounded subspace is AB and BC.
We may estimate the associated subspace of cluster the data
object belongs to (the derived subspace) as ABC. However,
it seems that if the associated subspace is ABC, all AB, BC,
AC should be the bounded subspace. There are two possible
reasons. (1) ABC is not the associated subspace. (2) AC should
also be a bounded subspace, but * � is located at the boundary
of the projection on AC, in which the location is not considered
as dense.

Suppose we have an object * � whose signature is [2 3
0 2 0 0]. Its bounded subspaces are AB, AC and BC. Its
derived subspace is ABC. This time, since all 2-d subsets of
ABC are bounded subspace, we are quite sure that the derived
subspace should match the associated subspace. Comparing
these 2 cases, we say that the derived subspace ABC is of
high confidence level for * � , and it is of lower confidence
level for * � .

We estimate the derived subspace of a signature, by taking
the union of all corresponding bounded subspace.

Definition 7: We define the confidence level of a derived
subspace with ) = dimensionality, estimated by d-dimensional
histograms for data object * : as:

number of bounded subspaces in � in signature of * :������ � (1)

This corresponds to the ratio between the number of
bounded subspace in � in the signature of the data object, and
the number of all possible subspaces of � of

�
dimensions.

When this ratio approaches 1, the derived subspace should be
an accurate estimation of the associated subspace.

Two signatures having the same derived subspace can be
in two different projected clusters, if they are in different
projections in some bounded subspace. Consider Example 1,
the dense region ids of bounded subspaces AB, BC of * � are
2, 1, respectively; the dense region ids of bounded subspaces
AB, AC, BC of * � are 2, 3, 2, respectively. Both data objects
* � #�- � *�� have the same derived subspace ABC. However they
should be in two different projected cluster, since they share a
common bounded subspace BC but with different dense region
ids – * � is in ,	������ while * � is in ,	������ . We call the
common bounded subspace of two data objects conflicting if
they have different dense region ids in this bounded subspace.

To compress the original data set, we compute the signature
and the derived subspace for each data object. We create a data
structure called the signature list. Every entry in the signature
list records a derived subspace � , and the dense region id in
each bounded subspaces in � . This should correspond to a
potential cluster region

�
. Signatures of objects with the same

derived subspace and no conflicting dense regions in bounded
subspaces would be combined and inserted into the same entry
of the list.
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Fig. 4. Adaptive approach to iteratively lower the threshold value.

In addition a weighting for each entry of the signature list
is computed as follows:

Definition 8: The weighting of an entry of the signature
list is calculated as the summation of the confidence level of
the data objects contributing to this entry.

We can explain the weighting by the membership of each
data object related to the cluster region

�
. If the confidence

level is high, the object has high membership and should be
counted with more weight. If confidence level is low, it is
possible that the object does not really belong to the cluster
region, and should be counted less.

D. Merging Similar Signature Entries

Each entry in the signature list corresponds to a group of
data objects with the same derived subspace and sharing no
conflicting bounded subspaces. Most likely, this group of data
objects are from the same projected cluster. However, there are
often cases where data objects from the same projected cluster
would have different derived subspaces, and thus contribute to
different entries in the signature list. Consider Example 2.

Example 2: Suppose there are four dimensions A, B, C, D.
The signatures contain 6 entries, where the first, second ...
entries corresponds to subspace AB, AC, AD, BC, BD, CD
respectively. Consider data object sets * � � * � � * - � * � , whose
signatures are [2 0 0 3 0 0], [2 0 0 1 0 0], [2 0 1 0 3 0]
and [2 0 1 0 3 2] respectively, and their derived subspace are
ABC, ABC, ABD, ABCD. Although * � and * � have the same
derived subspace, they are inserted into different entries in the
signature list because they have the conflicting subspace

� �
.

Data sets * � and * � are totally dissimilar.
Data sets * - and * � have different derived subspaces and

are in different entries, but they share many common bounded
subspaces. They can be in the same projected cluster if * - falls
in the boundary of the projection on CD, or * � occasionally
falls in the projection on CD. We consider * - and *�� to be
similar.

Data sets * � and * � have different derived subspaces, and
they share only one common bounded subspace in the total of
5 bounded subspaces. Sets * � and *�� are not similar.

We want to merge “similar” signature entries, as they may
correspond to groups of data objects located in the same pro-
jected cluster. We adopt the following similarity measurement.

Definition 9: Consider the signatures / : and / = of two data
sets * : and * = , respectively. Suppose the number of unique
bounded subspaces from /�: and / = is



, and there are

�
common bounded subspaces in /�: and / = that share the same
dense region ids. The similarity between the two signature
entries is given by

� ��* : � * = 
 � number of common bounded subspaces
total number of unique bounded subspaces

�
�



(2)
In Example 2 above, � ��* � � * � 
 equals �� and � ��* - � * � 


equals -� . Signature entries sharing large proportion of com-
mon bounded subspaces would have a high similarity value
and can be considered as similar. When two signatures are
merged, the signature with a bigger set of data points assigned
serves as the merged signature, breaking ties arbitrarily. Let
 be  # � -01 / )�6 / 8 &�9 . To speed up the merging process,
we keep only the � �  top signature entries ranked by the
weightings, where � is a parameter depending on the available
resources. Signatures with low weightings would be pruned
away. In current implementation, we set � to be 50. 6 If
the user have some knowledge about a rough estimate of
the amount of noise/outliers, the pruning of signatures can
be based on this amount, since the pruned signatures should
correspond to the noise/outliers in the data.

Similarity of every pair of the remaining signature entries
would be computed according to Equation 2. We continually
combine the pair of signature entries with the highest similarity

6We note that � �� �� gives good results in terms of clustering for different
data sets in our experiments and the efficiency is high. Hence we suggest to
use this as a default value.
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until reaching a termination criteria. One termination criterion
is when the number of signatures reaches max no cluster.
However, if the signatures are quite different before we reach
max no cluster, then the merging can be stopped when we see
a sudden drop 7 of the highest similarity among the signature,
or the highest similarity is already less than a lower bound
threshold (in current implementation, we use a threshold of
0.3). 8 We do a final sorting in descending order of weighting.
The remaining signature entries correspond to the clusters and
subspaces detected by the algorithm. Note that we may end
up with more than max no cluster clusters at this point with
the second termination criterion.

Next, at most  # � -01 / )�67/�8 &
9 signature entries with
the highest weighting would be kept after merging: if
there are more than  # � -01 / )�67/�8 &
9 entries then the top
 # � -01 / )�6 / 8 &
9 signature entries with the highest weightings
are kept; otherwise all the signature entries are kept.9 Each
signature entry corresponds to a projected cluster, where its
derived subspace represents the associated subspace, and the
recorded dense region id locates the cluster on the subspace.

E. Associating membership degree

The above discussion has been based on hard clustering.
For fuzzy clustering, each data object * 
 is associated a
membership degree for each discovered projected clusters

� � :
 &  � &�9 ��* 
 � � � 

� number of matched bounded subspaces

number of bounded subspaces in the signature list of
� �
(3)

Equation 3 measures the degree of membership in terms of
similarity between the signature of the data object and the
cluster. If this measurement approaches 1, that means the data
object is located in all dense regions projected by the cluster.
Thus, it has the strongest membership degree. On the other
hand, if this approaches 0, that means the data object is not
located in any dense regions projected by the cluster.

For hard clustering, we first compute the membership func-
tions, then a data object would be assigned to the output
cluster with the largest degree of membership. If users expect
outliers to be uncovered, a certain threshold can be set so that
a data is considered as outlier if its membership degrees are
all below this threshold (e.g. in current implementation we
use 0.1). Another way is to specify an expected percentage of
outliers, such an amount of data with the lowest degrees of
membership will be considered outliers. Still another way is
by a combination of outlier percentage and the membership
values.

7The sudden drop of highest similarity is only a suggestion for a stopping
criterion. A possible definition of sudden drop is by means of the Minimum
Description Length, as described in [2] for pruning uninteresting subspaces.
However, we have not really used this suggestion in our implementation.

8We have tried this threshold with a number of data sets and it can give
good results.

9Let � be the weighting of the ����� �	� ��

��������� -th cluster in the ranking
by weightings. If there exist more than one cluster with weighting � , then
we can remove all such clusters, in order not to exceed the bound of
����� �	� ��

��������� . If the number of resulting uncovered clusters differs greatly
from the estimated ����� �	� ��

��������� , the system could report this to the user,
since the user may want to know that he/she has greatly underestimated or
overestimated the number of clusters.

F. The choice of Dimensionality
�

of the Histogram

User may not be able to choose the value of
�

which gives
satisfactory cluster result and acceptable computational time.
Here we propose a framework in which a user does not need
to select the

�
value. First we perform a very fast clustering

using 1-d histograms. If the 1-d histograms cannot detect and
distinguish clusters well, data objects would be associated with
a low degree of membership, in which many of them would
be outputted as outliers (or noise). We record the detected
clusters and partitioned data objects. The unpartitioned data
objects (which are outputted as outliers in this run) would be
input to the next run, in which we do clustering using 2-d
histograms. Precaution can be made to uncover any cluster
from 2-d which can be merged with some cluster from 1-d.
We may continue this approach with higher dimensionality
histograms, until the number of remaining outliers (or noise)
is less than a certain fraction of data objects (e.g. 5% of the
whole data set). Note that the complexity of the computation
increases with the choice of

�
, and which would also be a

factor to consider. From our experiments, the 2-d histograms
are highly effective for the tested datasets, we believe that they
are also sufficient for most applications.

IV. THE IMPLEMENTATION

Our implementation of EPCH follows our discussion in the
previous section. EPCH starts by constructing

�
-dimensional

histograms to model the data distribution where
�

is adjustable
according to users’ expectation on the clustering quality and
the running time. When we set

�
to 1, it is similar to EPC [19]

which uses 1-d histogram. We choose
�

to be
�

in the
following discussion for implementation to illustrate the idea.
We call this implementation EPC2. The same approach can be
applied for other values of

�
. The overall algorithm consists

of five phases.
1) Histogram Building phase builds < � 	 histograms,

each corresponding to one
�
-dimensional subspace. For

EPC1, we set the number of bins in each subspace to
be
�����

. In EPC2, we set the number of bins to be
�����

.
2) Dense Region Detection phase works iteratively to

identify all dense regions.
3) Signature List Construction phase examines each data

object, and derives its signature according to the id of the
dense regions where the object is located in the subspace
for each histogram. From the signature, we find the
derived subspace by the union of all bounded subspaces,
and its confidence level according to Equation 1.

4) Merging similar Signatures phase sorts the signature
entries from the previous step according to the descend-
ing order of their weightings, where a signature entry
with higher weighting corresponds to a cluster with more
data objects and clearer associated subspace.

5) Membership Degree Assigning phase associates each
data object and discovered cluster with a degree of
membership according to Equation 3.

A. Time and Space Complexity

Let 5 be the number of data points,  �� # � -01 / )�67/�8 &
9 ,
, be the number of dimensions,

�
be dimensionality of his-
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tograms, � be the number of bins in each histogram, ) be the
average dimensionality of the associated subspaces of clusters,
and �� be the number of signatures kept in the merging step.
The total time complexity is *+��5 , 	 �  � , 	 � 5 �$) 	 � , 	 
 �5 ) 12% � �� 
 � � �� 
 � ) 	 � 5  +) 	 
 . If we consider ) 12% �.�� 
 small,
this can be simplified to *+��, 	 ��5 �  � 	 
 � ) 	 � �.�� 
 � � 5  
 .
The space complexity is *+� � , 	 � 5 , ) 	 � 5  
 . In particular,
for EPC2, consider � small, and

�
is fixed to be 2, the

time complexity is thus *+��5 ��, � � ) �  
 � �.�� 
 � 
 
 . For 1-d
histograms,

�
equals

�
, again assuming � is small, the time

complexity is *+��5 ��, � )  
 � ) � �� 
 � 
 .
V. EXPERIMENTAL RESULTS

We present several experimental results and their analysis
in this section. We have implemented PROCLUS, ORCLUS,
EPC1 (EPCH with 1-d histograms) and EPC2 (EPCH with 2-
d histograms), and would like to compare their performance
differences in terms of clustering quality and running time.
Experiments are performed on synthetic data and a set of real
data.

A. Clustering Quality Measurement

Different quality measurements have been used in previous
work on projective clustering. Confusion matrix is used in
[4], [5]. Dominant ratio is suggested by [3]. In [4] the
dimensions of the subspaces found and those of the clusters are
compared. We adopt all these measurements, and also added
our own suggestion of the coverage ratio to complement some
insufficiency.

� Confusion Matrix is often used to evaluate the clustering
result of synthetically generated data. Specifically, it is a

� � � matrix, where � is the number of natural clusters.
Entry � , � � 
 records the number of data objects belonging
to the natural cluster

,
, that is assigned to the output

cluster � . Obviously, if we can observe a clear one–to–
one mapping between each output cluster to a natural
cluster, the clustering quality is good. The left hand side
of Table I shows an example of good clustering result,
and the right hand side represents a bad clustering result.

� Dominant Ratio: [3] suggested a measurement dominant
ratio to evaluate the quality of the clustering. This is the
average fraction of data objects in each output cluster
which are populated by the most dominant natural cluster.
For each output cluster, we identify the natural cluster
which contains the largest number of data objects. Then,
we calculate the percentage of data objects in the out-
put cluster which was populated by this natural cluster.
Averaging such values over all output clusters yields
the dominant ratio. A good clustering should have the
dominant ratio close to one.
Here, we argue that this single measurement may not be
able to justify a good clustering. Consider an extreme
case where there are many output clusters so that each
natural cluster becomes a number of output clusters.
The inappropriate splitting of natural clusters could still
produce a dominant ratio of 1.

� Coverage ratio: Therefore, in addition to dominant ratio,
we propose another measurement called the coverage
ratio, which in a way complements the dominant ratio.
This is the average fraction of data objects in each input
cluster which are covered by the most dominant output
cluster. For each natural cluster, we identity the output
cluster which contains the largest number of data objects.
The percentage of data objects in the natural cluster
which are populated by their dominant output cluster
is calculated, which would be averaged over all natural
clusters to yield the coverage ratio. (Note that with this
definition we give similar importance to each cluster,
independent of its size.) Similarly, there would be cases
where an output cluster combines several natural clusters
and still give rise to a coverage ratio close to 1.

We can evaluate the effectiveness of a clustering algorithm
by the resulting dominant and coverage ratio. A good clus-
tering result should yield both dominant ratio and coverage
ratio close to 1. In this case, all output clusters can cleanly
map to natural clusters, and no output cluster combines several
natural clusters; at the same time, no natural clusters are split
by several output clusters. For a clustering algorithm which
often splits natural clusters, the dominant ratio would be much
higher than the coverage ratio. On the other hand, if the
coverage ratio is significantly larger than dominant ratio, the
clustering algorithm often combines natural clusters.

We have measured the performance in our experiments with
these three measurements. We shall report our results in one
or two of the measurements in each set of experiment in the
following.

B. Synthetic Data Generation

We generate data sets with different properties.
� PR-Set: follows data generation in [4] (PROCLUS),

where both the vectors forming the subspace and the
spreading directions of the clusters are parallel to the orig-
inal axes (as shown in Figure 2a). Associated subspaces
of clusters are with varying dimensionality. Data objects
follow the normal distribution in bounded dimensions
with small variance. Clusters in this data set should be
easier to be detected, as its projections to any single
bounded dimension is very dense.

� AP-Set: models clusters associated with arbitrary sub-
spaces (as shown in Figure 2b). It follows the data
generation described in [5](ORCLUS) with some modifi-
cation so that the bounded subspaces are not determined
by all of the original dimensions (see discussion in
Section 1). Specifically, dimensionalities of all associated
subspaces are set to a fixed value ) . For each cluster, we
choose randomly ) dimensions as its bounded dimensions,
and then generate ) orthogonal vectors randomly in the
subspace formed by the bounded dimensions (by finding
eigenvectors in a randomly generated symmetric matrix).
The ) eigenvectors form the orientations of the clusters.
Anchor point of each cluster would be randomly chosen.
Data objects distribute along the vectors defining the
orientation in its associated subspace, following normal
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distribution with their mean at the anchor point. In other
unbounded dimensions, they distribute randomly. As in
[5], we set ) to be 6 in the base case.

In real life application, data often contains outliers (data
objects do not belong to any cluster, or random noise), and
dimensionalities of different associated subspaces need not be
the same. Therefore, we generated two variations on the AP-
Set.

1) APN-Set is the same as AP-Set which includes a certain
percentage of outliers. (we use 5 % of noise in the base
case.)

2) APD-Set contains clusters with associated subspaces
with varying dimensionality. In particular, for data sets
with 5 clusters, we set the dimensionalities of associated
subspaces of clusters to be 4, 5, 6, 7, 8.

We use these two data sets to evaluate performances of
different algorithms on data with these two properties.

C. Experimental setup

All the experiments have been performed on a 12
UltraSPARC-II 400 MHz machine with 8GB RAM, running
Solaris 7. The algorithms are implemented using C language
and gcc compiler v2.7 without code optimization. For PRO-
CLUS implementation, we set the number of seed points to be
2% of data objects, and number of iterations allowed for no
quality improvement to be 20. For ORCLUS implementation,
we use the parameter values suggested in [5], except that
we set the reduction factor � of the number of clusters
in each iteration be 0.8 instead of 0.5 to obtain a more
accurate clustering result. For data set with outliers, we follow
suggestions in [5] to add outlier handling implementation, and
name it as ORCLUS outlier. For implementation of EPC1, we
set the threshold to detect the dense regions to be 0 � ���	� 
 . For
EPC2, we set the threshold to 0 � � 
 . 10 We report here some
special properties of each clustering algorithm and general
trends. It is found that the behaviour of hard clustering and
fuzzy clustering are similar in our experiments. We focus our
attention on hard clustering in the discussion.

1) Comparison between EPCH and PROCULS: Since both
PROCLUS and EPC1 are targeted to discover clusters in
PR-Set, and both can report the bounded dimensions of the
associated subspace, we evaluate their clustering qualities, the
accuracy of identification of subspaces, and the running time in
this data set. We vary 5 from 3000 to 200000, and set ,$� ���

.
In EPC1 we set the number of bins in each histogram to 200,
which is much greater than

� � ) 12% �
5 . (If , � � � ) 12% ��5 is
adopted, then , � ���

would be sufficient for all test cases.) In
order to evaluate how many clusters are correctly discovered,
and the number of correctly uncovered bounded dimensions in
the corresponding associated subspaces, we set the criteria of
clear ”one-to-one” mapping in the resulted confusion matrix
as follows:

Output cluster X has a clear ”one-to-one” mapping to
natural cluster Y, if more than 60% of data objects from Y

10We found that these threshold settings are quite robust to changes in
different data sets, and hence we suggest that they are used as default values.

are reported to belong to X, and X contains no more than
20% of data objects from other natural clusters. Based on this
criteria, a natural cluster is said to be correctly discovered
if we can find a clear ”one-to-one” mapping between this
cluster and an output cluster from the confusion matrix. Due
to the limited space, we show in detail only one of the results
obtained from a data set with 5 = 6000 in Table I. Other
data sets show similar trends. The shaded field corresponds to
the correctly discovered clusters. In this data set, EPC1 can
discover 4 clusters. One of the good property of EPC1 is that
it always returns clusters containing the largest number of data
objects first. It is not surprising that EPC1 cannot discover the
smallest cluster, as it contains less than 5% of data objects,
which may be considered as random noise. For PROCLUS, it
can discover only 2 clusters.

 
 EPC1
 
 PROCLUS
 

Data Set
 
 dominant ratio
 
 coverage ratio
 
 dominant ratio 
 
 coverage ratio
 

3000
 
 1.000
 
 0.908
 
 0.812
 
 0.717
 

6000
 
 0.998
 
 0.864
 
 0.764
 
 0.763
 

10000
 
 1.000
 
 0.505
 
 0.755
 
 0.668
 

20000
 
 1.000
 
 0.912
 
 0.732
 
 0.316
 

30000
 
 1.000
 
 0.902
 
 0.838
 
 0.469
 

40000
 
 1.000
 
 0.745
 
 0.764
 
 0.715
 

65000
 
 1.000
 
 0.906
 
 0.629
 
 0.739
 

80000
 
 1.000
 
 0.783
 
 0.863
 
 0.838
 

100000
 
 0.993
 
 0.736
 
 0.930
 
 0.163
 

200000
 
 1.000
 
 0.912
 
 0.732
 
 0.316
 

 


TABLE III

DOMINANT AND COVERAGE RATIOS OF RESULTS OBTAINED EPC1 AND

PROCLUS WITH DATA SETS VARYING
�

We calculate the percentage of correctly partitioned data
objects, and also compare the reported dimensions in the
associated subspaces of the output clusters, with the associated
subspace of the corresponding matching natural clusters. Ta-
ble II compare the results obtained from EPC1 and PROCLUS
in PR-Set.

Table III shows the dominant and coverage ratios of these
two algorithms. We can see that EPC1 produces more accurate
result than PROCLUS in nearly all cases. Figure 5 compares
their running time with varying 5 . Both methods scale about
linearly with 5 . EPC1 is much faster than PROCLUS. For
example, for the data set with 5 � � �������

, EPC1 takes 20
seconds and PROCLUS takes about 10 minutes to compute.
Since EPC1 is more accurate and efficient than PROCLUS,
in the following discussions, we mainly compare EPC2, OR-
CLUS, and EPC.

D. Comparison between EPCH and ORCLUS

We compare the differences among clustering qualities
of the AP-Set, APD-Set, APN-Set and PR-Set. We observe
that varying the number of data objects would not cause
any significance change on the clustering quality. We ran
experiments for different datasets with 5 ranged from 3000
to 60000, and obtain similar general trend for dominant and
coverage ratios. Table IV shows the average of the dominant
and coverage ratios over data sets with varying 5 , for AP-Set,
APD-Set and PR-Set. Note that for AP-Set ORCLUS was
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TABLE I

CONFUSION MATRIX OBTAINED FOR PR-SET WITH 6000 DATA OBJECTS FROM (A)EPC1, (B)PROCLUS.
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TABLE II

SUMMARY OF THE COMPARISON OF RESULTS OBTAINED FROM EPC1 AND PROCLUS FOR PR-SET
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Fig. 5. Running time against
�

for EPC1 and PROCLUS

given the additional but unrealistic advantage that the actual
dimensionalities of the clusters are assumed to be the same
for all clusters and assumed to be known and provided to the
algorithm, this cannot be true in general, since a user may
not be able to know the parameter in advance and also the
dimensionalities of different clusters are likely to be different.

1-d versus 2-d Histograms: Both EPC1 and EPC2 perform
very well in PR-Set. For other data sets where the spreading
directions of clusters may not be parallel to the original
axes, EPC2 clearly outperforms EPC1. 1-d histogram can
help to detect and distinguish projections from clusters with
axes parallel spreading. For clusters with arbitrary spreading
direction, using 2-d histograms or higher dimensionality can
significantly improve the clustering quality. This is because
with projection on a single dimension, overlappings of cluster
projections may occur, which may result in a spread of the
clustering projection that is close to uniform distribution, and
in turn conceal the clusters. With 2-dimensional or higher
dimensional histograms, the overlappings of cluster will have
much lower chance to create a close to uniform distribution.

Associated subspaces with varying dimensionality: Com-
paring AP-Set and APD-Set, ORCLUS performs better in
the AP-Set, because it assumes that the associated subspaces
are with the same dimensionality, while APD-Set contains
subspaces with varying dimensionality. In such case, for asso-
ciated subspaces with lower dimensionality, ORCLUS would
include additional unbounded subspaces and retain some of the
noise from the data. For the same reason, ORCLUS does not
perform well in PR-Set, which contains associated subspaces
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EPC2 EPC ORCLUS
dominant coverage dominant coverage dominant coverage

ratio ratio ratio ratio ratio ratio
average over AP-Set 0.829 0.736 0.321 0.776 0.836 0.855

average over APD-Set 0.841 0.722 0.320 0.945 0.766 0.652
average over PR-Set 0.914 0.936 1 0.828 0.800 0.585

TABLE IV

AVERAGE DOMINANT AND COVERAGE RATIOS FOR AP-SET, APD-SET, AND PR-SET

EPC2 ORCLUSD
dominant ratio coverage ratio dominant ratio coverage ratio

10 0.882 0.819 0.750 0.768
20 0.846 0.811 0.830 0.739
30 0.843 0.631 0.662 0.647
40 0.941 0.920 0.537 0.593

TABLE V

DOMINANT AND COVERAGE RATIOS FOR APN-SET WITH
� � � � � � �

AND 
 ���
EPC2 ORCLUS


dominant ratio coverage ratio dominant ratio coverage ratio
2 0.821 0.763 0.525 0.468
4 0.842 0.630 0.627 0.622
6 0.846 0.811 0.830 0.739
8 0.878 0.817 0.942 0.985

10 0.959 0.967 0.692 0.855

TABLE VI

DOMINANT AND COVERAGE RATIOS FOR APN-SET WITH
� � � � � � �

AND � �����

with varying dimensionalities. In contrast, EPC2 does not
make this assumption. It gives satisfactory result in the APD-
Set. The clustering quality of APD-Set is even slightly better
than AP-Set, because the more variant the dimensionalities of
the associated subspaces are, the easier it is for the signature
merging phase to distinguish different associated subspaces by
different signatures. The behavior of APN-Set is reported in
the next subsection.

Dimensionality of the original space and the associated
subspace

We observe an interesting phenomenon that ORCLUS has
advantages when the difference between the dimensionality of
the original space and the dimensionality of the associated sub-
space is small, i.e. the dimensionality of associated subspaces
approach dimensionality of the original space. Performance of
ORCLUS degrades when the difference becomes large. On the
other hand, the accuracy of EPC2 does not vary much with
different dimensionalities of the original space, and different
dimensionalities of the associated subspaces. This happens in
both AP-Set and APN-Set. Table V shows the dominant and
coverage ratio with different values of , for APN-Set with5 � ���������

and ) ��� . Table VI shows the dominant and
coverage ratio with different values of ) for APN-Set with
5 � ���������

and , � ��� .
From Table V, we observe that as , increases, the accuracy

of ORCLUS decreases. Also, as shown in Table VI, ORCLUS

can produce good clustering quality only when )�� � � . This
is because the number of iterations in ORCLUS is determined
by the ratio between number of seeds and number of clusters,
and a reducing factor. Each iteration will reduce both the
number of clusters and the dimensionality of the clusters.
If the difference between dimensionality of the associated
subspace and the original space is large, each iteration will
need to “peel off” a great factor of the dimensionality of the
current clusters. This decreases the accuracy in uncovering
the subspaces. EPC2 is not affected by this factor. Therefore,
EPC2 shows more advantages when the dimensionality of the
original space is high, and at the same time the dimensionality
of the associated subspaces is much lower. We believe that
many real data sets have such property, as the database can
contain up to hundreds of attributes, but patterns typically exist
within small subsets of attributes.

E. Scalability

We plot the user CPU time on the three algorithms in APN-
Set in Figure 6. Figure 6(a) plots time against varying 5 with
, = 20 and ) = 6. Figure 6(b) plots time against varying ,
with 5 = 50000 and � = 6. Figure 6(c) plots time against
varying � with 5 = 50000 and , = 20.

We observe that EPC1 is extremely fast compared to OR-
CLUS and EPC2 in all cases. (e.g. for the largest data set,
EPC1 requires less than 2 user CPU seconds, while EPC2
requires about 300s and ORCLUS takes about 1500s.) We
examine the actual running time of different phases in EPC2,
and observe that it is dominated by the merging signatures
phase. The theoretical running time complexity of this phase
is *+��53) 12% ��5 
 � - ) 	 
 , however, the average running time
greatly depends on the similarity among data objects. The
more is the dissimilarity among the objects, the less is the
time required for the merging process to reach the termination
criteria. Therefore, we cannot observe a clear trend of the
running time with varying 5 . In any case, EPC2 is more
efficient than ORCLUS when 5 is up to � ������� .

With varying , , ORCLUS scales superlinearly, which
agrees with the running time analysis that ORCLUS is *+��, - 

in [5]. It is not very feasible to apply ORCLUS to database
with high dimensionality. EPC1 is about linear with , . EPC2
scales quadratically with , , which matches the analysis that
the time complexity is *+��, 	 
 in Section IV-A. With vary-
ing ) , both EPC1 and ORCLUS scale linearly. EPC2 scales
superlinearly with ) , because it takes longer time to merge
two signature entries if their derived subspace is with higher
dimensionality.
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Fig. 6. User CPU Time against a)varying number of data objects, b)varying original dimensionality, c)varying dimensionality of associated subspaces

F. Real Data

We conducted the experiment on a real data set called
Image Segmentation data [1]. The instances in the data set
were drawn randomly from a database of 6 classes of outdoor
images. There are totally 180 records and 19 numerical
attribute in the data set. The data set contains 6 classes,
namely sky, foliage, cement, window, path and grass. We
have pre-processed the data set. The values for each attribute
are normalized. Extreme values in attributes are replaced
with non-extreme values. One class of the data set has been
removed because it has no resemblance to a cluster. We
removed two attributes called short-line-density-5 and short-
line-density-2 because these two attributes give the same value
for most records.

We compare EPC2 with ORCLUS. The setting of EPC2 is
the same as before. For ORCLUS, the targeted dimensionality
is 20. The resulting confusion matrices are shown in Table
VII. The dominant ratio and coverage ratio are shown in Table
VIII. In measuring the results, we assume that the 6 classes
above corresponds to 6 clusters. This assumption may not be
valid. The data set may not possess clean clusters according
to the nature of the classes since we can expect characteristics
for two or more classes to overlap, for example, window may
contain characteristics from all other classes, since a window
can reflect their images, cement and path may share similar
characteristics, similarly for foliage and grass. We found that
EPC1 and PROCLUS did not produce good results. From
Tables VII and VIII, we can see that EPC2 performs better
than ORCLUS in all three metrics. From Table 7(a), the result
is very reasonable or expected from the nature of the data set,
we can easily deduce a cluster for sky, one for foliage, one
for grass, and one for cement together with path. The result
from PROCLUS is not as expected.

VI. CONCLUSION

For high dimensional data, projective clustering is often
more relevant than traditional clustering in the full space.

EPC2 ORCLUS

dominant ratio coverage ratio dominant ratio coverage ratio

20 0.510 0.620 0.470 0.507

TABLE VIII

DOMINANT AND COVERAGE RATIOS FOR REAL DATA SET

Several algorithms have been proposed to solve the projective
clustering problem, among those ORCLUS solves a more
general problem. However, the complexity of ORCLUS is
high, and it is not very feasible if the original dimensionality is
high. ORCLUS makes the assumptions that the dimensionality
of subspaces for the clusters are the same and also provided
by user, both assumptions are hard to realize in applications.

We propose a new method for projective clustering by
means of histograms. We call this method EPCH (Efficient
Projective Clustering by Histograms). The advantages of
EPCH include efficiency, effectiveness, and no assumption
made about knowledge of the number of clusters or fixed
dimensionalities for the subspaces.
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