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Abstract—The importance of skyline analysis has been well recognized in multicriteria decision-making applications. All of the

previous studies assume a fixed order on the attributes in question. However, in some applications, users may be interested in skylines

with respect to various total or partial orders on nominal attributes. In this paper, we identify and tackle the problem of online skyline

analysis with dynamic preferences on nominal attributes. We investigate how changes of orders in attributes lead to changes of

skylines. We address two novel types of interesting queries: a viewpoint query returns with respect to which orders a point is (or is not)

in the skylines, and a refined skyline query retrieves the skyline with respect to a specific order. We develop two methods

systematically and report an extensive performance study using both synthetic and real data sets to verify the effectiveness and the

efficiency of our methods.

Index Terms—Skyline, materialization, data warehouses, preferences.
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1 INTRODUCTION

DOMINANCE analysis is important in many multicriteria
decision-making applications. As an example, consider

a customer looking for a vacation package to Beijing using
three criteria: price, hotel class, and number of stops. For
two packages p and q, if p is better than q in one factor and is
not worse than q in any other factors, then p is said to
dominate q. For example, we have three packages in (price,
hotel class, number of stops): p1 (1,600, 4, 1), p2 (3,000, 5, 2)
and p3 (2,000, 3, 2). We know that a lower price, a higher
hotel class, and fewer stops are more preferable. Thus, p1

dominates p3. Package p2 and p3 do not dominate each other
because p3 has a lower price than p2 and p2 has a higher
hotel class than p3.

A point that is not dominated by any other point is said
to be a skyline point or to be in the skyline. The packages in
the skyline are the best possible trade-offs among the three
factors in question. For example, in the above vacation
package example, p1 and p2 are in the skyline, and p3 is not.

In order to conduct a skyline analysis, an (either total or
partial) order is assumed on each attribute to reflect the
users’ preference. For example, a lower price, a higher hotel
class, and fewer stops are more preferable. Most previous
studies [5], [11], [22], [16], [17], [18], [7], [6], [8] assume that
orders on attributes are predefined for all users. Recently, some

studies [9], [10], [2], [1] consider that orders on attributes are
different with different users. However, we are the first to
investigate how different orders may affect the skyline
property of a point.

1.1 Motivating Example

Consider a skyline analysis on selecting vacation packages.
Table 1 shows a synthesis data set as our running example.
Different from attributes price and hotel class on which a
total order exists for all customers, on attribute hotel group,
different users may have different preferences. We refer to
such an attribute that does not come with a fixed order for
all users a nominal attribute.

Nominal attributes are common in data analysis. When
vacation packages are analyzed, some commonly used
nominal attributes include hotel group and airline. In
addition to skyline analysis on vacation packages illustrated
here, it is easy to name a few other important business
applications such as choosing realities (where the type of
realty, style, and regions are examples of nominal attributes)
and selecting air flights (where airline and transition airport
are examples of nominal attributes).

What challenges do nominal attributes bring to skyline
analysis? The change of preference orders on nominal
attributes may lead to changes in skylines. Due to changes
of orders on nominal attributes, some skyline points may
become dominated by other points, and some points that
are not in the skyline may become so if they are preferred
by the updated order.

For example, consider the packages in Table 1. When a
customer prefers Mozilla to Horizon and Tulips, package f
is in the skyline. However, for another customer preferring
Tulips to Mozilla, f is not in the skyline anymore since it is
dominated by a. Another interesting observation is that
packages a and c are always in the skyline no matter which
preference order is chosen (because a has the lowest price
and c has the highest hotel class).
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1.2 Challenges

The changes of skylines due to dynamic preference orders
on attributes lead to two important and interesting
problems, which have not been investigated before.

Problem 1: Viewpoint queries. A data point in a data set may
or may not be in the skyline, depending on the preference
orders on the nominal attributes. Suppose a sales manager is
trying to campaign for a vacation package p. (S)he may want
to know with respect to what preference orders on the hotel
groups and airlines that p is (or is not) in the skyline. This
information helps the manager to target the customers whose
preferences are consistent with the orders.

Generally, for a point p, a viewpoint query returns the
summarization of the orders with respect to which p is (or
is not) in the skyline. With a viewpoint query, we can
understand not only whether p is in the skyline but also the
conditions on dimensions that can affect the skyline
membership of p.

Unfortunately, the existing skyline computation methods
cannot answer viewpoint queries unless the skylines of all
possible preference orders are computed and compared,
which is often prohibitively expensive on large databases.

Problem 2: Refined skyline queries. With the changes of
preference orders on some nominal attributes, how does the
skyline change? Given a set of preference orders on the
nominal attributes, what is the skyline?

Refined skyline queries are important for online skyline
analysis, since different customers may bear different
preferences and many customers may want their skyline
queries to be answered online. An existing skyline computa-
tion method can be used to compute on the fly the skyline for
every refined skyline query. However, it is too costly on
large databases of high dimensionality to support online
skyline analysis.

The above two problems are challenging when there are
many data points in the data set and, particularly, when
online query answering is required. In this paper, we will
develop materialization methods to support online query
answering for the above two types of queries.

1.3 Our Contributions

In this paper, we study the problem of online skyline
analysis with dynamic preferences on nominal attributes.
To the best of our knowledge, this is the first effort to tackle
the problem. We make the following contributions.

First, we identify two new types of skyline queries:
viewpoint queries and refined skyline queries, which can
disclose novel information about skylines that cannot be

addressed by the existing methods. Both types of queries
have not been studied by others before.

Second, we develop two effective methods. Our Minimal
Disqualifying Condition (MDC) method finds the minimal
conditions on the preference orders that disqualify a point
from the skyline. Using those MDCs, we can answer the
new types of skyline queries effectively.

Our Compressed Ordered Skyline Tree (CST) method
virtually computes the skylines for all possible preference
orders. To reduce the cost in both space and computation
time, the sharing in both computation and storage among
skylines of various orders is systematically exploited.

Last, we present a comprehensive performance study
using both real data sets and synthetic data sets to verify the
effectiveness and the efficiency of our methods. The experi-
mental results show that the skyline analysis with dynamic
preferences on nominal attributes is interesting, and our
proposed methods can online answer the new types of
skyline queries effectively.

The rest of the paper is organized as follows: In Section 2,
we investigate the changes of skylines due to changes of
orders on nominal attributes. The MDC and CST methods
are developed in Sections 3 and 4, respectively. A systematic
performance study is reported in Section 5. We discuss
related work in Section 6. The paper is concluded in Section 7.

2 SKYLINES AND ORDERS ON NOMINAL

ATTRIBUTES

A skyline analysis involves multiple attributes. A user’s
preferences on the values in an attribute can be modeled by
a partial order on the attribute. A partial order � is a
reflexive, asymmetric, and transitive relation. A partial
order becomes a total order if for any two values u and v in
the domain, either u � v or v � u. We write u � v if u � v
and u 6¼ v. A partial order also can be written as
R ¼ fðu; vÞju � vg. u � v also can be written as ðu; vÞ 2 R.

By default, we consider points in an m-dimensional1

space SS ¼ D1 � � � � �Dm. For each dimension Di, we
assume that there is a partial or total order Ri. For a
point p, p:Di is the projection on dimension Di. If
ðp:Di; q:DiÞ 2 Ri, we also write p:Di � q:Di or simply
p �Di

q. We can omit Di if it is clear from the context.
For points p and q, p dominates q, denoted by p � q, if for

any dimension Di 2 SS, p �Di
q and there exists a dimension

Di0 2 SS such that p �Di0
q. If p dominates q, then p is more

preferable than q according to the preference orders. The
dominance relation R can be viewed as the integration of
the preference partial orders on all dimensions. Thus, we can
write R ¼ ðR1; . . . ; RmÞ. It is easy to see that the dominance
relation is a strict partial order.

Given a data set D containing n points in space SS, a point
p 2 D is in the skyline of D (or a skyline point in D) if p is
not dominated by any points in D. The skyline of D,
denoted by SKY ðDÞ, is the set of skyline points in D.

In an application, there often exist some orders on the
dimensions that hold for all users. In our running example,
as shown in Table 1, a lower price and a higher hotel class
are always more preferred by a customer. Even, for nominal

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 1, JANUARY 2009

TABLE 1
A Set of Packages

1. In this paper, we use the terms “attribute” and “dimension”
exchangeably.



attributes, there may exist some universal partial orders.
For example, in the realty search, detached houses are often
more preferred than semidetached houses. Hence, we
assume that we are given a template, which contains a
partial order for every dimension. The partial orders in the
template are applicable to all users. Each user can then
express his/her specific preference by refining the template.
The containment relation of orders captures the refinement.

For partial orders R and R0, R0 is a refinement of R,
denoted by R � R0, if for any ðu; vÞ 2 R, ðu; vÞ 2 R0. More-
over, if R � R0 and R 6¼ R0, R is said to be weaker than R0,
and R0 is said to be stronger than R.

Example 1 (preference orders). In Table 1, the numeric
attributes, price and hotel class, are totally ordered. The
lower the price and the higher the hotel class, the more
preferable a vacation package is.

Hotel group is a nominal attribute. Different users
may have different preferences on that attribute. For
example, let R ¼ fðT;MÞg and R0 ¼ fðT;MÞ; ðH;MÞg.
Then, R � R0. That is, R0 is a refinement of R by adding a
preference H �M. As R 6¼ R0, R is weaker than R0, and
R0 is stronger than R.

Property 1. For orders R ¼ ðR1; . . . ; RmÞ and R0 ¼
ðR01; . . . ; R0mÞ, R � R0 if and only if Ri � R0i for 1 � i � m.

Due to dynamic preference orders on nominal attributes,
we propose the refined skyline queries.

Definition 1 (refined skyline query). Let R be a template.
Given a refinement R0 of R, a refined skyline query is to find
the skyline points with respect to R0.

Example 2 (refined skyline queries). In our running
example, suppose the template order R on dimension
hotel group is ;. That is, the template does not prefer any
hotel group to another. On attributes price and hotel
class, the lower the price and the higher the hotel class,
the more preferable a vacation package is.

Given a refinement R0 of R such that R0 ¼ fðT;MÞ;
ðH;MÞg, a refined skyline query is to find all packages in
the skyline with respect to R0, which are a and c.

Naı̈vely, one can adopt any existing algorithms such as
[7] and [6] to compute the skyline set of a refinement R0 of
R. However, when there are many data points in the data
set, those algorithms are costly and cannot achieve online
query answering. This motivates us to propose two
materialization methods in Sections 3 and 4, which first
precompute the skyline set of each possible order and
compress them in a way such that after the preprocessing,
the skyline set can be returned very quickly. The compres-
sion is based on some inherent properties in this problem.
One of the properties is the monotonicity property.

Consider order R and points p and q such that q � p with
respect to R. Then, for any attribute D, we have q �D p with
respect to R. Let R0 be a refinement of R where R � R0.
Then, q �D p still holds in R0. That is, q � p still holds in R0.
We observe the following interesting property.

Theorem 1 (monotonicity). Given a data setD and a templateR,
if p is not in the skyline with respect to R, then p is not in the
skyline with respect to any refinement R0 of R.

Proof. Since p is not in the skyline with respect to R, there
exists another data point q 2 D which dominates p with
respect to R. That is, for any dimension Di 2 SS, with
respect to R, q:Di � q:Di, and there exists a dimension
Di0 2 SS such that q:Di0 � p:Di0 . Since R0 is a refinement
of R and R � R0, q also dominates p with respect to R0.
Therefore, p is not in the skyline with respect to R0. tu

Theorem 1 indicates that when the orders on dimen-
sions are strengthened, some skyline points may be
disqualified. However, a nonskyline point never gains the
skyline membership due to a stronger order. This mono-
tonic property greatly helps in analyzing skylines with
respect to various orders.

Generally, all the possible refinements of a given
template order form a lattice, where the template order
serves as the unit element. In our running example, let the
template be as claimed in Example 2. All possible orders
on attribute hotel group form a lattice, as shown in Fig. 1.
Each node in the lattice is associated with a refinement of
the template. The skylines with respect to the orders are
also shown. We write the orders in the transitive closure.
For example, order fðT;HÞ; ðH;MÞg is not shown in
the lattice, since the closure of fðT;HÞ; ðH;MÞg is
fðT;HÞ; ðH;MÞ; ðT;MÞg.

The node at the top corresponds to the template order.
Particularly, b is not a skyline point because it is dominated
by a on attributes price and hotel class, and it has the same
value with a on hotel group.

Interestingly, although e and f are worse than a on
attributes price and hotel class, a does not dominate e nor f
since the template does not prefer T to M. In fact, both e and
f are skyline points with respect to the template.

The node at the bottom is a special node that corresponds
to a zero element >. It makes the lattice complete. The
skyline with respect to > is defined to be the empty set.

When there are multiple nominal attributes, each attri-
bute has a corresponding lattice based on the template and
refinements. The lattice for the multiple attributes is the
product of the lattices for all attributes. The properties for the
single nominal attribute carry forward to the product lattice.

Since a point may appear in the skylines with respect to
some orders, it is interesting to query with respect to which
orders a point is in the skylines.

Definition 2 (viewpoint query). If p is a skyline point with
respect to an order Rp, Rp is called a skyline viewpoint for p.
Given a data point p and a template R, a viewpoint query is
to find all Rp that are skyline viewpoints for p and are
refinements of R (i.e., R � Rp).

One naı̈ve solution to answer a viewpoint query is to
compute the skyline sets for all possible refinements R0 of
the template R, as shown in Fig. 1, and find all refinements
with respect to which a given query point p is in the
skylines. However, when there are many possible refine-
ments, the naı̈ve method has to compute skylines many
times. In Table 1, as long as Tulip does not dominate
Mozilla, e will be a skyline point. The satisfied refinements
are M � T � H, T � H, H � T , H �M, M � H � T ,
M � T , M � H, or no preference on hotel. Instead of
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returning all refinements, returning a succinct summariza-
tion of the refinements is more useful. In this paper, we will
propose a concise and succinct representation of answers to
viewpoint queries based on the following observation.

Example 3 (viewpoint queries). In Table 1, with respect to
what refinements of the template R that f is in the
skylines, let us answer the viewpoint query with the help
of the refinement order lattice in Fig. 1.

Point f is in the skyline provided that none of the
following two conditions hold: T �M (otherwise, a � f)
or H �M (otherwise, c � f). Thus, ðT;MÞ and ðH;MÞ
are called the MDCs.

In the refinement order lattice, if an order Rx contains
neither T �M nor H �M, any order weaker than Rx

does not contain these conditions. On the other hand, if
an order Rx contains one of these two conditions, so
does every order stronger than Rx. In other words, the
border between the orders that qualify f as a skyline
point and those that disqualify f partitions the lattice
into two parts: f is a skyline point in the upper part
and is not a skyline point in the lower part, as shown
in Fig. 1.

Based on the observations in Example 3, to answer a
viewpoint query, we only need to compute the border.
Particularly, we can use the set of MDCs.

Let R and R0 be two partial orders. R and R0 are conflict
free if there exist no values u and v, where u 6¼ v, such that
ðu; vÞ 2 R and ðv; uÞ 2 R0. R [R0 is still a partial order if R
and R0 are conflict free. For example, if R ¼ fðT;HÞg and
R0 ¼ fðT;MÞg, R and R0 are conflict free.

Definition 3 (MDC). For a skyline point p and a template order
R, a partial order R0 is called an MDC if

1. R0 \R ¼ ;,
2. R0 and R are conflict free,
3. p is not a skyline point with respect to R [R0, and
4. there exists no R00 such that R00 � R0 and p is not a

skyline point with respect to R [R00.
The set of MDCs for p is denoted by MDCðpÞ.

Example 4 (MDC). In our running example, R0 ¼ fðT;MÞg
and R00 ¼ fðH;MÞg are the minimal conditions that

disable f as a skyline point. They are the MDCs of f .

That is, MDCðfÞ ¼ ffðT;MÞg; fðH;MÞgg.

Based on the monotonicity in Theorem 1, we can show

that MDCs can be used to answer viewpoint queries

effectively.

Theorem 2 (answering viewpoint queries). For a point p and

a template order R, p is in the skyline with respect to a

refinement R0 of R if and only if 1) p is in the skyline with

respect to R and 2) 8Rx 2MDCðpÞ, Rx 6� R0.
Proof. First, we will show that if for a point p and a template

order R, p is in the skyline with respect to a refinement R0

of R, then 1) p is in the skyline with respect to R and

2) 8Rx 2MDCðpÞ, Rx 6� R0. We prove by contradiction.

Suppose p is not in the skyline with respect to R. By

Theorem 1, p is not in the skyline with respect to a

refinement R0 of R. Suppose there exists Rx 2MDCðpÞ
such that Rx � R0. Since Rx 2MDCðpÞ, by Definition 3,

p is not a skyline point with respect to R [Rx. That is,

with respect to R [Rx, there exists another data point q

that dominates p such that for any dimension Di 2 SS,

q:Di � p:Di, and there exists a dimension Di0 2 SS, where

q:Di0 � p:Di0 . Since Rx � R0, p is not a skyline point with

respect to R [R0.
Second, we will show that, for a point p and a

template order R, if 1) p is in the skyline with respect
to R and 2) 8Rx 2MDCðpÞ, Rx 6� R0, then p is in the
skyline with respect to a refinement R0 of R. We
prove by contradiction. Suppose p is not in the skyline
with respect to a refinement R0 of R. There exists a
set Y of data points that dominate p with respect to
R0. That is, for each point q 2 Y , with respect to R0,
for any dimension Di 2 SS, q:Di � p:Di, and there
exists a dimension Di0 2 SS, where q:Di0 � p:Di0 . Let
Rq ¼ fðq:Di; p:DiÞjðq:Di; p:DiÞ 62 R for all ig. It is noted
that Rq � R0. Thus, by Definition 3, there exists a data
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point q 2 Y such that Rq 2MDCðpÞ and Rq � R0. This
leads to a contradiction. tu

3 THE MDC APPROACH

The MDCs can be used to answer skyline viewpoint queries

and skyline queries. According to Theorem 1, we only need

to consider the skyline points with respect to the template

order. Only those points can be in the skylines of the

refinements.
If for each skyline point with respect to the template

order, we can compute its MDCs, then we can use the

conditions to answer viewpoint queries and refined skyline

queries.
To answer a viewpoint query for point p, we can use the

MDCs for p directly according to Theorem 2.
To answer a refined skyline query about the skyline

with respect to an order R0 that is a refinement of the

template R, we can check R0 against the MDCs of each

skyline point p with respect to R. If R0 is stronger than

(i.e., contains) one of the MDCs of p, then p cannot be in

the skyline with respect to R0. Otherwise, p is a skyline

point with respect to R0. The query answering cost is

OðjSKY ðRÞj � lÞ, where l is the maximum number of MDCs

of a skyline point.
Now, the problem becomes how to compute the MDCs

for a skyline point.
For two skyline points p and q with respect to the

template order R ¼ ðR1; . . . ; RmÞ, two cases may arise.
Case 1. There is an attribute Di0 such that p �Di0

q. Then,

q never dominates p in any refinement of R and thus cannot

lead to an MDC for p. For example, in Table 1, c never

dominates a because the price value of a is smaller than

that of c.
Case 2. There does not exist any attribute Di0 such that

p �Di0
q. That is, p never dominates q on any dimension.

Then, q may dominate p with respect to some refinements of

R and thus may lead to an MDC of p. Formally, q quasi-

dominates p if ðp:Di; q:DiÞ 62 Ri for 1 � i � m. For example,

in Table 1, a quasi-dominates f because a has a lower price

and a higher hotel class than f . The only reason that a does

not dominate e in the template is thatT does not dominateM.

As shown in Example 4, in a refinementR0 ¼ fðT;MÞg ofR, a

dominates f . Thus, R0 is an MDC for f .
Given a template order R ¼ ðR1; . . . ; RmÞ, if q quasi-

dominates p, the minimum condition that q dominates p

is Rq!p ¼ fðq:Di; p:DiÞjq:Di 6¼ p:Di and ðq:Di; p:DiÞ 62 Ri for

1 � i � mg. It is easy to see that q dominates p in

ðR [Rq!pÞ. Rq!p strengthens the template in a minimal

way such that q dominates p.
Based on the above idea, we have the simple MDC

algorithm, as shown in Algorithm 1, to compute the MDCs

as follows: Let R be the template order. First of all, we

compute the skyline SKY ðRÞ. Let SKY ðRÞ ¼ fp1; . . . ; pkg.
Then, we initialize MDCðpiÞ to ; for 1 � i � k. For each pair

of pi and pj, where 1 � i, j � k, and i 6¼ j, such that pi quasi-

dominates pj, if MDCðpjÞ does not have a condition weaker

than Rpi!pj , then we insert Rpi!pj into MDCðpjÞ and remove

any stronger conditions in MDCðpjÞ.

Algorithm 1. Algorithm MDC

Input: data set D and order template R

Output: the set of skyline points with respect to R and their
MDCs

1: compute the skyline with respect to R, suppose the

skyline is fp1; . . . ; pkg
2: set MDCðpiÞ ¼ ; for ð1 � i � kÞ
3: for i :¼ 1 to ðk	 1Þ do

4: for j :¼ ðiþ 1Þ to k do

5: if pi quasi-dominates pj then

6: if MDCðpjÞ does not have a condition weaker than
Rpi!pj then

7: add Rpi!pj to MDCðpjÞ and remove any stronger

conditions in MDCðpjÞ
8: end if

9: end if

10: if pj quasi-dominates pi then

11: if MDCðpiÞ does not have a condition weaker than

Rpj!pi then

12: add Rpj!pi to MDCðpiÞ and remove any stronger

conditions in MDCðpiÞ
13: end if

14: end if

15: end for

16: end for

Example 5 (the MDC algorithm). Let us illustrate Algo-

rithm 1 using Table 2, which is an extension of Table 1

by adding one more nominal attribute, airline. Suppose

the template R on hotel group and airline is set to ;.
In the first step, we compute the skyline with respect

to R, which is fa; c; d; e; fg. We can remove point b
because b is not in the skyline with respect to R.

Then, we check whether any skyline point quasi-
dominates another. We compare a and c first, which do
not quasi-dominate each other. Then, we compare a and
d. a quasi-dominates d. The minimum condition that a
dominates d Ra!d ¼ fðT;HÞ; ðG;RÞg. Similarly, we com-
pare a and e and obtain Ra!e ¼ fðT;MÞ; ðG;RÞg. We
compare a and f and obtain Ra!f ¼ fðT;MÞ; ðG;W Þg.
We obtain the MDC of each data point, as shown in
Table 3.

Next, we compare c with other points. First, we
compare c and d. c quasi-dominates d. The minimum
condition that c dominates d Rc!d ¼ fðG;RÞg. As shown
in Table 3, the MDC of d ¼ fðT;HÞ; ðG;RÞg, which is
stronger than fðG;RÞg. Thus, we insert fðG;RÞg and
remove fðT;HÞ; ðG;RÞg. Similarly, we compare c with e
and f . We obtain the MDCs, as shown in Table 4, after
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processing c. Similarly, we process the remaining
iterations. It can be verified that the final MDCs are as
shown in Table 4.
The algorithm consists of two parts. The first part is

computing the skyline points with respect to R. One can

adopt any existing algorithm (e.g., [7] and [6]) for comput-

ing the skyline for partially ordered domains. Let us

analyze the complexity of the second part of our algorithm.

It takes nested loops to compare each pair of skyline points,

pi and pj. There are Oðk2Þ possible pairs, where k is the

number of skyline points with respect to R. For each pi
quasi-dominating pj, the minimum condition is computed

with cost Oðm0Þ, where m0 is the number of nominal

dimensions. The minimum conditions are inserted into the

set of MDCs if the current set does not have a weaker

condition. The insertion takes cost OðlÞ, where l is the

maximum number of MDCs of a skyline point. Thus, the

overall complexity is Oððm0 þ lÞk2Þ.

4 THE CST APPROACH

As strongly indicated in the previous studies on data

warehousing and online analytical processing, an effective

approach to online query answering is to materialize the

answers in a compact and well-organized way. In this

section, we study how to store the skylines with respect to

various refinement orders in a compact data structure.
A straightforward approach is to store the refinement

order lattice explicitly, as shown in Fig. 1. At each node of

the lattice, we also store the corresponding skyline. How-

ever, as can be observed in the figure, there is substantial

redundancy in the lattice: multiple orders in the lattice may

share the same skyline, and a point may appear in the

skylines of multiple orders. Removing the redundancy not

only saves space but also speeds up the computation.
To keep our discussion easy to follow, let us first consider

the case where there is only one nominal dimension. We will

consider the general case where there are multiple partially

ordered dimensions later in Section 4.4.

Without loss of generality, let Dm be the partially
ordered nominal attribute. In the following discussion, the
template order on Dm is set to Rm ¼ ;. Our discussion can
be easily extended to the general case where Rm 6¼ ;.

4.1 OST and CST

Fig. 2 shows an ordered skyline tree (OST) of Table 1. In an
OST, each edge is associated with a value in Dm, and each
leaf node corresponds to a total order. If the path from the
root to a leaf node N is Ci1 	 � � � 	 Cil , then the order
corresponding to N is Ci1 � � � � � Cil .

An OST only stores the skyline with respect to every total
order (at the leaf nodes) on Dm. It is compact since it does
not store the skyline with respect to any partial order on
Dm. Based on an OST, one can find the skyline with respect
to any partial order on Dm, and an efficient algorithm will
be presented in Section 4.3.

There is still redundancy in an OST. For example, a and c
appear in all leaf nodes in Fig. 2, since a and c are in the
skylines with respect to any total orders. This redundancy
can be reduced by collecting the common skyline points
from leaf nodes and storing them in the shared internal
nodes. For example, a and c can be moved from all leaf nodes
to the root node (node 1). After the adjustment, if a node in
the OST contains no skyline points and no child node, it even
can be removed. Fig. 3 shows the resulting CST.

4.2 CST Construction

Let us consider how to construct a CST efficiently. First of
all, we compute all skyline points with respect to the
template order R. One can adopt any existing algorithm
(e.g., [7] and [6]) for computing the skyline for partially
ordered domains. In our running example, if Rm ¼ ;, then
these skyline points are a, c, e, and f . According to
Theorem 1, only those points can be in the skylines with
respect to refinements of the template. The set of skyline
points with respect to R can be further divided into two
subsets: the global skyline point set G and the order-

sensitive skyline point set D0. A point p is in the set G if p is
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in the skyline of subspace D1 � � � � �Dm	1, i.e., the sub-
space of the totally preordered attributes, and there exists no
other point p0 taking the same values as p on all those totally
preordered attributes but different values from p on Dm. The
other skyline points are in the set D0. For example, in
Table 1, the global skyline set G ¼ fa; cg, and the order-
sensitive skyline set D0 ¼ fe; fg.

It is easy to see that a point p in G cannot be dominated in
any refinement order. Thus, the points in G are in the
skylines with respect to any refinement orders. G should be
stored at the root node of the CST.

Next, the descendants of the root node in the CST are
generated in a breadth-first manner. In particular, we need to
find the skyline points with respect to different refinements
of the template from the order-sensitive skyline set D0. Thus,
each node is associated with a node skyline set.

4.2.1 Node Skyline Set

As shown in Fig. 3, each node N in the CST is associated
with a node skyline set SðNÞ. For clarity, if the context of
the node N is clear, we simply write S. A point x appears in
SðNÞ in CST if and only if x is a skyline point in all the leaf
descendants of N in the (correspondence) OST and x is not a
skyline point in at least one leaf descendant of a sibling of N in
OST. In Fig. 3, let N be node 4. SðNÞ ¼ fe; fg in CST because
e and f are skyline points in all the leaf descendants of
node 4 in the (correspondence) OST, and for a sibling of the
node (e.g., node 2), some of the leaf descendants (e.g.,
node 11) contain neither e nor f .

For a nonroot node N in CST, let vðNÞ be the value
associated to the edge between node N and the parent node
of N in CST. Let RðNÞ be the node order of N in CST, which
is defined as follows: Suppose the path from the root to a
node N is Ci1 	 � � � 	 Cik . Let C ¼ fCi1 ; . . . ; Cikg. We define
the order at node N as the total order on C, Ci1 � � � � � Cik ,
and the partial order on Dm, Cix � Cj, where x 2 ½1; k
, and
Cj 62 C. For example, node 8 in the figure represents the total
order on C,H �M, and the partial ordersH � T andM � T .
Besides, each child node of the root represents partial orders.
For example, node 4 represents M � T and M � H. The
following lemma will be useful in our algorithm.

Lemma 1. Let N be a nonroot node in a CST. Then, for each point
p 2 SðNÞ, p:Dm ¼ vðNÞ.

Proof. Assume that on the contrary, a point x stored in SðNÞ
does not have a Dm value x:Dm equal to vðNÞ. By
definition, x is a skyline point of all leaf descendants of N
in OST, and it is not a skyline point of at least one leaf
descendant L0 of one sibling N 0 of N . Since x is not a
skyline point of L0, the value of x:Dm must appear along
the path from the root to L0, where the ordering for x:Dm

determines that there exists a point q that dominates x.
Since x is a skyline point for all descendants of N , the
value of vðN 0Þ of any node N 00 between the root of OST to
N must not be x:Dm since otherwise, q will dominate x at
all descendants of N 00. Therefore, in some leaf descen-
dant L of N , the value of vðLÞ must also be x:Dm such
that at L, x will also be dominated by the same point q.
Hence, x cannot be a skyline point of all leaf descendants
of N , and we arrive at a contradiction. tu

For example, in Fig. 3, let N be node 4. vðNÞ ¼Mozilla.
SðNÞ contains e and f , which have value Mozilla.

4.2.2 Algorithm

At the beginning of the breadth-first construction of CST, for
each childN of the root, we are given a set P of candidates ¼
D0. By Lemma 1, we only need to check whether any

candidate with a Dm value equal to vðNÞ is a skyline point
with respect to the order at N . If so, it is inserted into SðNÞ.
Then, all candidates with Dm values equal to vðNÞ are
removed from P . The remaining data points in P will be
considered as the candidate data points in all the descen-
dants of node N . If P becomes empty, no descendant of N
needs to be generated.

The growth of the CST tree continues in a breadth-first
manner until no more new descendant can be generated.
This is followed by a compression process that repeatedly
removes any leaf node with an empty node skyline set. At
the end, all leaf nodes in the tree contain a nonempty node
skyline set, and it is the resulting CST tree.

At each node N , the node skyline set SðNÞ is determined
from the candidate set. The following lemma, which follows
from the monotonic property in Theorem 1, suggests how
we compute it. Let UðNÞ be the set of data points in the
node skyline sets of all ancestors of N . UðNÞ can be found
easily by traversing from N to the root.

Lemma 2. If a data point x in the candidate set P of N has a Dm

value of vðNÞ and is not dominated by any data points in
UðNÞ (with respect to RðNÞ), then x is a skyline point with
respect to RðNÞ.

A point x that satisfies the condition in the above lemma
is inserted into SðNÞ. The mechanisms to find SðNÞ given
UðNÞ will be described in Section 4.2.3.

The following corollary, which follows from Theorem 1,
can help to further trim down the CST construction cost.

Corollary 1. Let N be a node. Suppose x is a data point in the
candidate set P of N with a Dm value equal to vðNÞ. If
x 62 SðNÞ, then x is not a skyline point in all leaf descendants
of all siblings of N in the OST.

The corollary follows because in any descendant N 0 of all
siblings of N , if vðN 0Þ ¼ vðNÞ, then the order corresponding
toN 0 is a refinement of the partial order corresponding to N .
In our algorithm, as shown in Algorithm 2, after processing
all the children of the same parent, any points x found to be a
nonskyline point in any child node is deleted from the
candidate sets of the children (lines 15 and 16 in Algorithm 2).

Algorithm 2 shows the algorithm for constructing CST.
Typically, only a small subset of the nodes in OST is
explored. In the running example, only nine nodes are
explored, out of 16 nodes in the OST.

Algorithm 2. Algorithm for constructing CST

1: // Expansion

2: S of root  G, where G is the global skyline set

3: P of root  D0, where D0 is the order-sensitive skyline

set

4: for each level l of OST T do
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5: for each node Npar in level l do

6: let Ppar be the candidate set P of node Npar

7: // Ssib will store all nonskyline points in all

siblings Ni

8: Ssib  ;
9: for each child node Ni of node Npar with respect to

the template order R do

10: clone all data points in Ppar to the candidate set P

of node Ni

11: find the node skyline set S and the node

nonskyline set S of node Ni from the data points in

P with Dm value equal to vðNiÞ
12: Ssib  Ssib [ S
13: discard S from P

14: end for

15: Ppar  ;
16: for each child node Ni of node Npar do

17: remove all data points in Ssib from P of Ni

18: end for

19: end for

20: end for

21: // Compression

22: while there is a leaf node L with an empty node skyline

set S do

23: remove L

24: end while

Example 6. Let us illustrate the algorithm with the example
in Table 1. Let the template R ¼ ;. Let P ðNÞ be the
candidate set P of a node N . The global skyline set
G ¼ fa; cg, and the order-sensitive skyline set D0 ¼ fe; fg.
Hence, PðrootÞ ¼ fe; fg, and SðrootÞ ¼ fa; cg, as shown in
Fig. 4a. Then, we expand the root node by cloning P in
the root node to P in the children (i.e., node 2, node 3, and
node 4), as shown in Fig. 4b. After that, P ðrootnodeÞ is
cleared. For each child node N , we process the data
points with a hotel-group value equal to vðNÞ. Since e and
f have a hotel-group value of “M,” they are processed in
node 4. They are found to be skyline points with respect
to the order of node 4. Thus, Sðnode4Þ ¼ fe; fg. The two
points are removed from P ðnode4Þ. The result is shown in
Fig. 4c.

Moving one level downward, P of node 2 is migrated
to the P sets of node 5 and node 6. Similarly, we generate
child nodes 7 and 8 for node 3. The P of node 4 is empty
and needs no processing. The result of this step is shown
in Fig. 4d. At this level, only node 6 and node 8 are
processed. e and f are not skyline points with respect to
the order of node 6 since a dominates both e and f with
respect to the order T �M. Hence, Sðnode6Þ ¼ fg. e is a
skyline point, and f is not with respect to the order of
node 8. Sðnode8Þ becomes feg. The updated tree is shown
in Fig. 4e. Since e and f are not skyline points in node 6,
by Corollary 1, e and f are not skyline points in any leaf
descendants of its siblings (i.e., any descendants of
node 5). Thus, e and f are removed from P ðnode5Þ.
Similarly, f is not a skyline point in node 8. By Corollary 1,
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f can be removed from P ðnode7Þ. The resulting tree is
shown in Fig. 4f.

Similarly, node 13 is generated as shown in Fig. 4g.
e is not a skyline point with respect to the order of
node 13, and the tree in Fig. 4h is obtained. After the
compression step, the final CST is shown in Fig. 4i.

The following lemma gives a bound on the overhead in
node exploration during the construction of the CST.

Lemma 3. In the CST construction algorithm, for the parent Np

of any leaf node in the final CST, no node N beyond the
grandchildren of Np in the (correspondence) OST will be
explored by Algorithm 2.

Proof. Consider a data point x in the candidate set P of a
nonroot node N in the OST, where N does not appear in
the (correspondence) final CST. By Corollary 1, if x is still
in the candidate set P of N , then x is a skyline point of
N 0, where N 0 is a sibling node of the parent of N . This is
because if x is not a skyline point of any sibling of the
parent node, then it will be pruned from the candidate
set P . Hence, the grandparent of N is in the OST and also
the correspondence CST. Thus, N is not beyond the
grandchildren of Np in the OST, where Np is the parent of
a leaf node in the final CST. tu

4.2.3 Implementation Details

In Algorithm 2, we need to compute the node skyline setSðNÞ
given UðNÞ. We propose the following implementation. We
call this approach NomSky-Scan. To decide if x is dominated
by any point in UðNÞ, we scan all data points in UðNÞ and
compare with x. Let nP be the number of data points x with
values x:Dm ¼ vðNÞ in the candidate set P ofN . The runtime
of this approach is OðnP jUðNÞjÞ. Let nSKY be the greatest
number of skyline points with respect to any total order on
Dm. Since jUðNÞj ¼ OðnSKY Þ, the runtime is OðnPnSKY Þ.

4.3 Query Evaluation

CST supports both skyline queries and viewpoint queries.

4.3.1 Skyline Queries

Skyline queries aim to find all skyline points with respect to a
given refinement R0 of the template R. We propose an
algorithm here with two main steps. The first step is to extract
all possible maximal linear orders in R0. A total order R00 is a
maximal linear order in R0 if 1) R00 is a total order in R0 and
2) no superset ofR00 is also a total order inR0. IfR0 is a partial
order, then there can be multiple maximal linear orders. For
example, if R0 ¼ fðT;HÞ; ðH;GÞ; ðT;MÞg, there are two
maximal linear orders fðT;HÞ; ðH;GÞg and fðT;MÞg.

For each maximal linear order R00 : Ci1 � Ci2 � . . . � Cik ,
we find the skyline points with respect to R00. Let C be
fCi1 ; Ci2 ; . . . ; Cikg. First, we initialize a variable, XR00 , storing
the skyline with respect to R00, with SðNrootÞ, where Nroot is
the root of the CST. Then, we perform two steps:

Step 1. Let P be the path Ci1 	 Ci2 	 . . .	 Cik in the CST.
For each node N along P, if N exists, then add SðNÞ to
XR00 ðXR00  XR00 [ SðNÞÞ. For example, if R00 ¼ ðT;HÞ, then,
from Fig. 4i, we find only points a and c since there is no
path T 	H and the node skyline points of the root node are
a and c.

Step 2. Next, we find the additional skyline points with
values that do not appear in Cwith respect toR00. Such points
are not dominated by others, and they do not dominate
others. We will find these additional skyline points as
follows: For each value Cj 62 C, we look for any child node N
of the root of CST with vðNÞ ¼ Cj. The points in SðNÞ are
added to XR00 . For example, if R00 ¼ ðT;HÞ, from Fig. 4i, we
find additional data points (i.e., e and f) from the points
stored in node 4 with a Dm value of M 62 fT;Hg.

The above process is repeated with other possible
maximal linear orders. The intersection of the resulting sets
of skyline points is the required answer since the result
should satisfy all maximal linear orders simultaneously. For
example, if the refinement R0 ¼ fðT;HÞ; ðT;MÞg, there are
two maximal orders fðT;HÞg and fðT;MÞg. For fðT;HÞg,
we find a, c, e, and f . Similarly, for fðT;MÞg, we find a
and c. The intersection of these two sets is a and c, which is
the final skyline points for order R.

The complexity of the algorithm depends on the number
of maximal linear orders and the sizes of their skyline sets,
which are typically quite small compared to the data size.
We shall show in our experiments that the querying
evaluation is very efficient.

4.3.2 Viewpoint Queries

A viewpoint query is to find all the refinements that are
skyline viewpoints for a given data point x. Here, we discuss
how to find the results from a CST. Let q be the number of
different values inDm. Given a nodeN in the CST associated
with a path from the root Ci1 	 Ci2 	 . . .	 Cik , where k � q,
node N is associated with a unique partial order RðNÞ. We
call a set BOðNÞ of binary orders on the attribute values a
canonical binary order set if the transitive closure of BOðNÞ,
denoted by BOþðNÞ, is equivalent to RðNÞ and no subset of
BOðNÞ has this equivalence property. BOþðNÞ can be easily
computed by repeatedly extending the set BOðNÞ with any
binary order that results from the transitivity of two binary
orders in the set. For instance, let node 11 be N . BOðNÞ ¼
fðT;HÞ; ðH;MÞg. By the transitivity property of binary
conditions in BOðNÞ, BOþðNÞ ¼ fðT;HÞ; ðT;MÞ; ðH;MÞg,
which is equivalent to RðNÞ. The use of the canonical order
set is to minimize the overhead in listing the relationships in
an order. Let C ¼ fCi1 ; Ci2 ; . . . ; Cikg. Given node N , we
compute the canonical binary orders set by the following steps:

1. Generate binary orders among the values in C: for
each j 2 ½1; k	 1
, generate ðCij ; Cijþ1

Þ.
2. Generate the binary orders between Cik and the

values in Dm 	 C. Let Dm 	 C be fCikþ1
; Cikþ2

; . . . ; Ciqg,
for each j 2 ½kþ 1; q
, generate ðCik ; CijÞ.

Let the set of canonical binary orders of node N be BOðNÞ.
Consider node 4 in our running example. We obtain ðM;T Þ
and ðM;HÞ in the second step. That is, BOðN4Þ ¼ fðM;T Þ,
ðM;HÞg. Similarly, BOðN8Þ ¼ fðH;MÞ; ðM;T Þg.

LetN be the set of nodes storing a data point x. The main
observation here is that suppose a data point x is in the
node skyline sets S’s of nodes 2 N in CST, then any
refinement that satisfies all the binary conditions in BOðNÞ
of any node N 2 N is a skyline viewpoint for x.

Other than the above viewpoints, we must also include

any refinement that does not contain any relationship
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involving x:Dm. In such a refinement order, x is not

dominated by any point since there is no value in Dm that

dominates x:Dm. We define a special order condition f:x:Dmg,
which corresponds to this kind of order. Since there are two

possible scenarios that x is a skyline point, we conclude that

a skyline viewpoint for x must satisfy either all the binary

orders of at least one of the BOðNÞ or the special order

condition. The answer to the viewpoint query is given by the

disjunction of _N2NBOþðNÞ and the special order f:x:Dmg.
Hence, for a refinement to be a skyline viewpoint for e, the

necessary and sufficient condition is given by fðM;T Þ;
ðM;HÞgþ _ fðH;MÞ; ðM;T Þgþ _ f:Mg. Note that in the real

implementation, we do not need to compute BOþðNÞ. We

just keep BOðNÞ because if a refinement R0 satisfies all the

binary conditions in BOðNÞ, R0 is already a viewpoint of a

data point x.
LetN be the set of nodes in CST containing a data point x

in their node skyline sets. With the implementation of a
header table in which each data point x is linked with a list
of nodes containing x in the node skyline set, the search for
N requires OðjN jÞ time. The computation of a canonical
binary order set takes OðqÞ time. Thus, the overall runtime is
OðjN jqÞ.

4.4 Multiple Partially Ordered Attributes

So far, we have assumed that there is only one nominal
attribute in the data set. Now, we relax the assumption and
allow multiple nominal attributes. We will discuss the
required modifications in the algorithm with an example in
Table 2. Fig. 5 illustrates some major steps in the
construction of the corresponding CST.

The resulting CST consists of a primary tree based on
one nominal attribute, and in the primary tree, each node
can be linked to a nested tree that is based on a second
nominal attribute. The number of nominal attributes
determines the maximum possible levels of nesting. In
our running example, a nested tree is created for node 3.
Based on hotel group, we find a set X of data points with a
hotel-group value equal to Horizon in the candidate set P
of node 3 (i.e., d). Then, we build a nested tree based on
airline as shown in the dotted region in Figs. 5c, 5d, and 5e.
We can build a nested tree by first setting P of the
root node (i.e., node 3.1) by the data points in X. After that,
we perform a similar construction step in the nested tree

by expanding the children with values G, R, and W . Each
node N in the nested tree has a corresponding order RðNÞ.
For example, for the root node (node 3.1), the order is
given by fðH;MÞ; ðH;T Þg, which is the same as Rðnode3Þ,
while Rðnode3:4Þ ¼ fðW;RÞ; ðW;GÞ; ðH;MÞ; ðH;T Þg. We
extend the meaning of vðNÞ for node N in the nested
tree to be a set of values for the set of nominal attributes.
For example, vðnode3Þ ¼ fHorizon; nilg, and vðnode3:4Þ ¼
fHorizon;Wingsg. Then, we process the nodes and find
the skyline points according to the correspondence orders.

In the nested tree for a node N , we also perform the
compression step at the end to repeatedly remove any leaf
node with an empty node skyline set. After constructing the
nested tree, we insert all skyline points in the nested tree
(e.g., d) into the node skyline set SðNÞ in node N (e.g.,
node 3). This insertion does not affect the process of finding
the node skyline set in a descendant node. For example,
when we process each descendant node N 0 of node 3, UðN 0Þ
also contains d. Each node N 00 in the nested tree based on
airline (expanded from N 0) is processed with respect to
UðN 0Þ, which also contains d. In this process, we consider
whether a data point x is a skyline point with respect to
RðN 0Þ; even if d is not a skyline point with respect to RðN 0Þ,
this does not affect the skyline membership of x.

Lemma 4. If a data point x in the candidate set P of a node N in
CST has a nominal value set of vðNÞ and is not dominated by
any data points in UðNÞ (with respect to RðNÞ), then x is a
skyline point with respect to RðNÞ.

Example 7. Let us illustrate the algorithm with the example
in Table 2. Let the template R ¼ ;. We know that the
global skyline set S ¼ fa; cg and the order-sensitive
skyline set D0 ¼ fd; e; fg. We set P and S of the
root node to fd; e; fg and fa; cg, respectively, as shown
in Fig. 5a. Then, according to attribute hotel group, we
expand the root node by cloning all data points of P in
the root node to P in the children (i.e., node 2, node 3,
and node 4), as shown in Fig. 5b; P is cleared in the
root node. For each child node N , we construct a nested
CST based on value vðNÞ. For example, node 3 has the
node value equal to “H.” Data d matches this value. We
remove d from the P of node 3 and assign it to P of the
root node of the nested CST (i.e., node 3.1 in Fig. 5c).
The nested CST is expanded and then compressed
according to attribute airline, as shown in Figs. 5d and
5e. The construction steps of the other nodes are similar
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to that of node 3.

The extension of both skyline queries and viewpoint
queries is straightforward: 1) In the skyline queries,
suppose the refinement contains the order on hotel group
and the order on airline, whenever the algorithm visits a
node in the CST based on hotel group (which corresponds
to the order on hotel group), it traverses the “nested” tree
and visits the nodes in the “nested” tree (which correspond
to the order on airline). Similarly, the complexity of the
skyline queries is dependent on the number of maximal
linear orders and the sizes of their skyline sets. The runtime
is Oðxm0 � jSjÞ, where x is the number of maximal linear
orders for an attribute, m0 is the number of nominal
attributes, and jSj is the average size of their skyline sets,
with the bitwise implementation of the intersection of two
sets. Similarly, x and jSj are typically small, and thus, the
query time is quite short, which can be found in our
experiments. 2) In the viewpoint queries of a data point x,
we also find all nodes that contain x in their node skyline
sets and determine the viewpoints accordingly. Similarly,
the search for N requires OðjN jÞ time, where N is the set of
nodes in CST containing a data point x in their node skyline
sets. Here, the runtime of computing a canonical binary
order set is Oðqm0 Þ, where q is the number of possible values
in a nominal attribute, and m0 is the number of nominal
attributes. The overall runtime is thus OðjN jqm0 Þ.

5 EMPIRICAL STUDY

We have conducted our experiments on a Pentium IV 3.2-
GHz PC with 2-Gbyte memory on a Linux platform. The
algorithms were implemented in C/C++. In our experi-
ments, we adopted the data set generator released by the
authors of [5]. As this data set generates only numeric
attributes, we have modified the program to generate both
numeric attributes and nominal attributes. The numeric
attributes are generated as in [5]. The nominal attributes are
generated according to a Zipfian distribution [15]. By
default, we set the Zipfian parameter � ¼ 1. We generated
500,000 tuples with three numeric dimensions and one
nominal dimension. The total number of dimensions is
equal to the number of numeric dimensions plus the number
of nominal dimensions. The number of classes in a nominal
dimension was set to five. We adopted a template where the
most frequent class in a nominal dimension has a higher
priority than each of the other classes.

We denote the MDC materialization approach by MDC.
In the CST method, Section 4.2.3 can be implemented with
the NomSky-Scan approach. For the sake of comparison,
based on R-tree [18], we also implement two additional
approaches, namely, NomSky-Rtree and NomSky-MultiRtree,
when we compute the node skyline set SðNÞ given UðNÞ. In
the NomSky-Rtree approach, a single R-tree is built and
indexed on the totally ordered attributes in D0. The branch-
and-bound (BBS) algorithm in [18] is adopted to compute
SðNÞ. In NomSky-MultiTree, instead of one R-tree, we build
an R-tree for each value of the nominal attributes. Similarly,
the BBS algorithm can be applied here. For the R-tree-based
algorithms that we have tested, each node occupies a page
size of 4 Kbytes.

We compare the algorithms in terms of the execution
time of MDC construction and CST construction. Also, we

compare the storage sizes of the materialized MDC, OST,
and CST generated by the algorithms. The execution time of
two kinds of queries—skyline query and viewpoint query—-
will be analyzed.

5.1 Synthetic Data Sets

Three types of data sets are generated as described in [5]:
1) independent data sets, 2) correlated data sets, and 3) antic-
orrelated data sets. The description of these data sets can be
found in [5]. For the interest of space, we only show the
experimental results for the anticorrelated data sets. The
results for the independent data sets and the correlated
data sets are similar, but the execution times in those data
sets are much shorter.

Effect of the number of dimensions. We fixed the number of
numeric attributes to be three while varying the number of
nominal attributes from one to four. Fig. 6a shows that the
storage sizes of MDC, OST, and CST increase with the
number of nominal attributes. The increase rate of MDC is
greater than the increase rate of OST/CST. This is because for
each data point stored by MDC, the minimum disqualifying
conditions are stored independently, while OST/CST
make use of a sharing technique for common ancestors for
different orders. CST is more compressed compared with
OST when the number of nominal attributes is higher.

In Fig. 6b, the execution time of the CST construction step
of NomSky-Scan is the smallest, and the execution time of
the MDC construction is the second smallest, while the
execution time of NomSky-Rtree is the greatest. By
Corollary 1, the CST construction step can prune data
points in the candidate sets P . Therefore, NomSky-Scan can
take fewer data points into consideration for computing the
skyline points in S of the current node. However, the R-tree-
based algorithms build R-tree(s) based on all the data points
in D0 and cannot take advantage of the pruning. It is noted
that the NomSky-Rtree algorithm performed slower than
the NomSky-MultiRtree algorithm. This is because NomS-
ky-Rtree mixes the data points of different values of the
nominal attribute in a node. When we traverse a node in
OST, the single-tree approach needs to select the data points
with the node value, which slows down the performance.
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The viewpoint query time (Fig. 6c) and the skyline query
time (Fig. 6d) increase with the number of nominal
dimensions because when the number of nominal dimen-
sions increases, we need to traverse more “nested” trees in
CST. The viewpoint query time of MDC is faster than CST
because the structure of MDC itself stores the viewpoint,
but CST has to find it from the tree. The skyline query time
of MDC is longer than CST because MDC has to scan all
data points stored to check the skyline membership, but the
structure of CST itself stores all the skyline points with
respect to a query.

The effects of variations in the number of numeric
attributes have also been studied, as shown in Fig. 7, where
we fix the number of nominal attributes to one and vary the
number of numeric attributes from two to five. As expected,
both the execution time and the storage size increase with
the number of numeric dimension.

Effect of the number of tuples. In this experiment, the
number of tuples was varied from 250,000 to 1,000,000.
Fig. 8a shows that the storage sizes of OST and CST both
increase with the number of tuples. When there are more
tuples in the anticorrelated data set, it is more likely that
more points will become skyline data points, and the
storage size increases. The construction time of CST of all
algorithms increases almost linearly with the number of
tuples, as shown in Fig. 8b. Again, NomSky-Scan has the
fastest execution time compared with the R-tree-based
algorithm and the MDC algorithm since it benefits from
the pruning of the candidate sets. As the viewpoint query
time and the skyline query time were very short, there was
not much impact when we varied the number of tuples, as
shown in Figs. 8c and 8d. Similarly, the skyline query time
of MDC is larger than that of CST.

Effect of the template. We next studied the effect of
different templates. Let vc be the most frequent value in the
nominal attribute. We started the experiment with a
template that was an empty set. Then, one binary order
was added to the template at a time. The binary order to be
added was vc � vi, where vi was a value in the nominal
attribute, vi 6¼ nc, and vi was not in the current template. For
each addition, we measured the effect on the storage sizes
of CST and MDC and the execution times of the CST and
MDC construction. Figs. 9a and 9b show that the storage
sizes and execution times decrease when the number of
binary orders in the template increases. This can be
explained by the fact that with more binary orders, there
will be more restrictions in the node traversal. Thus, the

number of nodes to be traversed is fewer. This reduces the
storage sizes and the construction time of MDC and CST.

Let us call the above set of templates (A). We have also
conducted the experiments with two other kinds of
templates: (B) the templates where the least frequent value
has a higher priority than the other values and (C) the
templates in which the “median” frequent value has a
higher priority than the other values, where the “median”
frequent value is the value ranked in the middle of the
values. The storage size and the compression ratio of CST
both decrease from templates (C) to (B) to (A). There is a
higher chance that there are more data points in the more
frequent class. In other words, if we order this class at a
lower priority in the template, we generate a CST with more
data points in the levels near the leaf level. That means that
we need to store more data points in OST and CST.

Effect of the cardinality of nominal attributes. Fig. 10
shows the results with the variation of the cardinality of a
nominal attribute. In Fig. 10a, the storage size of MDC,
OST, and CST increases with the cardinality. The number
of permutations of different classes/values in a nominal
attribute increases with the cardinality. As the number of
permutations increases, it is more likely that the OST and
CST contain more nodes, yielding a larger storage size.
Also, the curve of MDC increases with the cardinality. But
the increase rate of MDC is smaller than that of OST/CST.
This is because MDC is independent of the permutation
of different values in a nominal attribute. As there are
more classes, the number of the minimum disqualifying
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Fig. 7. Scalability with respect to dimensionality where the number of

nominal attributes is fixed to one. The curves of OST and CST are

similar and overlapping in (a), and the curves of MDC and NomSky-

Scan are similar and overlapping in (b).

Fig. 8. Scalability with respect to database size.

Fig. 9. Scalability with respect to template size.



conditions for a data point is greater, yielding the increase
of the storage of MDC. In Fig. 10b, the execution time of
all algorithms increases with cardinality. The skyline
query time and the viewpoint query time of CST and
MDC increases with the cardinality because we have to
process more values. Similar as before, the skyline query
time of CST is shorter than MDC, and the viewpoint
query time of MDC is shorter than CST. For example, the
skyline query times of CST and MDC are less than 1 ms
and about 1.6 ms, respectively, when the cardinality is
equal to eight. The viewpoint query times of CST and
MDC are about 3.4 ms and 1 ms, respectively, when the
cardinality is equal to eight.

5.2 Real Data Sets

To demonstrate the usefulness of our methods, we ran our
algorithms on two real data sets. The first set is Nursery,
which is publicly available from the UC Irvine Machine
Learning Repository.2 Nursery was derived from a hier-
archical decision model originally developed to rank
applications for nursery schools in Ljubljana and Slovenia
where the rejected applications frequently needed an
objective explanation. Each tuple is an application to the
nursery schools. Semantically, if an application is in the
skyline, it can be considered a good candidate. Different
nursery schools may have different order preferences on the
nominal attributes.

In the Nursery data set, there are 12,960 instances and
8 attributes. We transformed six attributes (parents, has_nurs,
housing, finance, social, and health) to numeric attributes
because their values are ordered. For example, the “social”
attribute has three possible values: nonproblematic, slightly
problematic, and problematic, we matched them to the
numbers 0, 1, and 2, respectively. The remaining two
attributes are the form of the family (e.g., incomplete family
and foster family) and the number of children, since there is
no trivial order on their values, they would be our nominal
attributes. (Note that although the number of children is a
numeric attribute, it is not clear whether a family with one
child is “better” than a family with two children.) The class
cardinality of both nominal attributes is equal to four. We
have adopted the default setting in this experiment. The
results in the performance are similar to those for the
synthetic data sets. The storage sizes of OST and CST are
575 Kbytes and 314 Kbytes, respectively. The compression
ratio is 54.6 percent. The execution times of NomSky-Scan,
NomSky-Rtree, and NomSky-MultiRtree are 94 seconds,
1,246 seconds, and 266 seconds, respectively. The skyline
order query time is also similar to previous experiments.

Our second real data set is Automobile, also adopted
from the UC Irvine Machine Learning Repository. Our goal
is to study the utility of viewpoint queries. We have
chosen four attributes in the experiments, namely, “sym-
boling,” “normalized-losses,” “price,” and “make.” Attri-
bute “symboling” is the assigned numeric insurance risk
rating. The smaller the value is, the safer it is. Attribute
“normalized-losses” is the relative average loss payment
per insured vehicle year. If the value is smaller, the loss
will be smaller. Hence, the only nominal attribute is
“make,” representing the car brand names. The data set
size was small, there were only 205 tuples, and therefore,
the computation times for queries were negligibly small.
We are interested to see the meaning and utilization of the
skyline viewpoints for different data points. Three car
brand names are chosen for our study, namely, Honda,
Mitsubishi, and Toyota. We would find the disqualifying
condition for three data points that belong to these three
brand names, respectively:

1. Our first selected data was a Honda car that was a
skyline point in some orders. The disqualifying
condition we discovered is the following Make
order: Toyota � Honda.

2. The second data was a Mitsubishi car, and the
MDCs were the following Make orders: Honda �
Mitsubishi and Toyota �Mitsubishi.

3. Finally, we chose a Toyota car, and it gave an empty
disqualifying condition. In fact, the reason was that
this car model had the lowest price among all cars in
the database. Therefore, it was in the global
skyline set.

From the above results, a salesperson for the first car
should not try to promote the car to a customer that prefers
Toyota to Honda, but he may promote it to a customer who
prefers Mitsubishi to Honda, since the car has some other
advantage that can be attractive. The second car should be
promoted to someone who prefers Mitsubishi. The third car
can be promoted to any customer.

6 RELATED WORK

Skyline queries have been studied since the 1960s in the
theory field where skyline points are known as Pareto sets
and admissible points [12] or maximal vectors [4]. However,
earlier algorithms such as [4] and [3] are inefficient when
there are many data points in a high-dimensional space.
The problem of skyline queries was introduced in the
database context in [5].

We can categorize the existing work into two major
groups—full-space skyline queries and subspace skyline queries.

Many efficient methods have been proposed for full-
space skyline queries that return the set of skyline points in
a specific space. Some representative methods include a
bitmap method [22], a nearest neighbor (NN) algorithm
[16], and BBS skyline method [18].

Recently, skyline computation has been extended to
subspaces. Subspace skyline queries return the skylines in
all subspaces [26], [20], [21], [25], [19].

Most of the existing studies assume that only numeric
attributes are present. Some recent studies [7], [6], [8], [9],
[10], [2], [1] consider partially ordered attributes. For
example, [7] and [6] transform each partially ordered
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attribute into two integer attributes. Then, the conventional

skyline algorithms can be applied. Reference [8] studies the
problem of estimating the cost of the skyline operator

involving partially ordered attributes.
Nevertheless, most existing work assumes that each

attribute has only one order: either a total or a partial order. In

this paper, we consider the scenarios where different users
may have different preferences on nominal attributes. That

is, more than one order need to be considered in nominal
attributes.

Some latest works consider skylines on nominal attri-
butes. References [9] and [10] study how to specify a query

based on preferences on nominal attributes. When prefer-

ences change, the query results can be incrementally
refined. In [2], a user can specify some values in nominal

attributes as an equivalence class to denote the same

“importance” for those values. Whenever a value v has a
higher preference than a value v0 in the equivalence class, v

also has a higher preference than all the other values in the

equivalence class. Reference [1] is an extension of [2]. In [1],
whenever a user performs a query and obtains the results, if

s/he finds that there are a lot of irrelevant results, s/he can

modify the query by adding more conditions in the query so
that the result set is smaller to suit her/his need.

Reference [13] studies how to find skyline points in a
dynamic data set containing moving objects, each of which

is associated with some spatial-related attributes and a
non-spatial-related attributes. The dynamic skyline studied

in [13] is based on spatial-related attributes that should

satisfy the triangle inequality. However, the dynamic
skyline studied in this paper is based on nominal attributes

whose values can have any arbitrary order. The problems

in [13] and here are essentially different, and the methods
proposed in [13] cannot be applied here.

To summarize, there are two major differences of our
work from other works. First, in this paper, since we study

the refined skyline queries for online queries, we have to

materialize the skylines of every order in a compact way
so that the query result can be returned online and the

storage of the materialization can be minimized. Second,

we study the problem of viewpoint queries. The output is
a representation for some conditions that a given data

point is (or is not) a skyline point. No other researcher has

addressed the problems studied here.
In the preliminary version of this paper [24], we

proposed viewpoint queries. However, [24] only focuses
on viewpoint queries, but this paper addresses both

viewpoint queries and refined skyline queries thoroughly.
Recently, [23] explored refined skyline queries with implicit

preferences, which are a special case of the preferences

studied in this paper. One example of an implicit preference
is “v1 � v2 � �,” which denotes that value v1 is the most

preferable, v2 is the second most preferable, and all other

values (denoted by “�”) are less preferable than v1 and v2.
The preferences studied in this paper are in form of any

partial orders and thus are more general than implicit

preferences. Most recently, [14] studied the problem of
mining user preferences using skyline and nonskyline

examples provided by user feedback.

7 CONCLUSION

We consider the problem of online skyline analysis with
dynamic preferences on nominal attributes. We present a
concise model of the problem, which captures the essential
properties relating the changes of skylines due to the
changes of orders. We also introduce the skyline viewpoint
queries and propose two methods for the queries. The first
method is based on the MDC. In the second approach, we
propose a compact data structure CST to materialize and
index the skylines with respect to various orders on the
nominal attributes. We have conducted experiments to
show that the proposed algorithms are effective and
efficient. Future works include incremental update hand-
ling and the subspace skyline problem with dynamic
preferences on the nominal attributes.
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