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ABSTRACT

Maximal clique enumeratio(MCE) is a fundamental problem in
graph theory and has important applications in many arezsas
social network analysis and bioinformatics. The problemxi®n-
sively studied; however, the best existing algorithms iegonem-
ory space linear in the size of the input graph. This has becom
a serious concern in view of the massive volume of today's fas
growing network graphs. Since MCE requires random access t
different parts of a large graph, it is difficult to divide tigeaph
into smaller parts and process one part at a time, becausr eit
the result may be incorrect and incomplete, or it incurs huagt

on merging the results from different parts. We propose a&hov
notion, H*-graph, which defines the core of a network and ex-
tends to encompass the neighborhood of the core for MCE compu
tation. We propose the first external-memory algorithm faZB
(ExtMCE ) that uses thé/ *-graph to bound the memory usage. We
prove both the correctness and completeness of the resytiited

by ExtMCE. Extensive experiments verify that ExXtMCE effitly
processes large networks that cannot be fit in the memory.lsble a
show that theH *-graph captures important properties of the net-
work; thus, updating the maximal cliques in th& -graph retains
the most essential information, with a low update cost, wihén
infeasible to perform update on the entire network.

Categories and Subject Descriptors

G.2.2 PISCRETE MATHEMATICS ]: Graph Theory—Graph al-
gorithms

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION

Maximal clique enumeratiofMCE) [2, 7] is a long-standing

o Problem in graph theory. It is closely related to a numberuof f

damental graph problems, such as maximal independent@ets (
minimal vertex covers) [28], graph coloring [8], maximahemon
induced subgraphs [19], maximal common edge subgraphs [19]
etc. Its significance is not just limited to graph theory Haban nu-
merous applications in various real-world networks, sucbarial
network analysis [15], hierarchy detection through emeilvorks
[10], study of structures in behavioral and cognitive netsd3],
statistical analysis of financial networks [6], clusteringlynamic
networks [26], the detection of emergent patterns in testroret-
works [4], as well as various applications in computatidsialogy

[1], protein-protein interaction complex detection [28fd cluster-
ing protein sequences [23].

MCE algorithms have been extensively studied [2, 7, 28, 90, 1
21, 26, 1, 27, 9, 12, 25]. The worst-case time complexitynef
memory algorithm&ave proved to be optimal recently [27]; how-
ever, the best existing algorithms require space whichyimptot-
ically linear in the size of the input graph. Unfortunatefyany
real-world networks have grown exceedingly large in regeairs
and are continuing to grow at a fast rate. For example, the Web
graph has over 1 trillion webpages (Google), most socialorks
(e.g., Facebook, MSN) have millions to billions of usersngnai-
tation networks (e.g., DBLP, Citeseer) have millions of &
tions, other networks such as phone-call networks, emailor&s,
stock-market networks, etc., are also massively large.

Despite the low cost of memory, applying in-memory algarith
is clearly infeasible on such massive data. For large graptter-
nal memory algorithmsffer a possible recourse; however, design-
ing such an algorithm is fraught with difficulties. MCE compu
tations access vertices in a rather arbitrary manner. Tdtisnp
tial random disk access requirement makes it difficult taddivthe
graph and process it in a part-by-part manner and perhagestsy
the reason for the current prevalence in in-memory algmstifior
tackling this problem.



In this paper, we develop the first external-memory algorifor
MCE (ExtMCE) which operates on the broad classscfle-free
graphs [24, 11]. Extensive studies [14, 24, 6, 5] have shdwah t
scale-free graphs are prevalent in real-world applicatiompartic-
ular, Dorogovtsev and Mendesand [11] show that a wide sjp@ctr
of real-world networks are scale-free, which include the W\¢i-
tation networks, collaboration networks, neural netwpnkstabolic
reaction networks, genome and protein networks, ecolbgicd
food webs, word web of human language, telephone call graph,
mail networks, power grids and industrial networks, eleit cir-
cuits, nets of software components, and energy landscapens.

Given a large input graplr, ExtMCE recursively computes a
portion of G at a time, such that each portion can be fitinto the main
memory for MCE computation. Two questions arise: (1) What

many important properties of the original network, while thet
of maximal cligues computed from thE*-graph are those that
consist of the most important vertices in the network. Tfoees we
propose to update only the maximal cliques inEhg-graph, which
can be processed in the memory due to the much smaller number.
Furthermore, we show that the portion of the update§-ithat
are related to théf *-graph is very small and thus by focusing the
update maintenance on tii&*-graph, we can significantly reduce
the overall update cost. Given the up-to-daié-graph, we then
re-compute the whole set of maximal cliquesiron demand.
Finally, we conduct experiments on a set of large real-woeid
works, with size up to about 10 million vertices and 80 miilio
edges, collected from different domains. Our results yehét the
H*-graph represents a significant portion of the original oekw

portion of G should be chosen at each recursive step and how? (2) and it is effective to use thél*-graph to bound the memory us-

How to ensure that the set of maximal cliques computed bpcall
at recursive steps is sound and complete with respect tcethaf s
maximal cliques globally irG?

To answer the first question, we propose the novel notidi of
graph The key component of thH *-graph is thdargestset ofh
vertices inG that have degree at ledstcalled theh-vertices This
is inspired by the concept @f-index[16], which is themaximum
h for a scientist who haa publications of citations at leaat The
h-index is widely used to assess a scientist’s publicatiodyctiv-
ity and quality. Putting into the context of a graph, theertices
correspond to thé publications that contribute to thieindex. The
induced subgraph @ by theh-vertices constitutes theore of the
H*-graph. Then, we extend from this core to their neighborhood
and thus form theé7 *-graph.

The H*-graph is the key component in the first step of ExtMCE
and sets the limit on the memory usage for all subsequens.step
To this end, we need to first make sure that Bhe-graph is small
enough to be kept in the memory. For a general graph Hfie
graph can spread to cover a large part of the graph so thatyit ma
be too large to fit into the memory. However, we show that for
scale-free graphs, thié*-graph is only a small portion of the entire
graph. Furthermore, we derive bounds on the size offfiegraph
for scale-free networks, which are also bounds on the memeary
quirement of ExtMCE. We also devise a method to handle the cas
that even thed *-graph cannot be fit into the memory.

Now we answer the second question. MCE computation in-
volves random accesses to all parts@@f therefore, if we take
any part ofG and compute MCE on each part, then either the set
of cliques computed may not be complete and may contain non-
maximal ones, or the cost of merging the results from eadrepal
ensuring completeness is substantially high.

It is challenging in linking the MCE computation from one par
of GG to the other parts while ensuring the correctness and com-
pleteness of the result. L&f; be the part of5 at thei-th recursive
step of ExtMCE (thus( is the H*-graph). We formulate7; in
such a way that it allows smooth transition fra@# to G; 41 so that
we can compute a subset of maximal cliques in one paf,and
then move on to another part until we finish the enfité/We prove
that the maximal cliques computed in edokal part are indeed
maximalglobally in the entire graph. We then prove that the set of
maximal cliques computed is alsomplete

Real-world networks undergo frequent updates. Howevergth
is only one known algorithm [26] that can be applied to updiage
set of maximal cligues when a network is updated. Their gor
is impractical for large networks because the set of maxaiglies
in a large network is too large to be kept in the memory, while
keeping them on the disk results in extremely high update cos

We take a new approach. We show that fi&-graph captures

age in EXtMCE. We demonstrate that EXtMCE uses comparable
time, but significantly less memory, as compared with theest&
the-art in-memory MCE algorithm [27]. When the memory is not
sufficient, ExtMCE still computes MCE efficiently with a baled
memory usage. Our results also verify that our approach déiep
maintenance is effective, and significantly more efficibatt[26].

Contributions. We summarize our main contributions as follows.

e We propose ExtMCE, the first external-memory algorithm
for MCE computation. We prove both the correctness and
completeness of the result computed by ExtMCE.

We propose the novel notion of thé*-graph, which is used

to bound the memory usage as well as to guide the recursive
steps of ExtMCE. We derive bounds on the size of the
graph.

We propose the first feasible solution for update maintemanc
of MCE in large networks. We show that by updating the
maximal cliques in theZ *-graph, we retain the essential in-

formation in the entire network, leading to a low update cost

Organization. Section 2 formally defines the problem and gives
the basic notations. Section 3 presents Hiegraph. Section 4
details the ExtMCE algorithm. Section 5 discusses update-ma
tenance. Section 6 reports the experimental results. dectdis-
cusses the related work. Section 8 gives the conclusion.

2. PROBLEM DEFINITION

In this paper, we focus on large graphs whose degree distribu
tion follows apower law or calledscale-free networkgl4, 24].
Let G = (V, E) be an undirected and unlabeled graph. We define
n = |V] andm = |E|. We define thesizeof G, denoted a$G|,
as|G| = m. GivenS C V, we define thenduced subgraplf G
by SasGs = (Vs = S, Es = {(u,v) : u,v € S, (u,v) € E}).

We define the set afeighborsof a vertexv in G asnb(v) = {u :
(u,v) € E}, and thedegreeof v in G asd(v) = |nb(v)|. Simi-
larly, we definenb(v, Gs) = {u : (u,v) € Es} andd(v,Gs)
[nb(v, Gs)].

A cliquein G is a subset of verticesy’ C V, such that the
induced subgraph bg' is a complete graph 7. C is called a
maximal cligugmax-cliquefor short) inG if there exists no clique
C’in G such thaC’ > C.

The problem of Maximal Clique Enumeration (MCE) given a
graph G, find the set of all maximal cliqgues @. In this paper, we
solve the problem of MCE for large scale-free graphs thahean
be fit in the main memory.

Table 1 shows the notations used frequently in the paper.



Table 1: Notations

Symbol Description
n Number of vertices in grapty' = (V, E)
m Number of edges in grapi = (V, E)
|G| Size of G, defined a3G| = [E] = m
Gs Induced subgraph @ by a set of vertice$'

nb(v); nb(v,Gs)
d(v); d(v,Gs)

The set of neighbors of a vertexin G / Gs
The degree of in G / Gs

H The set ofh-vertices inG;, Vv € H,d(v) > h
H,, The set ofh-neighbors inZ (non+-vertices)
ot HUHy,
Gu Gyt H-graph /H T -graph; the induced subgraph@fby H / HT
G~ H*-graph;G g+ = (H+7EHH UEHH,L,,)
M the set of max-cliques in the whole gragh
Mx the set ofX-max-cliques inG'x, X canbeH*, HT, or H
T~ H*-max-clique tree; a prefix-tree to kedd «
C=(Cy UCn,,) foracligueC'in Gy+: Cu=(CNH); Cu,,=(C N Hup)
HNB(X) the set of common-neighbors of all vertices ik,
whereX is a clique inG g
mazCL(S) the set of all max-cliques i6's
My, Ma, M3 three disjoint subsets 0¥1, 1, defined in Lemmas 4-6
X a set of “H" parts used to form cliques iM3, see Eq. (10)
EXT(C) a set ofh-neighbors used to exterd € X, see Eq. (11)

3. THE H*-GRAPH

In this section, we introduce a novel conceptff-graph for
real-world networks. Thé7*-graph plays a crucial role in the first
recursive step of our ExtMCE algorithm (details in Sectipn 4

3.1 The notion of the H*-graph

We first define the set di-vertices which forms the core of the
H*-graph.

Definition1 (h-VERTICES). Given a graphG = (V, E), the
set of h-verticesof G, denoted add, is defined add = {v : v €
V,d(v) > h} suchthaiH| = h, andVv € (V\H), d(v) < h.

Essentially, the set ofi-vertices of G consists ofh vertices in
G that have a degree of at ledst From theh-vertices, we extend
to the h-neighbors defined as follows. Note thaneighbors are
defined to be norm-vertices.

Definition2 (h-NEIGHBORY). The setofi-neighborsdenoted
as H,;, is defined adl,,, = {v:v € (nb(u)\H),u € H}.

We use a notatior ™ to denote the union of the sets hf
vertices andh-neighbors. The 4" sign is used to indicate the
extension from thé-vertices to thér-neighbors.

Definition 3. HT = HU H,,;.

With the set ofh-verticesH, we define the concept df -graph
in G as follows.

Definition4 (H-GRAPH). TheH-graphof a graphG, denoted
asGp, is defined as the induced subgraphtbby H.

Similarly, we define the concept éf T-graph.

Definition5 (H"-GRAPH). The H " -graphof a graphG, de-
noted asi';; +, is defined as the induced subgraphtbby H.

With the H-graph and thed "-graph, we now define the notion
of H*-graph. Intuitively,H*-graph is a graph that “lies” between
H-graph andd "-graph.

Figure 1: An Example Graph G

Definition6 (H*-GRAPH). Given a graphG = (V, E), the
H*-graphof G, denoted a&- i+, is defined a&/ g~ = (H*,EHHU
Ewn,, ), whereEgg = {(u,v) : u,v € H,(u,v) € E} and
Eun,, = {(u,v) :w € H,v € Hpp, (u,v) € E}.

The H*-graph is the same as tli&" -graph except that th& *-
graph does not contain the edges betweertheighbors. In other
words, theH *-graph contains only those edges incident to at least
oneh-vertex. It is easy to see théty C Gy~ C Gy+. The first
equality holds wheri?,,, = 0 and the second equality holds when
there is no edge betweénneighbors inG.

We use the following example to illustrate these basic cptsce

Example 1.Figure 1 gives an example grapgh which contains
13 vertices and 25 edges. The sethofertices inG is H =
{a,b,¢,d, e}, which means thak = 5. It can be easily checked
in the figure that all the 5 vertices i (shaded vertices) have de-
gree at least and all the remaining vertices @@ have degree less
than5. The set ofi-neighbors is given afl,,, = {r, s, w, z,y, z}.
And H" = {a,b,c,d,e,r, s, w,,y,z}. The two verticeg andt
are not inH ™ since they are not incident to any vertexfih The
H-graph consists of the shaded vertices and bold edges ingFlgu
which is the induced subgraph 6fby H. The H*-graph contains
all edges inz except for the two edges incidentg@andt. Finally,
the H*-graph contains all edges in tHé " -graph except for the
edges betweeh-neighbors, i.e.(w, z), (s,v), and(r, ). |

In the following two subsections, we analyze and justify wigy
useG g+ in our EXtMCE algorithm.

3.2 Analysis of H*-graph

Our algorithm ExtMCE uses thH *-graph to estimate and con-
trol the memory usage. To this end, we need to examine two im-
portant factors: the size df and the size of7 g+ .

We first discuss the size @f. Faloutsos et al. [14] show that for
real-world networks following a power law degree distribat

() = = (r (). &)

In Eq. (1), r(v) is thedegree rankof a vertexv, i.e., v is the
(r(v))-th highest degree vertex i, andR is therank exponent
where’R < 0. By Definition 1, H is a set ofh vertices having
degree at leagdt; in other words, the lowest-degree vertein H
has a rank ofi and its degree is at least Thus, by substituting
r(v) by hin Eq. (1) andi(v) should be at leadt, we have

d(v) = nLRhR > h. @)

Solving the inequality, we have

R

h<nR-T. 3)




Faloutsos et al. [14] show th& is a constantfor most real-
world networks, which can be easily measured by plottingdine
gree distribution of the networks. The value®fmeasured in [14]
for three snapshots of the internet graph is betweeé and—0.7.
For a graph of 1 million vertices, we have< 464 and therefore
|H| < 464 whenR = —0.8. The value ofh decreases to about
300 whenR = —0.7. This shows that the number bfvertices in
a large real-world network is small.

Next, we estimate the size 6Fg~.
following upper bound foftG g+ |.

By Eq. (1), we have the

h

Gu-| < > [

r=1

r

)®

4)

The right-hand side of Eq. (4) is the sum of degrees of alkthe
vertices. Since the edges connecting tweertices (if there is any)
are counted twice, we have the” sign in Eq. (4). The equality
holds when there is no edge connecting fweertices; in this case,
the H*-graph consists of “stars”, each centered at &rvertex.

We can also obtain a lower bound f6¥z« | as follows.

h

G| = > (

r=1

r

n

h(h — 1)
=

)* ®)
The lower bound occurs when dllvertices are pairwise con-
nected. In this case, all edges connecting haertices are double
counted and hence deducting the number of these edges feom th
degree sum gives the lower bound|6fz- |.
Similarly, we also obtain the size 6, which is half of the de-
gree sum of all vertices i, since all edges are counted twice.

_ Ly
G| = 2;”) : (6)
By Eq. (4)-(6), we have
255, —nRh(h—1) _ |G| _ 230, rF @)
re1 TR -G - re1 TR
For a network withR = —0.7 and 1 million vertices|Gx+| is

within [12%, 15%] of the entire network, and the percentayesrs
considerably when the network becomes larger: the ratio ike
range of [8%, 10%)] whemn increases to 10 million.

With the result of Eq. (7), the amount of memory required for
keepingGr+ is reasonable. Another desirable aspect of ifie
graph is that the rank exponent in Eg. (3) is a constant fot reat
world networks. This property allows us to even estimatesthe of
G r+ when the network grows, so that we can predict the memory
resource required at a certain point in the future. For maway-r
world networks, it is possible to predict the growth of théwark
based on its past growth pattern, and thus we can prepareancel
the memory resource required for our computation in theréutu

3.3 Why H*-graph?
We examine why we us€' g~ instead ofGx or G +. We first
analyze|lG | as follows.

h(h — 1)
5 ®)

Eg. (8) gives the lower and upper bounds|6fz|. Sinceh
is small, if we useG as the in-memory partition, it leads to too

0<|GH| <

Algorithm 1 ComputeH *-graph

Input: G = (V, E).

Output: The set ofh-vertices ofGG, H, and the set of their neigh-
bors, NBy = {nb(v) : v € H}.

. Seth «+ 0 and initialize an emptynin-heap Q;
Let(d(v), v, nb(v)) be anelementn @, whered(v) is thekey,
Denote theminimum keyf Q by min;
. foreachv € V do
if (h =0or(d(v) > handmin > h))
insert(d(v), v, nb(v)) into Q;
h++;
else if(d(v) > h andmin = h)
delete-mirandinsert (d(v), v, nb(v)) into Q;
return H < {v : (d(v), v,nb(v)) € Q}
andNBy < {nb(v) : (d(v), v,nb(v)) € Q};

©CoNo,rwNE
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©

many recursive steps in the max-clique computation andehenc
many scans of7 from the disk.

As for |G|, lets Sr_(2)%, ie., the degree sum of
h-vertices. |G +| reaches its maximum when (1) the number of
h-neighbors is maximized (i.e|H.,| = s); (2) the degrees of
h-neighbors rank top among ndnvertices (i.e., the degree rank
of h-neighbors is fromh 4 1) to (h + s) in G); and (3) allh-
neighbors connect with only verticesHi™ (i.e., all edges incident
to h-neighbors are i7 ;;+ ). Thus, the upper bound 0 ;;+ | is

)R

h
|G g+l

IA

1 : +7’R
36+ ™)

©)

The lower bound ofG y;+ | is simply|G g+ | sinceG g+ C G+ .
Eq. (9) shows thatZj + is too large to be kept in memory. For
example, wherR = —0.7 andn is 1 million, G ;;+ can be as large
as65% of the whole grapl@.

From the semantic point of viewy  only retains the very core
of G and does not reveal much global information, wiiilg + may
be giving too much general information and making it not much
different fromG. On the contrary(7 = gives the core ofs as well
as the relationship from the core to other part€;of\We examine
empirically more properties @+ in Section 6.1.

3.4 Computing the H*-graph

Algorithm 1 presents the algorithm for computing the sebof
verticesH , together with the set of their neighbal&3 . A min-
heapQ is used to keep thke-vertices with their neighbors using the
vertex degree as the key. Lines 4-9 perform a scan on theesrti
in G to check whether a vertex can be added)as a potential
h-vertex. A vertex with degree larger than the currknis either
directly inserted toQ in Lines 5-7 (whenh can still grow since
the min-degree irQ is larger thanh) or replace the min-degree
vertex inQ in Lines 8-9 (ifh is incremented, the min-degree vertex
no longer satisfies the degree requirement and is thus destar
Finally, the set of vertices kept i@ is returned as?. After we
obtain H and their neighbor set¥ By (i.e., the adjacency lists),
we essentially obtain th& *-graph.

THEOREM 1. Algorithm 1 correctly computes the setefertices
of G and the set of their neighbors i®(hlogh + n) time and
O(|Gu~|) space, with one scan 6f.

PROOF To prove the correctness, we need to show thathdet
be the true value ok of G, then theh computed by Algorithm 1



is equal toho. Suppose to the contrary that< ho, which implies
that there aréiy > h vertices with a degree greater thap >
h. However, according to Algorithm 1, theég vertices must be
inserted intoQ at some point, since their degree is greater than
and the value of: is never decreasing in Algorithm 1. Therefore,
h computed by Algorithm 1 should be at ledst in this case. On
the other handh cannot be larger thahy, since each increment of
h (Line 7 of Algorithm 1) follows the definition oh-vertex (Line
5). Thus, we havé = hy.

We haveO(h) insertions/updates, each take€log h) time, plus
n comparisons betweeh and d(v) for eachv € V. Space is
needed to keep-vertices and their adjacency lists, which takes
O(|Gu~|) space. Since each vertexc V is processed only once,
we only need one scan 6f. [

4. RECURSIVE CLIQUE COMPUTATION

In this section, we discuss our algoritlExtMCE . We first give
the framework of ExtMCE as follows.

e The first step: extractGy~ from G, compute the set db-
cal max-cliques in7 g~ obtain and output a subsetgibbal
max-cliques from local max-cliques by linking to the remain
ing part of G, and updat&> by removingGr~;

e The i-th step: extract another subgragh; (of similar struc-
ture asGg~), where|G;| < |Gg+|, from G, repeat the first
step (by replacingz ;= with G;);

The recursive step continues uriillbecomes empty.

4.1 H*-max-cliqgues and H*-max-clique tree

We start the first step by defining the notiongFbf-max-cliques
and H*-max-clique tree.

4.1.1 H*-max-cliques
We first define the notion off *-max-cliques.

Definition7 (H*-MAX-CLIQUE). AnH*-max-cliqueis a max-
clique inG g+. The set of all *-max-cliques is denoted a8 s+ .

The following lemma states two propertiesif -max-cliques.
LeEmMMA 1. The following statements &f*-max-clique are true:

1. AnH*-max-clique contains at least ortevertex.

2. An H*-max-clique contains at most oheneighbor.

PROOF Since eacth-neighbor inG g+ is connected to at least
oneh-vertex and there is no edge between any bareighbors, an
H*-max-clique containing ah-neighbor must also contain at least
an incidenth-vertex, which proves the first statement. The second
statement holds since there is no edge anfengighbors. [

4.1.2 H*-max-clique tree

We now present the data structure used to keep the skt ef
max-cliques. Since two cliques may share common vertices, w
define a prefix-tree structure to represent common verticelse
cliques as common paths.

Definition8 (H*-MAX-CLIQUE TREE). GivenG g~ of agraph,
define a total order< on H and H,,. Moreover,Yu € H and
Vv € Hpp, u < v. The H*-max-clique treeTy~+, of Gy~ is a
prefix tree defined as follows.

e The root of Ty~ is A;

e The children of a vertex iff’z« are ordered by<;
e All vertices in a path i’y ~ are ordered by<;

e The set of root-to-leaf paths ifi« has a one-to-one corre-
spondence to the set &f*-max-cliques. A root-to-leaf path
(A, u,...,v) corresponds to af “-max-clique{w, . .., v}.

We define< by simply assigning each vertex a unique ID and
ordering them by their IDs, where the ID of &nvertex is always
smaller than that of ah-neighbor.

By Definition 8, we have the following lemma.

LEMMA 2. The following statements @f;+ are true:

1. Anh-neighbor can only be a leaf ifiz-.

2. All children of\ are h-vertices.

PROOF Lemma 1 states that df*-max-clique contains at most
oneh-neighbor. By the definition of the order and the tred’ -,
anh-neighbor can only be a leaf ifi-.

Similarly, all children of\ areh-vertices since aff *-max-clique
contains at least ong-vertex as stated in Lemma 1 and &H
vertices are ordered befoheneighbors in a path iffg~. [

Most existing algorithms for computing max-cliques can lzelm
ified to constructl'z« with small overhead, particularly the algo-
rithms [7, 19, 27, 9, 22, 12, 25] that adopbacktracking search
treg which is essentially a®/ *-max-clique tree. It is not our focus
to propose anothén-memoryMCE algorithm; however, we high-
light two improvements that we can make by employing the umiq
properties ofl'y «.

Given a patlp = (A, u,...,v) in T+, let S be the set of ver-
tices that can be used to potentially grovirom v. If S C H,,
we first test if{u, ..., v} (the corresponding clique @j), instead
of {u,...,v,s}forsomes € S, is maximal. If{u,...,v} is max-
imal, by Statement 1 in Lemma 2, we directly creétas the set
of children ofv (we also marky for a condition test in Line 7 of
Algorithm 2). Second, unlike a normal prefix tree or a baaitiag
search tree, by Statement 2 in Lemma 2, we only need to cahstru
the subtree rooted at dnvertex that is a child of\. These two
improvements can considerably speed up the process asabey s
a lot of unnecessary checking and comparisons.

4.1.3 Size estimation of H*-max-clique tree

The first step of our algorithm is critical as it sets the memor
limit for the subsequent recursive steps. In Section 3.2give
bounds onGx+|. However, there is another elemefiy-, that
may take much memory. We estiméi@;- | here.

Unlike |Gz~ |, which can be estimated by properties of scale-free
networks, [T+ | is difficult to estimate because the number and
sizes of max-cliques iz« vary greatly for different networks.
The best known upper bound on the number of max-cliques is ex-
ponential [27], which is obviously too loose to be used tineste
the memory usage.

We devise an estimation strategy that borrows the concept of
Knuth’'s method [18] for estimating the size of a backtragkiree
T. Letn(T) be the number of vertices i. The idea is to ran-
domly probe a set of pathB in T" and estimate.(T) = AVGpep
(n(p)), wheren(p) is the size of a tree with the same rootzas
and usingp as a building path. Let = (vi,va,...,vk), n(p)
A+ fi+fifo+ 4+ (fr - fe—2fe—1)), wheref; is the number
of children ofv;. In the simple case tha&t is a complete binary
tree, this method correctly estimate§I’) as(2*—1). Itis shown
that Knuth’s method is unbiased and effective in practicg.[1



However, Knuth’'s method assumes the presen@@ s that one
can perform random probing of paths, whilg -+ in our case is not
yet constructed when estimating its memory usage. We peoaos
new method of probing paths ifiz« by utilizing its unique prop-
erties, without actually constructirifiz~. Each time we randomly
choose a vertex. € H. We considery as a child of\ and at-
tempt to probe randomly a pathfrom w as follows: we randomly
choose a vertex from the set of vertices that can be used to po-
tentially growp from u, and then continue the process recursively
from v until the pathp cannot be expanded any more (iggor-
responds to atit/ *-max-clique). Since the vertices are ordered and
nb(v) is available for every € H, we can virtually probe a path
even thougll 'z~ does not exist. Thus, we can compuig) as we
move alongp. Then, we estimate(7x~) by averaging:(p) of all
the paths probed.

Our method is simple and yet does not violate the principle of
random probing [18]. Our empirical study shows that it giees
good estimation in practice (see Table 5 in Section 6.1).

In the case when memaory is very limited such that the availabl
memory N is smaller tham(Tx+), we remove the lowest-degree
vertices fromH. The number of vertices to be removed can be ap-
proximated as = (1 — N/n(Twg~))h. Then, we use the remain-
ing (h — h) vertices asH and extract a smallefz~ accordingly.
We re-estimatew (T~ ) for the smallerG g+ until N > n(Tg~).
The memory limit for the subsequent recursive steps is teétos
the size of the smalle& - and the correspondin@x-. We may
lose some of the nice properties of usifig;+, especially for dy-
namic update maintenance; however, when memory is schise, t
is a necessary compromise but importantly, our recursiyerghm
also handles the case of limited memory resource.

4.2 From H*-max-cliques to global max-cliques

An H*-max-cliqueC may not be a real max-clique ii; that
is, C'is maximallocally in G+ but may not be maximajlobally

Theorem 2 is important because it enables us to compute atsubs
of M separately on a portion @¥, output it, and move on to com-
puting another subset gé1 for another portion in the remaining of
G, and so on recursively until we finish the whole graph.

4.2.2 Categorizing H-max-cliques

Itis infeasible to computé1 ;; + directly fromG +, sinceGy +
is too large (see Eq. (9) and the analysis right after in 88@i3).
Instead, we computd1 ;+ from Tx~. We first define some nota-
tion used in the subsequent discussions.

Let My be the set of all max-cliques i@z . Given a clique”
inGy+,we defineCy = (CNH)andCh,, = (CNHy). Since
H" = (HU H,;), we haveC = (Cy U Cy,,). Given a clique
X in G, we define the set of commdrineighbors of the vertices
in X asHNB(X) = {v : v € Huy,Vu € X, (u,v) € E}.
In particular, ifC' is a path inTy+«, HNB(Cy) defines the set of
h-neighbor leaves sharing the same péth. Finally, we define
mazCL(S) to be the set of all max-cliques i@s (the induced
subgraph of7 by a set of vertices).

We first identify three disjoint categories & "-max-cliques as
follows. LetC = (Cy U Cg,,) be anH t-max-clique.

1. “Cu,, = 0" the set of Ht-max-cliques in this category is
defined asm},. = {C': C € My+,Cn,, = 0}.

2. “Cu,, # 0 andCy € My" the set of HT-max-cliques
in this category is defined aé1%,, = {C' : C € My,
Cu,, #0,Cu € Mu}.

3. “Cu,, # 0 andCy ¢ My the set of H-max-cliques
in this category is defined as1?,, = {C : C € My,
Cn,, #0,Cu ¢ Mu}.

Recall that our objective in this subsectiontisobtain M+
from Ty~ or equivalently fromM g~. Therefore, in the remaining

in G. In this subsection, we discuss how we compute global max- part of this subsection, we first define three sets of cliqus,

cliques from theff *-max-cliques.

M, and M that can be obtained fro i -. We then prove that
M1, Mas, and M3 are sound and complete with respect to the

4.2.1 H"-max-cliques: a subset of global max-cliques above-defined three categories Hf"-max-cliques, respectively.

We first define the notion off *-max-cliques as follows.

Definition9 (HT-MAX-CLIQUE). AnH ™-max-cliqueis a maxi-
clique inGy + thatconsists of at least oné-vertex. The set of all
H*-max-clique is denoted as1 .

LEMMA 3. An H-max-clique is also a max-clique @.

PROOF. Proof by contradiction. Le€ be anH T-max-clique
andu be anyh-vertex inC'. Suppose that’ is not maximal inG,
i.e., there exists a max-cliqu&’ in G such thatC’ > C. ThenC’
must contain some vertex wherev ¢ H™ (otherwiseC’ must
be maximal inG s+ andC is not). v ¢ H™" implies thatv is not
connected with:, which contradicts that” is a clique. Therefore,
C must be maximal i7. [

With the result of Lemma 3, we have the following theorem.

THEOREM 2. Let M be the set of max-cliques @. Let M,
be the set of max-cliques @ that consist of at least ah-vertex,
ie,Mo={C:CeM,CNH#D} ThenM 1 = M,.

PROOF First, Lemma 3 shows that1;;+ C M. Next,VC' €
Mo, Fu € C such thatw € H. Sincevv € C\{u}, (u,v) € E,
we have eithep € H orv € H,;, implying thatC € M4+ and
henceMo, C My +. Thus Mg+ = Mo. O

We further prove thatM i, M2, and M3 give the complete set
of M+ in Theorem 3. Finally, we show how1 ;;+ can be com-
puted fromT« in Theorem 4.

We first defineM 1. Intuitively, M1 contains the max-cliques in
My~ that are also il g+ .

LEMMA 4. LetM; = My N Mg-. Then My = My,

PrROOF (ProveM; C M}H). LetC be aclique inM;. Since
C € (MuanNMg~),C contains onlyh-vertices and is maximal in
G m+, which means that the vertices@do not have any common
h-neighbors (i.e.Cw,, = 0). SinceH" = (HU H,;), Cis also
maximal inG ; +. SinceCr,, = 0, we haveC € M}, .

(ProveMy,+ € Mi).VC € Mj,., we haveCy,, = 0, which
implies thatC' = C'y andC € Mpy. We haveC' € My~ as well
sinceCp,, = 0. Thus,C € (Muy N Mpu=) =M. O

Essentially, eact’ € M; corresponds to a root-to-leaf path
in Ty~ where the leaf is ah-vertex. Thus,M; can be readily
obtained fromil 'y «.

We now defineMs. Intuitively, for each cliqueC' in Mo, its
“H" part (i.e.,Cy) is in M g; or equivalently, its H” part is max-
imalinGgy.

LEMMA 5. Let My = {C1UC2 : C1 € (Mu\M,1),Cs €
mazCL(HNB(C1))}. Then Mz = M2,



PROOF lItis obvious that all elements ifv1; are cliques by the
definitions of HNB(-) andmazCL(-).

(Prove Mz C M3,,). YO = (Cy UC2) € Mz, we have
Cy = C1 andChq,, = Cs. SinceCy € My, Cy is maximal in
Gy. SinceCu,, € maxCL(HNB(Cy)), Ch,, is also maximal
in G gnB(cyy), Which defines thé-neighborhood shared by all ver-
tices inCy. Thus,C is maximal inG g+ (i.e.,C € My+). Since
Cu ¢ M1, we haveHNB(Cy) # § and thusCy,, # 0. Since
Ce MH+,CH € Mpy,andCp,, ;é 0, we haveC' € M3,

(ProveM?,, C Ms). YO € M3, Cq,, # 0 andCH €
Mu. Thus,Cy € (Mug\My). SinceC is maximal inH*, Cy,,
must be maximal itz yyp(c 4y, i-€.,CH,, € ma:cCL(HNB(C’H)).
LetC, = Cy andCs = Cq,,, we haveC' € M,. O

Essentially, theC'y of eachC € M, is locally maximal in
Gm. According to Lemma 5, we can compute(, as follows.
For each path irf'’y~ that corresponds to eaeth € My and
has at least an-neighbor leaf (sinc&, € (Mpg\My)), com-
pute mazCL(HNB(C1)), and outputC = (Cy U C>) for each
C> € mazCL(HNB(Cy)). We will explain how to check whether
a path inTx+ corresponds to a clique itz later in this section.

Finally, we defineM 3. Intuitively, for each cliqueC in Ms, its
“H" part is no longer maximal it but just some proper subset
of a max-clique inGx. The non-maximal H” part then forms a
max-clique inG i+ by taking into account itd-neighborhood.

In order to defineM 3, we first need to define two notation&:

and EXT(-). We enumerate the proper subsets of a max-clique in

My that have at least one commameighbor as

X={C1:C1CC,C€Mpu,C1+#0, HNB(C1) # 0, and
3CiC ', C'e My, s.t.CiC Cy, HNB(C1)=HNB(C})}. (10)

The last condition ensures that ea€h € X' is not subsumed
by its proper superset when forming a clique withfiteeighbors.
Then, for eachC; € X, we useEXT(C,) to denote the set of
h-neighbors that can be used to extend defined as

EXT(C:1) ={Cs: Cs € mazCL(HNB(Ch)), and
3C' € M2, st.C" D (C1 U C2), and
30T € X,st.CY D Ch, C2 € EXT(CY)}. (11)

The last two conditions are for the maximality checkind@f U
C2) in M5 and X, respectively.

LEMMA 6. LetM3 = {Cluog :Ch € X,CQ (S EXT(Cl)}
Then M3z = M3,

PrROOF By the definitions ofX and EXT(C1), an element
C € M3 must be a clique.

(ProveMs C M3,,). We first proveMs C M4 by contra-
diction. SupposélC' = (C1 U C3) € M3z such thatlC' ¢ My,
ie.,3C" = (CLuUCy b) € Mg+ such thatC’ > C. We have
Cy2DCu=C andC’H 2 Chu,, = Ca. Assume thalCy; =
Cu, thenCYy w =CH, smceCH 18 maximal inGyypcpy) (=
Guns( ) y) as defined |nEXT(C’H) This leads to a contradic-
tionof ¢’ = Cto C’ O C. Thus,Cy D Cg, which implies that
HNB(Cy) € HNB(CH). SinceCy; , 2 Ch,, and they are max-
imal respectively irGHNmC}{) andG yyp(cyy), BULHNB(CY) C
HNB(Cw), we haveCy = Cr,, andHNB(Cy) = HNB(Ch).
SinceCy D Cux and HNB(Cy) = HNB(Crx), we haveCy; ¢
X (otherwise,Cy ¢ X sinceCpy is subsumed by’y). There-
fore, C; can only be inM . SinceCy; , = Cn,, # 0, we have
C’ € M,. This contradicts taCy,, € EXT(C’H) since there

existsC’ € My such thatCy; > Cy andCy,, = Ch,,. Thus,
M3z C Mpy+. Finally, VC € Ms, we haveCHnb # () since
0 ¢ EXT(Cu), andCy ¢ Mg sinceCy € X and is a proper
subset of som&” € M. Thus, we further havéts C M3, ..
(ProveM?, . C Ms). YO € M3,,,Cy ¢ My andCh,, #
(. First,Cy must be a proper subset of sofié € M. Assume
thatCy ¢ X, thenC'yr must be subsumed by some elementin
contradicting to the maximality of’. Thus,C'x € X. We further
haveCr,, € EXT(Cy) sinceCh,, is maximal inGuyp(cy)
and the maximality ot must be ensured. Thus, € M3. [

Essentially, eacli’ € M3 differs from a clique inM; or M in
thatCx is not maximal inG gr. This category off T-max-cliques
is not as straightforward to compute as the first two categohive
discuss the details in Section 4.2.3.

We state the completeness and soundne&a6f U M2 U M3)
with respect to the whole sé¥! ;. in the following theorem.

THEOREM 3. Mg+ = (M1 U Mz U Ms), whereM;, My
and M3 are defined in Lemmas 4-6.

PROOF. By the categorlzatlonMH+, M3, and M3, are
disjoint and(M}, . U M2, U M3, ) gives exactlyM ;. By
Lemmas 4-6, we hav(a/\/ll UMaUMs3)=Mpy+. O

Now we show thafl'’z~ (plus the knowledge of the edges be-
tween theh-neighbors) is sufficient to computét . We only
need partiat7z,, but do not keeft7,, in memory (see details in
Section 4.2.3). Before discussing the computatiotMof; + from
T+, we first show thatM i can be obtained frorfi’y- by the
following lemma.

LEMMA 7. VC € My, there exists a patp € Tx~+ such that
the set ofh-vertices inp equals toC'.

PROOF For eachC € Mg, we sort the vertices i by <
asC = {vi1,...,v}. First, if HNB(C) = 0, sinceC' is max-
imal in G, there must exist a root-to-leaf path= (v1,...vx)
in Tg~. Next, if HNB(C) # 0, i.e., 3u € HNB(C), then
p = (v1,...,vx,u) must be a root-to-leaf path ifiz- (sinceC
is maximal inGg). O

THEOREM 4. M+ can be computed froffiz~ andGp,,, .

PrROOF By Lemma 7, evenfC' € My exists inTg~. There-
fore, M g can be computed frofiz = by removing allh-neighbor
leaves and checking the maximality of all remaining pathisigT
can be incorporated into the maximality checking when cost
ing Tw+ without any extra cost). Thu§/C € Mg+, Cy can
be obtained fron¥'yz+. On the other hand, the set of commin
neighbors HNB(C'y ), can be obtained from tHeneighbor leaves
in T+, from which the corresponding,, can be computed if we
know the part ol that givesG'ynp(c,,). O

Example 2.Figure 2 gives the *-max-clique tre€l’y~ (with
h-vertices shaded) computed from thig;- of the example graph
G in Figure 1. Each root-to-leaf path ifiyz~ represents aff *-
max-clique and thus there are totally eigtit -max-cliques. The
My consists of only two clique$a, b, ¢} and{b, ¢,d, e} (Mu =
{abc, bede} for short), which can be obtained froffy; - too.

The set of H " -max-cliques obtained from th@ ;;+ in Figure
lis My+ = {abcwz, acy, bede, cey, drz, esy}. We now com-
pute M1, M2, and M3z from Ty« (and partialG'x,,). First, by
Lemma 4, M; = (Mg N Mpy=) = {bede}, which is the only
root-to-leaf path inTx+ with a nonh-neighbor leaf. Next, by
Lemma 5, we hav€ M g\ M1) = {abc}. Therefore, the’; in



Figure 2: T+ of G in Figure 1

M3 can only beabe. Then HNB(abc) = {w, z}, which are the
commonh-neighbor leaves of paths ifi« containingabc. Since
w and z are connected 7, we havemazCL(HNB(abc)) =
{wz}. And thusM, = {abcwz}. Finally for M3, we have
= {ac, ce,d,e}. Essentially we should enumerate all proper
subsets of a clique iM . However, many of them are subsumed
by their proper supersets iti or M . For exampleq is subsumed
by ac since HNB(a) = HNB(ac) = {w,z,y}. Then for each
C1 € X, we computeEXT(C1). For example, consideringc,
mazCL(HNB (ac)) = {wz,y} but EXT (ac) = {y}. Note that
wz € marCL(HNB(ac)) is excluded fromEXT (ac) because
acwz is checked to be non-maximal witbcwz € M. Similarly,
we haveEXT (ce) = {y}, EXT(d) = {rz}, andEXT(e) =
{sy}. Thus, by Lemma 6M3 = {acy, cey,drz,esy}. Itis easy
to see thaf M U M3 U M3) gives exactlyM ;- .

4.2.3 Computing H-max-cliques from H*-max-cliques

We now discuss the algorithm to computé, , M2 and M3, as
shown in Algorithm 2.

It is straightforward to obtain both1, and M3, by performing
a depth-first search (DFS) dhy+ (Lines 2-9). We do not store
explicitly the setM g and search it to check whethél € Mg
(Line 7). Instead, we mark each vertaxwhose root-tos path
forms a clique inM g when we constructi - (see the last para-
graph of Section 4.1.2). Thus, we only need to check whether
is marked in Line 7. We explain how to computexzCL(-) later.

To obtain M3, we first computeY in Line 10 as follows. We
enumerate all proper subsets of ed¢h € My in Line 7. We
then check the conditions defined X (see Eq. (10)) to prune
the unqualified subsets. The checking of the last conditioki is
similar to the maximality checking when constructiig-. Note
that the setHNB(C') of a cliqueC' can be easily obtained from
Tu~ as the set ofi-neighbor leaves of the paths containifig

Given X, we then comput&ZX T (C1) for eachC] € X (Line
12). The maximality checking defined X T'(C1) (see Eq. (11))
is done in the same way as thatin As for the computation of
mazCL(HNB(C1)), we use an existing in-memory MCE algo-
rithm. Since HNB(C1) consists of commork-neighbors of all
vertices inC, HNB(C1) is small and thus it is efficient to com-
putemazCL(HNB(C1)).

However, in order to computeiazCL(HNB(C1)), we need to
know the induced subgraghy vz @) Note that once we g&ty -,

we removeG i+ from the memory. "Thus, we now have more space

to keep partialz,,. In order to avoid random access@bin the
disk, we do the following. LeiV be the available memory. For all
h-neighbor leaves iffy~ ordered by the DFS traversal, we divide
them intok partitionsP; (1 < 7 < k) such that the adjacency lists
of the h-neighbors in eact; can fit intoN. We then read~ from
the disk sequentially and for eache H,;, we write (nb(v)\H)
into the partition(sy is in. We keep the first partition in the mem-
ory, while each of the other partitions is written into congé/e
disk pages. In this way, we read a partition (partiad,,) into

Algorithm 2 Compute-H -max-cliques
Input: Ty« (and partialGw,,)

Output: M+

1. Initilize M1 = M2 = M3 =0

2. for eachpathp = (v1,...,v) in Ty~ do

3. if (vy € H)

4. Mi +— My U{(v1,...,vk)}; /+ by Lemma 4«/

5. else

6. 01%(01,...,1);@,1);

7. if (C1 € Mpg) /+byLemma5«/

8. ComputemazCL(children(vi_1));

9. Mo —~MoU{Cy UCs : C3 € mazCL(children(vi_1))};

10. ComputeY; /+ see Eq. (10¥%/

11.foreachC] € X do /+ by Lemma 6/

12. ComputeEXT(C/) /x see Eq. (11)/

13, M3z« M3U{C,UCh:C}e EXT(C))};
14.retun Mgy + (M UMZ UMs);

the memory each time when computingizCL(HNB(C1)) and
avoid random access in the disk.

4.3 Recursive steps

Now, M+ is computed and outputted, atty - andTy - are
discarded. We are ready to move on to the remaining pagt of

Let G’ be the remaining part aff after removingG g+, which
means that we delete dllvertices and their incident edges from
G to give G’. The first step is to extract a subgraph@f that
we can compute the max-cliques from it in the memory. Can we
extract anothedd *-graphG’;~ from G’ (wrt. anotherh’) in the
same way as we extratg- from G? For any vertex in G,
d(v) < h (otherwisev should be inG g+ instead). Thush’ < h
and|G%-| < h%. In this case(G% - is too small and we will need
to scanG many times to computé, which is not desirable.

We propose to extract a subgraph fré¢hwith a similar size to
G g~ as follows.

Definition10 (L*-GRAPH). Let L be a set of vertices ran-
domly selected fro&’ = (V’, E’) such that

> dw,6")
veEL
We defing5r« = (LU Lys, Er U Erp,, ), whereL,, = {v :
we Lo L(uv) € B'Y By = {(u,0) : u,0 € L, (u,0) €
E'},andErL,, = {(u,v) :w € L,v € Ly, (u,v) € E'}.

~ |Gg~|. (12)

Note thatG .~ is defined based oh in the same way a& i
is on H. Therefore, we can apply the method developeddar-
in Sections 4.1 and 4.2 to compute the max-cliques féom, by
simply replacingd with L. After that,G’ is updated by removing
Gr~. This process continues recursively uiil becomes empty.

There is a small problem in the transition frdihto L. Consider
the 2nd recursive step, i.e., the step right after we compdig. .
A clique C' may be maximal iz .+, butC' may not be maximal in
G, because it is possible thaC’ € M+ such thatC’ > C and
C’H = C. We remark that ifC is maximal inG+, thenC' is
also maximal in7, because? only has connection witl,,, while
L may have connection with botH and L ,;.

We address this problem as follows. For ed¢he My, if
|CH,,| > 1, we keepC,, in a hashtable. Lef” be a max-clique
inGpy. If |C'| = 1, thenC’ = {v} is maximal inG only if
d(v) = 0. If |C’| > 1, we hashC’ to check if C’ exists in the
hashtable. If{C” is not in the hashtable, thefl’ is maximal inG
and we also add’;, , (if |C7 ,| > 1) into the hashtable for the



Algorithm 3 ExtMCE

Input: G, recursive deptlt, size bound
Output: M

.if (G is empty) return;

Lif (k=1) /* 1st-step: computél gy« */

ComputeH *-graph (Alg. 1);

. else /* recursive steps: comput@r« =/

ComputeL* -graph with size bounded kiy(Def. 10);

. Constructl'y = (or Tr=) by an existing MCE algorithm A;

. ComputeH *+ (or L*)-max-cliques (Alg. 2);

Lif (k=1) /* Ht-max-cliques are max-cliques by Theorem,2
Build a global hashtabl& (see the last paragraph of Section 4.3);
10.  OutputH+-max-cliques;

11.else

12.  Check the maximality of+-max-cliques byX;

13.  OutputL*-max-cliques that are globally maximal;

14.  UpdateX (see the last paragraph of Section 4.3);

15. Remove= i+ (or Gp+) from G;

16. EXt(MCEG, k + 1, |G+|);

©CONOUIAWNRE

maximality checking in subsequent recursive steps. Otisepd”

is not maximal and we also remo from the hashtable, since
¢’ will not be computed again in subsequent steps. We alsoatontr
the number of cliques kept in the hashtable as follows. Adtath
round of max-clique computation fro@'.-, we delete allC' in
the hashtable v € C such thaw € L, because all max-cliques
containingv are generated after we finigh, - (by Theorem 2).

4.4 Overall Algorithm: ExtMCE

The overall recursive algorithrBExtMCE is presented in Algo-
rithm 3. The set of all max-cliques i& can be computed by in-
voking ExXtMCE(G, 1, 0). The second paramefeof the algorithm
specifies the depth of the recursive process and the lashptea
b sets a size bound on the portion @fthat is under max-clique
computation in each recursive stégs set ad) initially for the first
step and agG g+ | for the following recursive steps.

We state the correctness of ExtMCE in the following theorem.

THEOREM 5. The results returned by ExtMCE is sound and
complete with respect to the set of all max-clique&iin

PROOF WEe first prove the soundness. At the first recursive step,
the set of H™-max-cliques is computed in Line 7 and outputted
directly in Line 10 of ExtMCE. The "-max-cliques are proved to
be maximal inG in Theorem 2. Next, at each subsequent recursive
step, LT -max-cliques are computed (Line 7). The maximality of
the outputted. ™ -max-cliques is ensured by the checking in Line
12 of ExtMCE.

We now prove the completeness. At the first step, the set of
H*-max-cliques is complete with respect to the max-cliques in
G that contain at least one vertex i (by Theorem 2). At the
second recursive step,”-max-cliques are computed in the same
way asH T-max-cliques (Line 7). This means that the sef.df-
max-cliques is complete with respect to the set of max-efijn
(G\Gr~) that contain at least one vertex In Combining with
the H*-max-cliques (computed frort¥g+) that contain at least
one vertex inL, it gives a complete set of max-cliques @hthat
contain at least one vertex ib. Similarly by recursion, a com-
plete set of max-cliques i@ that contain at least one vertex in the
correspondind. is given after each recursive step. Since the recur-
sion terminates when the graghbecomes empty (i.e., all vertices
have been considered to form max-cliques), the algorithrasga
complete set of max-cliques @&. [

Complexity. The memory space complexity of EXtMCERY |G i+ |

+|Tu~+|). We needO(|G|/|Gr~|) scans ofG for the entire pro-
cess. We now analyze the time complexity of ExtMCE when com-
pared with an in-memory MCE algorithr. Let A(G) denote the
algorithm A when it is applied directly to the whole graph If we
only consider the in-memory operations, the time requimrdte
entire recursive steps in ExtMCE is comparable to thatl(6).
This is because Algorithm 2 essentially expands those gaths
Twu~ (or Tr+) that would be generated b¥(G) as well, while the
computation of eactmazCL(HNB(+)) is also necessary iA(G).
Thus, if the memory is big enough to hold the whole graph
ExtMCE performs comparably té(G). However, if the mem-
ory is insufficient (a typical case for a massive gra@h A(G)
would incur many random disk accesseszowhile ExtMCE has
a bounded number of scans Gf which is much more efficient.
These conclusions are empirically verified by our experitsien

5. UPDATE IN DYNAMIC NETWORKS

We consider two types of updates: edge insertion and edge del
tion. Vertex insertion/deletion can be considered as asefiedge
insertions/deletions proceded/followed by the inseftetetion of
an isolated vertex, which is a rather trivial operation. étitatG
is also updated, but we focus our discussion on updatedlgliree
lated to theH *-max-cliques. In other words, we only maintain the
H*-max-cliques to be up-to-date, while we compute the setlof al
max-cliqguesM periodically or on demand.

We first consider the insertion of a new edge- (u,v) and the
possible updates tédl *-max-cliques. First, ifu,v ¢ H, we do
not need to updatél or T+, unlessu and/orv now becomes an
h-vertex. Next, ifu € H and/orv € H, insertinge creates new
H*-max-clique(s). LetVB,, = nb(u) N nb(v) denote the set of
common neighbors of andv. We find the cliques that can form
larger cliques with{u, v} asS = {C : C C (C' N NBw),C’ €
M+, C # (0}, which can be obtained easily by traversifig-.

To ensure the maximality, we take away non-maximal clique$ i
and getSy = {C : C € §,3C’ € Ss.t. ¢’ D C}. Then, for

eachC € Sy, we insert(C' U {u, v}) into Tx+. We also remove
(CU{u}) and/or(C' U {v}) from T+ if they are originally in the
tree. Note that ifS = 0, then{u, v} is maximal and we simply
insert{u, v} into Tx=.

We now consider deleting an edge= (u, v). If u,v ¢ H, there
is no update needed fdf andTy~. If w € H and/orv € H, we
need to remove froriy« all H*-max-cliques containing both
andv. Thus, we need to find’ = {C : u,v € C,C € Mpy~}.
Assume that: < v, we can obtairs’ by finding all occurrences of
v in the subtree rooted at each occurrence of T+, and collect-
ing the H*-max-cliques containing both andv by traversing the
corresponding paths. We remove edtle S’ from T~. We also
insert(C\{u}) and/or(C\{v}) if they now become maximal.

We give an analysis on the cost of the updates as well as on the
frequency of the updates.

On edge insertion, the cost@(|Ts+| + |S|> + 2ces,, (ICU
{u, v}|log favg)) time, wheref,,, is the average number of chil-
dren of a node if'y=. ComputingS takesO(|Trx+|) time. Com-
puting Sy takes time less thal$|* since we do not need to com-
pare cliques with the same size, or those largest cliques im
most cases|S| is small because otherwise it implies thataind
v are very closely related and hence the edggev) is likely to
already exist. Finally, inserting eadl’ U {u, v}) takes at most
O(log favy) time at each level of '+. On edge deletion, it takes
O(ITu+| + X ces (IC]10g favg)) time to obtainS” and delete”
(aswell as toinsetC\{u}) and/or(C\{v}) if they are maximal).

Now we examine how frequent these updates are performed.
Since we only perform updates related to Hi&-max-cliques, there



is no update for the insertion or deletion of an edgev), where
u,v ¢ H. As shown in Section 3.2, the size Hf, i.e.,h, is usually
very small compared to the total number of verticesin There-
fore, the percentage of the updategirihat can “hit” anh-vertex
and thus trigger an update fi*-max-cliques is very low, which is
also verified in our experimental studies.

6. EXPERIMENTAL EVALUATION

We evaluate the performance of our method, comparing wéh th
state-of-the-arin-memoryMCE algorithm [27] and the only exist-
ing streamingMCE algorithm for dynamic networks [26], denoted
asin-mem andstreaming in our experiments. We ran all experi-
ments on a machine with a 3.0GHz Pentium 4 CPU and 2GB RAM,
running Windows XP.

Datasets. We use four datasetprotein blogs LiveJournal(LJ),
and Web Protein is a human protein interaction network from
the Human Protein Database (www.hprd.org), in which vestic
are proteins and edges are protein-protein interactiohs.blbgs
network is collected from the top-15 popular queries puigsby
Technorati (technorati.com) every three hours from Nov&2@D
Mar 2008. In theblogsnetwork, vertices are blogs and edges in-
dicate that two blogs appear in the same search rekdlis the
free on-line community called Livejournal (www.livejowahcom),
where vertices are members and edges represent friendiipdn
members. Th&Vebgraph is obtained from the YAHOO webspam
dataset (barcelona.research.yahoo.net/webspam), vértices are
pages and edges are hyperlinks. We give the details of eaabeda
(number of vertices and edges, physical storage size) lasviol

Table 2: Datasets (K= 1,000 and M= 1,000,000)

[ | protein [ blogs| LJ | Web ]
n=|V] 20K 1M | 4.8M [ 10M
m = |E| 40K 6.5M | 43M [ 80M
Storage size (MB) 1 186 | 1310 | 2613

6.1 Evaluation of the H*-graph

Table 3 shows that it is very efficient to extra@ty« from G.
The majority of the time is used to read the graph from the,disk
which is an inevitable cost.

Table 3: Time and memory usage of extracting= g«
[ [ protein [ blogs | LJ | Web]

Total time (sec) 0.3 38 243 | 524
Disk-read time (sec) 0.2 31 199 | 405
Memory (MB) 1.2 8.5 27 | 140

Table 4 reports the sizes éf, H,;,, Gu, Gu= andGg+. We
also give a better perception on the size&ef, Gy+ andGy+ as
their ratio toG (given in parenthese in the table). For all datasets,
H is small but it extends to a much largksneighbor setH ;.

As a result,G g is too small, thus requiring many disk scans for
MCE computation, whilez ;+ is too large, thus demanding too
much memory. On the contrarg ;= is much smaller thalr -+
but is significantly greater thafi' 7, thus allowing more efficient

Table 4: Sizes ofH, H,p, G, G+ and G 7+

| | protein | blogs ] LJ | Web |
H| 77 718 987 2982
Hypp | 4K 192K 441K 4.4M
Gl 0.5K (1%) | 37K (0.6%) | 25K (0.06%) | 29K (0.04%)
Gr~| | 8.6K (22%) | 840K (13%)| 1.7M (4%) | 25M (31%%)
Gpril | 21K (54%) | 4M (64%) | 11M (25%) | 54M (68%)

Table 5 shows the averagtosenes®f the h-vertices, the per-
centage of vertices iidx that are reachable from thie-vertices
(reachability), the number of max-cliques, and the accuracy of es-
timating |7+ |. The closeness of arvertexu is defined as
AVG yev, dist (u,v)£00 (dist(u, v)), where dist(u, v) is the length
of the shortest path fromto v in G.

Table 5: Closeness, reachability, # of max-cliques, and s« |

| [ protein [ blogs| LJ [ Web |
closenessH-vertices) 3.1 3.4 4.3 7.1
reachability f-vertices) A47% 56% | 100% | 73%
# of max-cliques 25K 1.1M | 173M | 267M
(containh-vertices) 239 4K 69K | 7.8M
(containh-neighbors) 12K 510K | 43M | 146M

[ (estimatedTy~[)/[Tu~] | 1.00 ] 1.01 ] 0.93 ] 0.97 |

The closeness shows that from theertices, we can reach other
vertices inG within a few steps and we are able to reach the ma-
jority of the vertices inG. This result demonstrates th@ty - rep-
resents a significant portion @f and thatG - also has a close
relationship with the rest part @f.

Table 5 also reports the number of all max-cliques, the numbe
of those max-cliques containingvertices andh-neighbors. The
result shows that the number of max-cliques contaiingertices
is significantly smaller than that of all max-cliques. Thsui jus-
tifies the feasibility of our update maintenance based on ehmu
smaller set of cliques containirfgvertices since it is much more
efficient. From theh-vertices we can extend to ttieneighbors,
while the result shows that the set of max-cliques contgirtin
neighbors represents a large portion of the whole set ofcligues.

Finally, Table 5 shows that our method of estimatjfig-| is
highly accurate. Thus, the result verifies the effectiverdsetting
memory-bound at the first step BktMCE

6.2 Performance of ExtMCE

Figure 3 reports the total running time and peak memory con-
sumption of finding the set of all max-cliques usiBgtMCE in-
mem andstreaming respectively.

First, on the smaller networkzotein andblogs ExtMCE s as
fast asin-mem but with only 1 quarter of the memory usage of
in-mem The result verifies our assertion in Section 4.4 that the
time complexity ofExtMCEis indeed comparable to that of an in-
memory MCE algorithm.

On the larger networks, the advantageEotMCE overin-mem
is immediately seen. As shown in Figure 3(ims;memruns out of
memory, whileExtMCE computes the result for all the networks
with a bounded memory consumption. The corresponding ngnni
time forin-memis thus not shown in Figure 3(a) sintememdoes

MCE computation with reasonable memory usage. As seen from not complete the MCE task.

the size ratio, LJ has a relatively smal@f;~ andG y+ than other
datasets, which is mainly because the vertices in LJ arelessely
connected as indicated by its smiglf | wrt. |V].

We are only able to obtain the resultstfeamingfor the small-
estproteinnetwork, which already takes many orders of magnitude
more time to complete. The result is becastreamingreads an
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Figure 3: Performance of ExtMCE

edge at a time and updates the current set of max-cliquesfbr e
edge. We report this result to demonstrate that althaigiaming
reads the graph only once, the time complexity of such arsiresa
algorithm for MCE computation is extremely high. On the con-
trary, ExtMCEreads the grap®®(|G|/|Gr+|) times, but is able to
compute MCE efficiently with bounded memory usage.

We further analyzeExtMCE by showing the number of recur-
sions it requires for each dataset. As shown in Table 6, thebeu
of recursions actually performed BxtMCEis very close to the es-
timated numbefG|/|G m+|. LI has a higher number of recursions
since itsH *-graph is relatively smaller as shown in Table 4.

Table 6: Actual/estimated number of recursions

[ protein [ blogs [ LJ | Web |
# of recursions 5 9 25 7
lElviera 45 77 | 246 3.2
[ Time (Istrecursion) 67% [ 36% [ 2% | 34% |

Table 6 also shows that the percentage of the total running ti
used for the first recursive step, i.ExtMCEoperates ofz g« It
shows that a large portion of the time is spent on computirg th
max-cliques at the first step (excepl), which also justifies the
choice of G« for dynamic update maintenance. We also find that
the peak memory consumption indeed occurs at the first rigeurs
step, which verifies the correctness®f|Gr+«| + |Tr+|) as the
memory bound foEXtMCE

6.3 Performance on Update Maintenance
Table 7 reports the results for update maintenance. We @se th

blogsnetwork, whose edges are associated with a timestamp, span

ning over 12 months. We average the results for every two Imont
period, shown as P1-P6 in Table 7. The network grows from 347K
edges to 6.5M edges.

Table 7 shows that the average time of processing an edge inse
tion that triggers an update ifi~, shown as “Avg. update time”,

is only 2 to 3 msec. The exception is P1 which requires 10 msec.

This is because the initial network is not large enough amtée

Twu~ changes considerably during P1, which is also reflected by

the rapid increase in the number/ofvertices from P1 to P2.
Table 7 also shows “# of updatesd#y-", which is the number
of edge insertions that trigger an updatéfin-, and “# of updates
in G”, which is the number of all edges inserted into the network.
On average, the percentage of edges that trigger an updaig-in
is only 3.8%, which is a small portion of the total updatesudh
updating onlyT'x « is a feasible solution to handle frequent updates.
Among the existing algorithmstreamingis the only one that
updates the set of max-cliques upon each edge insertionevow
streamingis three orders of magnitude slower than our algorithm
on average. We do not report the result $treamingbecause it

Table 7: Results for update maintenance

P1 P2 P3 P4 P5 P6
Avg. update time (msec) 10 3 2 2 2 3
# of updates inG g7« 3K 11K 19K 25K 28K 28K
# of updates irG/ 385K | 457K | 550K | 461K | 526K | 670K
# of h-vertices 294 425 508 566 614 696
% of h-vertices retained| 92 92 95 96 94 96
Memory (MB) 418 427 436 443 451 463
[ Time w/ T~ (sec) [ 12 ] 22 ] 45 [ 68 86 [ 114 |
| Timew/oTy~ (sec) | 36 | 62 | 104 | 142 | 177 | 226 |

takes too long to complete all updates (it has taken 190 hours
update only 40K edges at the time of writing).

The number ofh-vertices increases stably as the network in-
creases, except the initial network which is relatively Barad thus
unstable. We also show % éfvertices retained, that is, the per-
centage oh-vertices inP; that are also irP;;. The result shows
that the majority of thé:-vertices remains to be-vertices.

We also show the memory consumption, which increases as the
network grows. Note that the memory consumption is the same
amount of memory needed for computing the set of all maxJekg
by EXtMCE sinceO(|Gxu+| + |Tu+|) sets the bound for the mem-
ory usage oExtMCE

Finally, the last two rows of Table 7 report the time to congput
the set of all max-cliques from the dynamically maintairig-
(“Time w/ Tg+") and from scratch (“Time w/dl'z+"), respec-
tively. The result shows that it is much more efficient to comep
the set of all max-cliques from the dynamically maintairig-
than from scratch from the network, thus demonstrating treeb
fit of update maintenance as well as the feasibility of maiitg
Mg« (i.e.,Ty~) for M.

7. RELATED WORK

There is a large literature on MCE. We discuss the more promi-
nent and recent ones, a comprehensive review can be foul in [
The first significantimprovement on MCE was the algorithm&[2
that use théacktrackingmethod. They také(n?) memory space.
Further improvements [19, 27, 9] were made by selecting good
otsto prune the backtracking search tree. The optimal worst-ca
time of backtracking-based MCE was shown to®€"/?) [27].
Recently, parallel algorithms [12, 25] were proposed toneerd

ate max-cliques from different points of the search treesirajel.
However, all these works did not focus on reducing the memory
complexity and requir€®(m + n) memory space in the best case.
Output-sensitive MCE algorithm was also introduced [28]alihis
based omeverse searchand recent work [21] used matrix multipli-
cation to reduce the time delay €@(dx... ) for sparse graphs (but
with O(nm) preprocessing time), whetk, .. is the maximum de-
gree of a graph. There is also algorithm that obtaiksctique by
joining two (k — 1)-cliques [20]. However, all these algorithms
require memory space at led3{m + n). Stix [26] proposed an
algorithm that updates the set of max-cliques upon each iedge
sertion, and the graph is read only once. Finally, we are @aofa
recent work that adopts the conceptieindex for triangle count-
ing [13]. Their work does not address the memory issue arestak
O(m+n) memory, while the problem of MCE is also substantially
more difficult than that of triangle counting.

8. CONCLUSIONS

We propose ExtMCE, the first external-memory algorithm for
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