
Finding Maximal Cliques in Massive Networks by H*-graph

James Cheng
School of Computer

Engineering
Nanyang Technological
University, Singapore
j.cheng@acm.org

Yiping Ke
Department of Systems

Engineering and Engineering
Management

The Chinese University of
Hong Kong

ypke@se.cuhk.edu.hk

Ada Wai-Chee Fu
Department of Computer
Science and Engineering
The Chinese University of

Hong Kong
adafu@cse.cuhk.edu.hk

Jeffrey Xu Yu
Department of Systems

Engineering and Engineering
Management

The Chinese University of
Hong Kong

yu@se.cuhk.edu.hk

Linhong Zhu
School of Computer

Engineering
Nanyang Technological
University, Singapore

zhul0003@ntu.edu.sg

ABSTRACT
Maximal clique enumeration(MCE) is a fundamental problem in
graph theory and has important applications in many areas such as
social network analysis and bioinformatics. The problem isexten-
sively studied; however, the best existing algorithms require mem-
ory space linear in the size of the input graph. This has become
a serious concern in view of the massive volume of today’s fast-
growing network graphs. Since MCE requires random access to
different parts of a large graph, it is difficult to divide thegraph
into smaller parts and process one part at a time, because either
the result may be incorrect and incomplete, or it incurs hugecost
on merging the results from different parts. We propose a novel
notion, H∗-graph, which defines the core of a network and ex-
tends to encompass the neighborhood of the core for MCE compu-
tation. We propose the first external-memory algorithm for MCE
(ExtMCE) that uses theH∗-graph to bound the memory usage. We
prove both the correctness and completeness of the result computed
by ExtMCE. Extensive experiments verify that ExtMCE efficiently
processes large networks that cannot be fit in the memory. We also
show that theH∗-graph captures important properties of the net-
work; thus, updating the maximal cliques in theH∗-graph retains
the most essential information, with a low update cost, whenit is
infeasible to perform update on the entire network.

Categories and Subject Descriptors
G.2.2 [DISCRETE MATHEMATICS]: Graph Theory—Graph al-
gorithms

General Terms
Algorithms, Experimentation, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10,June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

Keywords
Maximal Clique Enumeration, Massive Networks, Scale-FreeNet-
works, H*-graph, h-index

1. INTRODUCTION
Maximal clique enumeration(MCE) [2, 7] is a long-standing

problem in graph theory. It is closely related to a number of fun-
damental graph problems, such as maximal independent sets (or
minimal vertex covers) [28], graph coloring [8], maximal common
induced subgraphs [19], maximal common edge subgraphs [19],
etc. Its significance is not just limited to graph theory but also in nu-
merous applications in various real-world networks, such as social
network analysis [15], hierarchy detection through email networks
[10], study of structures in behavioral and cognitive networks [3],
statistical analysis of financial networks [6], clusteringin dynamic
networks [26], the detection of emergent patterns in terrorist net-
works [4], as well as various applications in computationalbiology
[1], protein-protein interaction complex detection [29],and cluster-
ing protein sequences [23].

MCE algorithms have been extensively studied [2, 7, 28, 20, 19,
21, 26, 1, 27, 9, 12, 25]. The worst-case time complexity ofin-
memory algorithmshave proved to be optimal recently [27]; how-
ever, the best existing algorithms require space which is asymptot-
ically linear in the size of the input graph. Unfortunately,many
real-world networks have grown exceedingly large in recentyears
and are continuing to grow at a fast rate. For example, the Web
graph has over 1 trillion webpages (Google), most social networks
(e.g., Facebook, MSN) have millions to billions of users, many ci-
tation networks (e.g., DBLP, Citeseer) have millions of publica-
tions, other networks such as phone-call networks, email networks,
stock-market networks, etc., are also massively large.

Despite the low cost of memory, applying in-memory algorithms
is clearly infeasible on such massive data. For large graphs, exter-
nal memory algorithmsoffer a possible recourse; however, design-
ing such an algorithm is fraught with difficulties. MCE compu-
tations access vertices in a rather arbitrary manner. This poten-
tial random disk access requirement makes it difficult to divide the
graph and process it in a part-by-part manner and perhaps suggests
the reason for the current prevalence in in-memory algorithms for
tackling this problem.

In this paper, we develop the first external-memory algorithm for
MCE (ExtMCE) which operates on the broad class ofscale-free
graphs [24, 11]. Extensive studies [14, 24, 6, 5] have shown that
scale-free graphs are prevalent in real-world applications. In partic-
ular, Dorogovtsev and Mendesand [11] show that a wide spectrum
of real-world networks are scale-free, which include the WWW, ci-
tation networks, collaboration networks, neural networks, metabolic
reaction networks, genome and protein networks, ecological and
food webs, word web of human language, telephone call graph,
mail networks, power grids and industrial networks, electronic cir-
cuits, nets of software components, and energy landscape networks.

Given a large input graphG, ExtMCE recursively computes a
portion ofG at a time, such that each portion can be fit into the main
memory for MCE computation. Two questions arise: (1) What
portion ofG should be chosen at each recursive step and how? (2)
How to ensure that the set of maximal cliques computed locally
at recursive steps is sound and complete with respect to the set of
maximal cliques globally inG?

To answer the first question, we propose the novel notion ofH∗-
graph. The key component of theH∗-graph is thelargestset ofh
vertices inG that have degree at leasth, called theh-vertices. This
is inspired by the concept ofh-index[16], which is themaximum
h for a scientist who hash publications of citations at leasth. The
h-index is widely used to assess a scientist’s publication productiv-
ity and quality. Putting into the context of a graph, theh-vertices
correspond to theh publications that contribute to theh-index. The
induced subgraph ofG by theh-vertices constitutes thecoreof the
H∗-graph. Then, we extend from this core to their neighborhood
and thus form theH∗-graph.

TheH∗-graph is the key component in the first step of ExtMCE
and sets the limit on the memory usage for all subsequent steps.
To this end, we need to first make sure that theH∗-graph is small
enough to be kept in the memory. For a general graph, theH∗-
graph can spread to cover a large part of the graph so that it may
be too large to fit into the memory. However, we show that for
scale-free graphs, theH∗-graph is only a small portion of the entire
graph. Furthermore, we derive bounds on the size of theH∗-graph
for scale-free networks, which are also bounds on the memoryre-
quirement of ExtMCE. We also devise a method to handle the case
that even theH∗-graph cannot be fit into the memory.

Now we answer the second question. MCE computation in-
volves random accesses to all parts ofG; therefore, if we take
any part ofG and compute MCE on each part, then either the set
of cliques computed may not be complete and may contain non-
maximal ones, or the cost of merging the results from each part and
ensuring completeness is substantially high.

It is challenging in linking the MCE computation from one part
of G to the other parts while ensuring the correctness and com-
pleteness of the result. LetGi be the part ofG at thei-th recursive
step of ExtMCE (thus,G1 is theH∗-graph). We formulateGi in
such a way that it allows smooth transition fromGi toGi+1 so that
we can compute a subset of maximal cliques in one part ofG, and
then move on to another part until we finish the entireG. We prove
that the maximal cliques computed in eachlocal part are indeed
maximalglobally in the entire graph. We then prove that the set of
maximal cliques computed is alsocomplete.

Real-world networks undergo frequent updates. However, there
is only one known algorithm [26] that can be applied to updatethe
set of maximal cliques when a network is updated. Their algorithm
is impractical for large networks because the set of maximalcliques
in a large network is too large to be kept in the memory, while
keeping them on the disk results in extremely high update cost.

We take a new approach. We show that theH∗-graph captures

many important properties of the original network, while the set
of maximal cliques computed from theH∗-graph are those that
consist of the most important vertices in the network. Therefore, we
propose to update only the maximal cliques in theH∗-graph, which
can be processed in the memory due to the much smaller number.
Furthermore, we show that the portion of the updates inG that
are related to theH∗-graph is very small and thus by focusing the
update maintenance on theH∗-graph, we can significantly reduce
the overall update cost. Given the up-to-dateH∗-graph, we then
re-compute the whole set of maximal cliques inG on demand.

Finally, we conduct experiments on a set of large real-worldnet-
works, with size up to about 10 million vertices and 80 million
edges, collected from different domains. Our results verify that the
H∗-graph represents a significant portion of the original network,
and it is effective to use theH∗-graph to bound the memory us-
age in ExtMCE. We demonstrate that ExtMCE uses comparable
time, but significantly less memory, as compared with the state-of-
the-art in-memory MCE algorithm [27]. When the memory is not
sufficient, ExtMCE still computes MCE efficiently with a bounded
memory usage. Our results also verify that our approach of update
maintenance is effective, and significantly more efficient than [26].

Contributions. We summarize our main contributions as follows.

• We propose ExtMCE, the first external-memory algorithm
for MCE computation. We prove both the correctness and
completeness of the result computed by ExtMCE.

• We propose the novel notion of theH∗-graph, which is used
to bound the memory usage as well as to guide the recursive
steps of ExtMCE. We derive bounds on the size of theH∗-
graph.

• We propose the first feasible solution for update maintenance
of MCE in large networks. We show that by updating the
maximal cliques in theH∗-graph, we retain the essential in-
formation in the entire network, leading to a low update cost.

Organization. Section 2 formally defines the problem and gives
the basic notations. Section 3 presents theH∗-graph. Section 4
details the ExtMCE algorithm. Section 5 discusses update main-
tenance. Section 6 reports the experimental results. Section 7 dis-
cusses the related work. Section 8 gives the conclusion.

2. PROBLEM DEFINITION
In this paper, we focus on large graphs whose degree distribu-

tion follows apower law, or calledscale-free networks[14, 24].
Let G = (V,E) be an undirected and unlabeled graph. We define
n = |V | andm = |E|. We define thesizeof G, denoted as|G|,
as|G| = m. GivenS ⊆ V , we define theinduced subgraphof G
by S asGS = (VS = S,ES = {(u, v) : u, v ∈ S, (u, v) ∈ E}).
We define the set ofneighborsof a vertexv in G asnb(v) = {u :
(u, v) ∈ E}, and thedegreeof v in G asd(v) = |nb(v)|. Simi-
larly, we definenb(v,GS) = {u : (u, v) ∈ ES} andd(v,GS) =
|nb(v, GS)|.

A clique in G is a subset of vertices,C ⊆ V , such that the
induced subgraph byC is a complete graph inG. C is called a
maximal clique(max-cliquefor short) inG if there exists no clique
C′ in G such thatC′ ⊃ C.

The problem of Maximal Clique Enumeration (MCE) is:given a
graphG, find the set of all maximal cliques inG. In this paper, we
solve the problem of MCE for large scale-free graphs that cannot
be fit in the main memory.

Table 1 shows the notations used frequently in the paper.

Table 1: Notations

Symbol Description
n Number of vertices in graphG = (V,E)
m Number of edges in graphG = (V,E)
|G| Size ofG, defined as|G| = |E| = m
GS Induced subgraph ofG by a set of verticesS

nb(v); nb(v,GS) The set of neighbors of a vertexv in G / GS

d(v); d(v,GS) The degree ofv in G / GS

H The set ofh-vertices inG; ∀v ∈ H,d(v) ≥ h
Hnb The set ofh-neighbors inG (non-h-vertices)
H+ H ∪Hnb

GH ; GH+ H-graph /H+-graph; the induced subgraph ofG by H / H+

GH∗ H∗-graph;GH∗ = (H+, EHH ∪EHHnb
)

M the set of max-cliques in the whole graphG
MX the set ofX-max-cliques inGX , X can beH∗, H+, orH
TH∗ H∗-max-clique tree; a prefix-tree to keepMH∗

C=(CH ∪ CHnb
) for a cliqueC in GH+ : CH=(C ∩H); CHnb

=(C ∩Hnb)
HNB(X) the set of commonh-neighbors of all vertices inX,

whereX is a clique inGH

maxCL(S) the set of all max-cliques inGS

M1, M2, M3 three disjoint subsets ofMH+ , defined in Lemmas 4-6
X a set of “H” parts used to form cliques inM3, see Eq. (10)

EXT (C) a set ofh-neighbors used to extendC ∈ X , see Eq. (11)

3. THE H*-GRAPH
In this section, we introduce a novel concept ofH∗-graph for

real-world networks. TheH∗-graph plays a crucial role in the first
recursive step of our ExtMCE algorithm (details in Section 4).

3.1 The notion of the H*-graph
We first define the set ofh-vertices which forms the core of the

H∗-graph.

Definition1 (h-VERTICES). Given a graphG = (V,E), the
set ofh-verticesof G, denoted asH , is defined asH = {v : v ∈
V, d(v) ≥ h} such that|H | = h, and∀v ∈ (V \H), d(v) ≤ h.

Essentially, the set ofh-vertices ofG consists ofh vertices in
G that have a degree of at leasth. From theh-vertices, we extend
to theh-neighbors defined as follows. Note thath-neighbors are
defined to be non-h-vertices.

Definition2 (h-NEIGHBORS). The set ofh-neighbors, denoted
asHnb , is defined asHnb = {v : v ∈ (nb(u)\H), u ∈ H}.

We use a notationH+ to denote the union of the sets ofh-
vertices andh-neighbors. The “+” sign is used to indicate the
extension from theh-vertices to theh-neighbors.

Definition 3. H+ = H ∪Hnb.

With the set ofh-verticesH , we define the concept ofH-graph
in G as follows.

Definition4 (H -GRAPH). TheH-graphof a graphG, denoted
asGH , is defined as the induced subgraph ofG byH .

Similarly, we define the concept ofH+-graph.

Definition5 (H+-GRAPH). TheH+-graphof a graphG, de-
noted asGH+ , is defined as the induced subgraph ofG byH+.

With theH-graph and theH+-graph, we now define the notion
of H∗-graph. Intuitively,H∗-graph is a graph that “lies” between
H-graph andH+-graph.

a

b

c

d
 e
 s

w

x
 y

z

t

q

r

Figure 1: An Example Graph G

Definition6 (H∗-GRAPH). Given a graphG = (V,E), the
H∗-graphofG, denoted asGH∗ , is defined asGH∗ = (H+, EHH∪
EHHnb

), whereEHH = {(u, v) : u, v ∈ H, (u, v) ∈ E} and
EHHnb

= {(u, v) : u ∈ H,v ∈ Hnb, (u, v) ∈ E}.

TheH∗-graph is the same as theH+-graph except that theH∗-
graph does not contain the edges between theh-neighbors. In other
words, theH∗-graph contains only those edges incident to at least
oneh-vertex. It is easy to see thatGH ⊆ GH∗ ⊆ GH+ . The first
equality holds whenHnb = ∅ and the second equality holds when
there is no edge betweenh-neighbors inG.

We use the following example to illustrate these basic concepts.

Example 1.Figure 1 gives an example graphG, which contains
13 vertices and 25 edges. The set ofh-vertices inG is H =
{a, b, c, d, e}, which means thath = 5. It can be easily checked
in the figure that all the 5 vertices inH (shaded vertices) have de-
gree at least5 and all the remaining vertices inG have degree less
than5. The set ofh-neighbors is given asHnb = {r, s, w, x, y, z}.
And H+ = {a, b, c, d, e, r, s, w, x, y, z}. The two verticesq andt
are not inH+ since they are not incident to any vertex inH . The
H-graph consists of the shaded vertices and bold edges in Figure 1,
which is the induced subgraph ofG byH . TheH+-graph contains
all edges inG except for the two edges incident toq andt. Finally,
theH∗-graph contains all edges in theH+-graph except for the
edges betweenh-neighbors, i.e.,(w, x), (s, y), and(r, z). 2

In the following two subsections, we analyze and justify whywe
useGH∗ in our ExtMCE algorithm.

3.2 Analysis of H*-graph
Our algorithm ExtMCE uses theH∗-graph to estimate and con-

trol the memory usage. To this end, we need to examine two im-
portant factors: the size ofH and the size ofGH∗ .

We first discuss the size ofH . Faloutsos et al. [14] show that for
real-world networks following a power law degree distribution:

d(v) =
1

nR
(r(v))R. (1)

In Eq. (1), r(v) is thedegree rankof a vertexv, i.e., v is the
(r(v))-th highest degree vertex inG, andR is therank exponent,
whereR < 0. By Definition 1,H is a set ofh vertices having
degree at leasth; in other words, the lowest-degree vertexv in H
has a rank ofh and its degree is at leasth. Thus, by substituting
r(v) by h in Eq. (1) andd(v) should be at leasth, we have

d(v) =
1

nR
hR ≥ h. (2)

Solving the inequality, we have

h ≤ n
R

R−1 . (3)

Faloutsos et al. [14] show thatR is a constantfor most real-
world networks, which can be easily measured by plotting thede-
gree distribution of the networks. The value ofR measured in [14]
for three snapshots of the internet graph is between−0.8 and−0.7.
For a graph of 1 million vertices, we haveh ≤ 464 and therefore
|H | ≤ 464 whenR = −0.8. The value ofh decreases to about
300 whenR = −0.7. This shows that the number ofh-vertices in
a large real-world network is small.

Next, we estimate the size ofGH∗ . By Eq. (1), we have the
following upper bound for|GH∗ |.

|GH∗ | ≤
h∑

r=1

(
r

n
)R. (4)

The right-hand side of Eq. (4) is the sum of degrees of all theh-
vertices. Since the edges connecting twoh-vertices (if there is any)
are counted twice, we have the “<” sign in Eq. (4). The equality
holds when there is no edge connecting twoh-vertices; in this case,
theH∗-graph consists ofh “stars”, each centered at anh-vertex.

We can also obtain a lower bound for|GH∗ | as follows.

|GH∗ | ≥
h∑

r=1

(
r

n
)R −

h(h− 1)

2
. (5)

The lower bound occurs when allh-vertices are pairwise con-
nected. In this case, all edges connecting twoh-vertices are double
counted and hence deducting the number of these edges from the
degree sum gives the lower bound of|GH∗ |.

Similarly, we also obtain the size ofG, which is half of the de-
gree sum of all vertices inV , since all edges are counted twice.

|G| =
1

2

n∑

r=1

(
r

n
)R. (6)

By Eq. (4)-(6), we have

2
∑h

r=1 r
R − nRh(h− 1)∑n

r=1 r
R

≤
|GH∗ |

|G|
≤

2
∑h

r=1 r
R

∑n
r=1 r

R
(7)

For a network withR = −0.7 and 1 million vertices,|GH∗ | is
within [12%, 15%] of the entire network, and the percentage lowers
considerably when the network becomes larger: the ratio is in the
range of [8%, 10%] whenn increases to 10 million.

With the result of Eq. (7), the amount of memory required for
keepingGH∗ is reasonable. Another desirable aspect of theH∗-
graph is that the rank exponent in Eq. (3) is a constant for most real-
world networks. This property allows us to even estimate thesize of
GH∗ when the network grows, so that we can predict the memory
resource required at a certain point in the future. For many real-
world networks, it is possible to predict the growth of the network
based on its past growth pattern, and thus we can prepare in advance
the memory resource required for our computation in the future.

3.3 Why H*-graph?
We examine why we useGH∗ instead ofGH or GH+ . We first

analyze|GH | as follows.

0 ≤ |GH | ≤
h(h− 1)

2
. (8)

Eq. (8) gives the lower and upper bounds of|GH |. Sinceh
is small, if we useGH as the in-memory partition, it leads to too

Algorithm 1 Compute-H∗-graph

Input : G = (V,E).
Output : The set ofh-vertices ofG, H , and the set of their neigh-
bors,NBH = {nb(v) : v ∈ H}.

1. Seth← 0 and initialize an emptymin-heap, Q;
2. Let(d(v), v, nb(v)) be anelementin Q, whered(v) is thekey;
3. Denote theminimum keyof Q by min ;
4. for eachv ∈ V do
5. if (h = 0 or (d(v) > h andmin > h))
6. insert(d(v), v, nb(v)) into Q;
7. h++;
8. else if(d(v) > h andmin = h)
9. delete-minandinsert(d(v), v, nb(v)) into Q;

10. return H ← {v : (d(v), v, nb(v)) ∈ Q}
andNBH ← {nb(v) : (d(v), v, nb(v)) ∈ Q};

many recursive steps in the max-clique computation and hence too
many scans ofG from the disk.

As for |GH+ |, let s =
∑h

r=1(
r
n
)R, i.e., the degree sum of

h-vertices. |GH+ | reaches its maximum when (1) the number of
h-neighbors is maximized (i.e.,|Hnb | = s); (2) the degrees of
h-neighbors rank top among non-h-vertices (i.e., the degree rank
of h-neighbors is from(h + 1) to (h + s) in G); and (3) allh-
neighbors connect with only vertices inH+ (i.e., all edges incident
to h-neighbors are inGH+). Thus, the upper bound of|GH+ | is

|GH+ | ≤
1

2
(s+

s∑

r=1

(
h+ r

n
)R)

=
1

2

h+s∑

r=1

(
r

n
)R. (9)

The lower bound of|GH+ | is simply|GH∗ | sinceGH∗ ⊆ GH+ .
Eq. (9) shows thatGH+ is too large to be kept in memory. For
example, whenR = −0.7 andn is 1 million,GH+ can be as large
as65% of the whole graphG.

From the semantic point of view,GH only retains the very core
of G and does not reveal much global information, whileGH+ may
be giving too much general information and making it not much
different fromG. On the contrary,GH∗ gives the core ofG as well
as the relationship from the core to other parts ofG. We examine
empirically more properties ofGH∗ in Section 6.1.

3.4 Computing the H*-graph
Algorithm 1 presents the algorithm for computing the set ofh-

verticesH , together with the set of their neighborsNBH . A min-
heapQ is used to keep theh-vertices with their neighbors using the
vertex degree as the key. Lines 4-9 perform a scan on the vertices
in G to check whether a vertex can be added toQ as a potential
h-vertex. A vertex with degree larger than the currenth is either
directly inserted toQ in Lines 5-7 (whenh can still grow since
the min-degree inQ is larger thanh) or replace the min-degree
vertex inQ in Lines 8-9 (ifh is incremented, the min-degree vertex
no longer satisfies the degree requirement and is thus discarded).
Finally, the set of vertices kept inQ is returned asH . After we
obtainH and their neighbor setsNBH (i.e., the adjacency lists),
we essentially obtain theH∗-graph.

THEOREM 1. Algorithm 1 correctly computes the set ofh-vertices
of G and the set of their neighbors inO(h log h + n) time and
O(|GH∗ |) space, with one scan ofG.

PROOF. To prove the correctness, we need to show that: leth0

be the true value ofh of G, then theh computed by Algorithm 1

is equal toh0. Suppose to the contrary thath < h0, which implies
that there areh0 > h vertices with a degree greater thanh0 >
h. However, according to Algorithm 1, theseh0 vertices must be
inserted intoQ at some point, since their degree is greater thanh
and the value ofh is never decreasing in Algorithm 1. Therefore,
h computed by Algorithm 1 should be at leasth0 in this case. On
the other hand,h cannot be larger thanh0 since each increment of
h (Line 7 of Algorithm 1) follows the definition ofh-vertex (Line
5). Thus, we haveh = h0.

We haveO(h) insertions/updates, each takesO(log h) time, plus
n comparisons betweenh and d(v) for eachv ∈ V . Space is
needed to keeph-vertices and their adjacency lists, which takes
O(|GH∗ |) space. Since each vertexv ∈ V is processed only once,
we only need one scan ofG.

4. RECURSIVE CLIQUE COMPUTATION
In this section, we discuss our algorithmExtMCE . We first give

the framework of ExtMCE as follows.

• The first step: extractGH∗ from G, compute the set oflo-
cal max-cliques inGH∗ , obtain and output a subset ofglobal
max-cliques from local max-cliques by linking to the remain-
ing part ofG, and updateG by removingGH∗ ;

• The i-th step: extract another subgraphGi (of similar struc-
ture asGH∗), where|Gi| ≤ |GH∗ |, from G, repeat the first
step (by replacingGH∗ with Gi);

The recursive step continues untilG becomes empty.

4.1 H*-max-cliques and H*-max-clique tree
We start the first step by defining the notions ofH∗-max-cliques

andH∗-max-clique tree.

4.1.1 H*-max-cliques
We first define the notion ofH∗-max-cliques.

Definition7 (H∗-MAX -CLIQUE). AnH∗-max-cliqueis a max-
clique inGH∗ . The set of allH∗-max-cliques is denoted asMH∗ .

The following lemma states two properties ofH∗-max-cliques.

LEMMA 1. The following statements ofH∗-max-clique are true:

1. AnH∗-max-clique contains at least oneh-vertex.

2. AnH∗-max-clique contains at most oneh-neighbor.

PROOF. Since eachh-neighbor inGH∗ is connected to at least
oneh-vertex and there is no edge between any twoh-neighbors, an
H∗-max-clique containing anh-neighbor must also contain at least
an incidenth-vertex, which proves the first statement. The second
statement holds since there is no edge amongh-neighbors.

4.1.2 H*-max-clique tree
We now present the data structure used to keep the set ofH∗-

max-cliques. Since two cliques may share common vertices, we
define a prefix-tree structure to represent common vertices in the
cliques as common paths.

Definition8 (H∗-MAX -CLIQUE TREE). GivenGH∗ of a graph,
define a total order≺ on H and Hnb . Moreover,∀u ∈ H and
∀v ∈ Hnb, u ≺ v. TheH∗-max-clique tree, TH∗ , of GH∗ is a
prefix tree defined as follows.

• The root ofTH∗ is λ;

• The children of a vertex inTH∗ are ordered by≺;

• All vertices in a path inTH∗ are ordered by≺;

• The set of root-to-leaf paths inTH∗ has a one-to-one corre-
spondence to the set ofH∗-max-cliques. A root-to-leaf path
〈λ, u, . . . , v〉 corresponds to anH∗-max-clique{u, . . . , v}.

We define≺ by simply assigning each vertex a unique ID and
ordering them by their IDs, where the ID of anh-vertex is always
smaller than that of anh-neighbor.

By Definition 8, we have the following lemma.

LEMMA 2. The following statements ofTH∗ are true:

1. Anh-neighbor can only be a leaf inTH∗ .

2. All children ofλ areh-vertices.

PROOF. Lemma 1 states that anH∗-max-clique contains at most
oneh-neighbor. By the definition of the order≺ and the treeTH∗ ,
anh-neighbor can only be a leaf inTH∗ .

Similarly, all children ofλ areh-vertices since anH∗-max-clique
contains at least oneh-vertex as stated in Lemma 1 and allh-
vertices are ordered beforeh-neighbors in a path inTH∗ .

Most existing algorithms for computing max-cliques can be mod-
ified to constructTH∗ with small overhead, particularly the algo-
rithms [7, 19, 27, 9, 22, 12, 25] that adopt abacktracking search
tree, which is essentially anH∗-max-clique tree. It is not our focus
to propose anotherin-memoryMCE algorithm; however, we high-
light two improvements that we can make by employing the unique
properties ofTH∗ .

Given a pathp = 〈λ, u, . . . , v〉 in TH∗ , let S be the set of ver-
tices that can be used to potentially growp from v. If S ⊆ Hnb ,
we first test if{u, . . . , v} (the corresponding clique ofp), instead
of {u, . . . , v, s} for somes ∈ S, is maximal. If{u, . . . , v} is max-
imal, by Statement 1 in Lemma 2, we directly createS as the set
of children ofv (we also markv for a condition test in Line 7 of
Algorithm 2). Second, unlike a normal prefix tree or a backtracking
search tree, by Statement 2 in Lemma 2, we only need to construct
the subtree rooted at anh-vertex that is a child ofλ. These two
improvements can considerably speed up the process as they save
a lot of unnecessary checking and comparisons.

4.1.3 Size estimation of H*-max-clique tree
The first step of our algorithm is critical as it sets the memory

limit for the subsequent recursive steps. In Section 3.2, wegive
bounds on|GH∗ |. However, there is another element,TH∗ , that
may take much memory. We estimate|TH∗ | here.

Unlike |GH∗ |, which can be estimated by properties of scale-free
networks,|TH∗ | is difficult to estimate because the number and
sizes of max-cliques inGH∗ vary greatly for different networks.
The best known upper bound on the number of max-cliques is ex-
ponential [27], which is obviously too loose to be used to estimate
the memory usage.

We devise an estimation strategy that borrows the concept of
Knuth’s method [18] for estimating the size of a backtracking tree
T . Let n(T) be the number of vertices inT . The idea is to ran-
domly probe a set of pathsP in T and estimaten(T) = AVGp∈P

(n(p)), wheren(p) is the size of a tree with the same root asp
and usingp as a building path. Letp = 〈v1, v2, . . . , vk〉, n(p) =
(1+f1+f1f2+ · · ·+(f1 · · · fk−2fk−1)), wherefi is the number
of children ofvi. In the simple case thatT is a complete binary
tree, this method correctly estimatesn(T) as(2k−1). It is shown
that Knuth’s method is unbiased and effective in practice [17].

However, Knuth’s method assumes the presence ofT so that one
can perform random probing of paths, whileTH∗ in our case is not
yet constructed when estimating its memory usage. We propose a
new method of probing paths inTH∗ by utilizing its unique prop-
erties, without actually constructingTH∗ . Each time we randomly
choose a vertexu ∈ H . We consideru as a child ofλ and at-
tempt to probe randomly a pathp from u as follows: we randomly
choose a vertexv from the set of vertices that can be used to po-
tentially growp from u, and then continue the process recursively
from v until the pathp cannot be expanded any more (i.e.,p cor-
responds to anH∗-max-clique). Since the vertices are ordered and
nb(v) is available for everyv ∈ H , we can virtually probe a path
even thoughTH∗ does not exist. Thus, we can computen(p) as we
move alongp. Then, we estimaten(TH∗) by averagingn(p) of all
the paths probed.

Our method is simple and yet does not violate the principle of
random probing [18]. Our empirical study shows that it givesa
good estimation in practice (see Table 5 in Section 6.1).

In the case when memory is very limited such that the available
memoryN is smaller thann(TH∗), we remove the lowest-degree
vertices fromH . The number of vertices to be removed can be ap-
proximated as̄h = (1 −N/n(TH∗))h. Then, we use the remain-
ing (h − h̄) vertices asH and extract a smallerGH∗ accordingly.
We re-estimaten(TH∗) for the smallerGH∗ until N > n(TH∗).
The memory limit for the subsequent recursive steps is then set to
the size of the smallerGH∗ and the correspondingTH∗ . We may
lose some of the nice properties of usingGH∗ , especially for dy-
namic update maintenance; however, when memory is scarce, this
is a necessary compromise but importantly, our recursive algorithm
also handles the case of limited memory resource.

4.2 From H*-max-cliques to global max-cliques
An H∗-max-cliqueC may not be a real max-clique inG; that

is,C is maximallocally in GH∗ but may not be maximalglobally
in G. In this subsection, we discuss how we compute global max-
cliques from theH∗-max-cliques.

4.2.1 H+-max-cliques: a subset of global max-cliques
We first define the notion ofH+-max-cliques as follows.

Definition9 (H+-MAX -CLIQUE). AnH+-max-cliqueis a maxi-
clique inGH+ thatconsists of at least oneh-vertex. The set of all
H+-max-clique is denoted asMH+ .

LEMMA 3. AnH+-max-clique is also a max-clique inG.

PROOF. Proof by contradiction. LetC be anH+-max-clique
andu be anyh-vertex inC. Suppose thatC is not maximal inG,
i.e., there exists a max-cliqueC′ in G such thatC′ ⊃ C. ThenC′

must contain some vertexv, wherev /∈ H+ (otherwiseC′ must
be maximal inGH+ andC is not). v /∈ H+ implies thatv is not
connected withu, which contradicts thatC′ is a clique. Therefore,
C must be maximal inG.

With the result of Lemma 3, we have the following theorem.

THEOREM 2. LetM be the set of max-cliques inG. LetM0

be the set of max-cliques inG that consist of at least anh-vertex,
i.e.,M0 = {C : C ∈ M, C ∩H 6= ∅}. Then,MH+ = M0.

PROOF. First, Lemma 3 shows thatMH+ ⊆ M0. Next,∀C ∈
M0, ∃u ∈ C such thatu ∈ H . Since∀v ∈ C\{u}, (u, v) ∈ E,
we have eitherv ∈ H or v ∈ Hnb , implying thatC ∈ MH+ and
henceM0 ⊆ MH+ . Thus,MH+ = M0.

Theorem 2 is important because it enables us to compute a subset
of M separately on a portion ofG, output it, and move on to com-
puting another subset ofM for another portion in the remaining of
G, and so on recursively until we finish the whole graph.

4.2.2 Categorizing H+-max-cliques
It is infeasible to computeMH+ directly fromGH+ , sinceGH+

is too large (see Eq. (9) and the analysis right after in Section 3.3).
Instead, we computeMH+ from TH∗ . We first define some nota-
tion used in the subsequent discussions.

Let MH be the set of all max-cliques inGH . Given a cliqueC
in GH+ , we defineCH = (C∩H) andCHnb

= (C∩Hnb). Since
H+ = (H ∪ Hnb), we haveC = (CH ∪ CHnb

). Given a clique
X in GH , we define the set of commonh-neighbors of the vertices
in X asHNB(X) = {v : v ∈ Hnb ,∀u ∈ X, (u, v) ∈ E}.
In particular, ifC is a path inTH∗ , HNB(CH) defines the set of
h-neighbor leaves sharing the same pathCH . Finally, we define
maxCL(S) to be the set of all max-cliques inGS (the induced
subgraph ofG by a set of verticesS).

We first identify three disjoint categories ofH+-max-cliques as
follows. LetC = (CH ∪ CHnb

) be anH+-max-clique.

1. “CHnb
= ∅”: the set ofH+-max-cliques in this category is

defined asM1
H+ = {C : C ∈ MH+ , CHnb

= ∅}.

2. “CHnb
6= ∅ andCH ∈ MH”: the set ofH+-max-cliques

in this category is defined asM2
H+ = {C : C ∈ MH+ ,

CHnb
6= ∅, CH ∈ MH}.

3. “CHnb
6= ∅ andCH /∈ MH”: the set ofH+-max-cliques

in this category is defined asM3
H+ = {C : C ∈ MH+ ,

CHnb
6= ∅, CH /∈ MH}.

Recall that our objective in this subsection isto obtainMH+

fromTH∗ or equivalently fromMH∗ . Therefore, in the remaining
part of this subsection, we first define three sets of cliquesM1,
M2, andM3 that can be obtained fromMH∗ . We then prove that
M1, M2, andM3 are sound and complete with respect to the
above-defined three categories ofH+-max-cliques, respectively.
We further prove thatM1, M2, andM3 give the complete set
of MH+ in Theorem 3. Finally, we show howMH+ can be com-
puted fromTH∗ in Theorem 4.

We first defineM1. Intuitively,M1 contains the max-cliques in
MH∗ that are also inMH+ .

LEMMA 4. LetM1 = MH ∩MH∗ . Then,M1 = M1
H+ .

PROOF. (ProveM1 ⊆ M1
H+). LetC be a clique inM1. Since

C ∈ (MH ∩MH∗), C contains onlyh-vertices and is maximal in
GH∗ , which means that the vertices inC do not have any common
h-neighbors (i.e.,CHnb

= ∅). SinceH+ = (H ∪Hnb), C is also
maximal inGH+ . SinceCHnb

= ∅, we haveC ∈ M1
H+ .

(ProveM1
H+ ⊆ M1). ∀C ∈ M1

H+ , we haveCHnb
= ∅, which

implies thatC = CH andC ∈ MH . We haveC ∈ MH∗ as well
sinceCHnb

= ∅. Thus,C ∈ (MH ∩MH∗) = M1.

Essentially, eachC ∈ M1 corresponds to a root-to-leaf path
in TH∗ where the leaf is anh-vertex. Thus,M1 can be readily
obtained fromTH∗ .

We now defineM2. Intuitively, for each cliqueC in M2, its
“H” part (i.e.,CH) is inMH ; or equivalently, its “H” part is max-
imal inGH .

LEMMA 5. LetM2 = {C1 ∪ C2 : C1 ∈ (MH\M1), C2 ∈
maxCL(HNB(C1))}. Then,M2 = M2

H+ .

PROOF. It is obvious that all elements inM2 are cliques by the
definitions ofHNB(·) andmaxCL(·).

(ProveM2 ⊆ M2
H+). ∀C = (C1 ∪ C2) ∈ M2, we have

CH = C1 andCHnb
= C2. SinceCH ∈ MH , CH is maximal in

GH . SinceCHnb
∈ maxCL(HNB(CH)), CHnb

is also maximal
in GHNB(CH), which defines theh-neighborhood shared by all ver-
tices inCH . Thus,C is maximal inGH+ (i.e.,C ∈ MH+). Since
CH /∈ M1, we haveHNB(CH) 6= ∅ and thusCHnb

6= ∅. Since
C ∈ MH+ , CH ∈ MH , andCHnb

6= ∅, we haveC ∈ M2
H+ .

(ProveM2
H+ ⊆ M2). ∀C ∈ M2

H+ , CHnb
6= ∅ andCH ∈

MH . Thus,CH ∈ (MH\M1). SinceC is maximal inH+,CHnb

must be maximal inGHNB(CH), i.e.,CHnb
∈ maxCL(HNB(CH)).

Let C1 = CH andC2 = CHnb
, we haveC ∈ M2.

Essentially, theCH of eachC ∈ M2 is locally maximal in
GH . According to Lemma 5, we can computeM2 as follows.
For each path inTH∗ that corresponds to eachC1 ∈ MH and
has at least anh-neighbor leaf (sinceC1 ∈ (MH\M1)), com-
putemaxCL(HNB(C1)), and outputC = (C1 ∪ C2) for each
C2 ∈ maxCL(HNB(C1)). We will explain how to check whether
a path inTH∗ corresponds to a clique inMH later in this section.

Finally, we defineM3. Intuitively, for each cliqueC in M3, its
“H” part is no longer maximal inGH but just some proper subset
of a max-clique inGH . The non-maximal “H” part then forms a
max-clique inGH+ by taking into account itsh-neighborhood.

In order to defineM3, we first need to define two notations:X
andEXT (·). We enumerate the proper subsets of a max-clique in
MH that have at least one commonh-neighbor as

X = {C1 : C1 ⊂ C,C ∈ MH , C1 6= ∅,HNB(C1) 6= ∅, and

∄C′
1⊆ C′, C′∈ MH , s.t.C1⊂ C′

1,HNB(C1)=HNB(C′
1)}. (10)

The last condition ensures that eachC1 ∈ X is not subsumed
by its proper superset when forming a clique with itsh-neighbors.
Then, for eachC1 ∈ X , we useEXT (C1) to denote the set of
h-neighbors that can be used to extendC1, defined as

EXT (C1) = {C2 : C2 ∈ maxCL(HNB(C1)), and

∄C′ ∈ M2, s.t.C′ ⊃ (C1 ∪ C2), and

∄C′′
1 ∈ X , s.t.C′′

1 ⊃ C1, C2 ∈ EXT (C′′
1)}. (11)

The last two conditions are for the maximality checking of(C1∪
C2) in M2 andX , respectively.

LEMMA 6. LetM3 = {C1∪C2 : C1 ∈ X , C2 ∈ EXT (C1)}.
Then,M3 = M3

H+ .

PROOF. By the definitions ofX and EXT (C1), an element
C ∈ M3 must be a clique.

(ProveM3 ⊆ M3
H+). We first proveM3 ⊆ MH+ by contra-

diction. Suppose∃C = (C1 ∪ C2) ∈ M3 such thatC /∈ MH+ ,
i.e.,∃C′ = (C′

H ∪ C′
Hnb

) ∈ MH+ such thatC′ ⊃ C. We have
C′

H ⊇ CH = C1 andC′
Hnb

⊇ CHnb
= C2. Assume thatC′

H =
CH , thenC′

Hnb
= CHnb

sinceCHnb
is maximal inGHNB(CH)(=

GHNB(C′

H
)) as defined inEXT (CH). This leads to a contradic-

tion of C′ = C to C′ ⊃ C. Thus,C′
H ⊃ CH , which implies that

HNB(C′
H) ⊆ HNB(CH). SinceC′

Hnb
⊇ CHnb

and they are max-
imal respectively inGHNB(C′

H
) andGHNB(CH), butHNB(C′

H) ⊆

HNB(CH), we haveC′
Hnb

= CHnb
andHNB(C′

H) = HNB(CH).
SinceC′

H ⊃ CH andHNB(C′
H) = HNB(CH), we haveC′

H /∈
X (otherwise,CH /∈ X sinceCH is subsumed byC′

H). There-
fore,C′

H can only be inMH . SinceC′
Hnb

= CHnb
6= ∅, we have

C′ ∈ M2. This contradicts toCHnb
∈ EXT (CH) since there

existsC′ ∈ M2 such thatC′
H ⊃ CH andC′

Hnb
= CHnb

. Thus,
M3 ⊆ MH+ . Finally, ∀C ∈ M3, we haveCHnb

6= ∅ since
∅ /∈ EXT (CH), andCH /∈ MH sinceCH ∈ X and is a proper
subset of someC′′ ∈ MH . Thus, we further haveM3 ⊆ M3

H+ .
(ProveM3

H+ ⊆ M3). ∀C ∈ M3
H+ , CH /∈ MH andCHnb

6=
∅. First,CH must be a proper subset of someC′ ∈ MH . Assume
thatCH /∈ X , thenCH must be subsumed by some element inX ,
contradicting to the maximality ofC. Thus,CH ∈ X . We further
haveCHnb

∈ EXT (CH) sinceCHnb
is maximal inGHNB(CH)

and the maximality ofC must be ensured. Thus,C ∈ M3.

Essentially, eachC ∈ M3 differs from a clique inM1 orM2 in
thatCH is not maximal inGH . This category ofH+-max-cliques
is not as straightforward to compute as the first two categories. We
discuss the details in Section 4.2.3.

We state the completeness and soundness of(M1 ∪M2 ∪M3)
with respect to the whole setMH+ in the following theorem.

THEOREM 3. MH+ = (M1 ∪ M2 ∪ M3), whereM1, M2

andM3 are defined in Lemmas 4-6.

PROOF. By the categorization,M1
H+ , M2

H+ andM3
H+ are

disjoint and(M1
H+ ∪ M2

H+ ∪ M3
H+) gives exactlyMH+ . By

Lemmas 4-6, we have(M1 ∪M2 ∪M3) = MH+ .

Now we show thatTH∗ (plus the knowledge of the edges be-
tween theh-neighbors) is sufficient to computeMH+ . We only
need partialGHnb

but do not keepGHnb
in memory (see details in

Section 4.2.3). Before discussing the computation ofMH+ from
TH∗ , we first show thatMH can be obtained fromTH∗ by the
following lemma.

LEMMA 7. ∀C ∈ MH , there exists a pathp ∈ TH∗ such that
the set ofh-vertices inp equals toC.

PROOF. For eachC ∈ MH , we sort the vertices inC by ≺
asC = {v1, . . . , vk}. First, if HNB(C) = ∅, sinceC is max-
imal in GH , there must exist a root-to-leaf pathp = 〈v1, . . . vk〉
in TH∗ . Next, if HNB(C) 6= ∅, i.e., ∃u ∈ HNB(C), then
p = 〈v1, . . . , vk, u〉 must be a root-to-leaf path inTH∗ (sinceC
is maximal inGH).

THEOREM 4. MH+ can be computed fromTH∗ andGHnb
.

PROOF. By Lemma 7, everyC ∈ MH exists inTH∗ . There-
fore,MH can be computed fromTH∗ by removing allh-neighbor
leaves and checking the maximality of all remaining paths (This
can be incorporated into the maximality checking when construct-
ing TH∗ without any extra cost). Thus,∀C ∈ MH+ , CH can
be obtained fromTH∗ . On the other hand, the set of commonh-
neighbors,HNB(CH), can be obtained from theh-neighbor leaves
in TH∗ , from which the correspondingCHnb

can be computed if we
know the part ofGHnb

that givesGHNB(CH).

Example 2.Figure 2 gives theH∗-max-clique treeTH∗ (with
h-vertices shaded) computed from theGH∗ of the example graph
G in Figure 1. Each root-to-leaf path inTH∗ represents anH∗-
max-clique and thus there are totally eightH∗-max-cliques. The
MH consists of only two cliques{a, b, c} and{b, c, d, e} (MH =
{abc, bcde} for short), which can be obtained fromTH∗ too.

The set ofH+-max-cliques obtained from theGH+ in Figure
1 is MH+ = {abcwx , acy , bcde, cey , drz , esy}. We now com-
puteM1, M2, andM3 from TH∗ (and partialGHnb

). First, by
Lemma 4,M1 = (MH ∩ MH∗) = {bcde}, which is the only
root-to-leaf path inTH∗ with a non-h-neighbor leaf. Next, by
Lemma 5, we have(MH\M1) = {abc}. Therefore, theC1 in

Figure 2: TH∗ of G in Figure 1

M2 can only beabc. ThenHNB(abc) = {w, x}, which are the
commonh-neighbor leaves of paths inTH∗ containingabc. Since
w and x are connected inG, we havemaxCL(HNB(abc)) =
{wx}. And thusM2 = {abcwx}. Finally for M3, we have
X = {ac, ce, d, e}. Essentially we should enumerate all proper
subsets of a clique inMH . However, many of them are subsumed
by their proper supersets inX orMH . For example,a is subsumed
by ac sinceHNB(a) = HNB(ac) = {w, x, y}. Then for each
C1 ∈ X , we computeEXT (C1). For example, consideringac,
maxCL(HNB(ac)) = {wx, y} butEXT (ac) = {y}. Note that
wx ∈ maxCL(HNB(ac)) is excluded fromEXT (ac) because
acwx is checked to be non-maximal wrt.abcwx ∈ M2. Similarly,
we haveEXT (ce) = {y}, EXT (d) = {rz}, andEXT (e) =
{sy}. Thus, by Lemma 6,M3 = {acy, cey, drz, esy}. It is easy
to see that(M1 ∪M2 ∪M3) gives exactlyMH+ . 2

4.2.3 Computing H+-max-cliques from H*-max-cliques
We now discuss the algorithm to computeM1, M2 andM3, as

shown in Algorithm 2.
It is straightforward to obtain bothM1 andM2, by performing

a depth-first search (DFS) onTH∗ (Lines 2-9). We do not store
explicitly the setMH and search it to check whetherC1 ∈ MH

(Line 7). Instead, we mark each vertexu whose root-to-u path
forms a clique inMH when we constructTH∗ (see the last para-
graph of Section 4.1.2). Thus, we only need to check whethervk−1

is marked in Line 7. We explain how to computemaxCL(·) later.
To obtainM3, we first computeX in Line 10 as follows. We

enumerate all proper subsets of eachC1 ∈ MH in Line 7. We
then check the conditions defined inX (see Eq. (10)) to prune
the unqualified subsets. The checking of the last condition in X is
similar to the maximality checking when constructingTH∗ . Note
that the setHNB(C) of a cliqueC can be easily obtained from
TH∗ as the set ofh-neighbor leaves of the paths containingC.

GivenX , we then computeEXT (C′
1) for eachC′

1 ∈ X (Line
12). The maximality checking defined inEXT (C′

1) (see Eq. (11))
is done in the same way as that inX . As for the computation of
maxCL(HNB(C′

1)), we use an existing in-memory MCE algo-
rithm. SinceHNB(C′

1) consists of commonh-neighbors of all
vertices inC′

1, HNB(C′
1) is small and thus it is efficient to com-

putemaxCL(HNB(C′
1)).

However, in order to computemaxCL(HNB(C′
1)), we need to

know the induced subgraphGHNB(C′

1
). Note that once we getTH∗ ,

we removeGH∗ from the memory. Thus, we now have more space
to keep partialGHnb

. In order to avoid random access toG in the
disk, we do the following. LetN be the available memory. For all
h-neighbor leaves inTH∗ ordered by the DFS traversal, we divide
them intok partitionsPi (1 ≤ i ≤ k) such that the adjacency lists
of theh-neighbors in eachPi can fit intoN . We then readG from
the disk sequentially and for eachv ∈ Hnb, we write(nb(v)\H)
into the partition(s)v is in. We keep the first partition in the mem-
ory, while each of the other partitions is written into consecutive
disk pages. In this way, we read a partition (partialGHnb

) into

Algorithm 2 Compute-H+-max-cliques

Input : TH∗ (and partialGHnb
)

Output : MH+

1. InitilizeM1 =M2 =M3 = ∅;
2. for each pathp = 〈v1, . . . , vk〉 in TH∗ do
3. if (vk ∈ H)
4. M1 ←M1 ∪ {(v1, . . . , vk)}; /∗ by Lemma 4∗/
5. else
6. C1 ← (v1, . . . , vk−1);
7. if (C1 ∈ MH) /∗ by Lemma 5∗/
8. ComputemaxCL(children(vk−1));
9. M2 ←M2∪{C1 ∪ C2 : C2 ∈ maxCL(children(vk−1))};

10. ComputeX ; /∗ see Eq. (10)∗/
11. for eachC′

1 ∈ X do /∗ by Lemma 6∗/
12. ComputeEXT (C′

1); /∗ see Eq. (11)∗/
13. M3 ←M3 ∪ {C′

1 ∪ C′
2 : C′

2 ∈ EXT (C′
1)};

14. return MH+ ← (M1 ∪M2 ∪M3);

the memory each time when computingmaxCL(HNB(C′
1)) and

avoid random access in the disk.

4.3 Recursive steps
Now, MH+ is computed and outputted, andGH∗ andTH∗ are

discarded. We are ready to move on to the remaining part ofG.
Let G′ be the remaining part ofG after removingGH∗ , which

means that we delete allh-vertices and their incident edges from
G to give G′. The first step is to extract a subgraph ofG′ that
we can compute the max-cliques from it in the memory. Can we
extract anotherH∗-graphG′

H∗ from G′ (wrt. anotherh′) in the
same way as we extractGH∗ from G? For any vertexv in G′,
d(v) ≤ h (otherwisev should be inGH∗ instead). Thus,h′ ≤ h
and|G′

H∗ | ≤ h2. In this case,G′
H∗ is too small and we will need

to scanG many times to computeM, which is not desirable.
We propose to extract a subgraph fromG′ with a similar size to

GH∗ as follows.

Definition10 (L∗-GRAPH). Let L be a set of vertices ran-
domly selected fromG′ = (V ′, E′) such that

∑

v∈L

d(v,G′) ≃ |GH∗ |. (12)

We defineGL∗ = (L ∪ Lnb , ELL ∪ ELLnb
), whereLnb = {v :

u ∈ L, v /∈ L, (u, v) ∈ E′}, ELL = {(u, v) : u, v ∈ L, (u, v) ∈
E′}, andELLnb

= {(u, v) : u ∈ L, v ∈ Lnb , (u, v) ∈ E′}.

Note thatGL∗ is defined based onL in the same way asGH∗

is onH . Therefore, we can apply the method developed forGH∗

in Sections 4.1 and 4.2 to compute the max-cliques fromGL∗ , by
simply replacingH with L. After that,G′ is updated by removing
GL∗ . This process continues recursively untilG′ becomes empty.

There is a small problem in the transition fromH toL. Consider
the 2nd recursive step, i.e., the step right after we computeMH+ .
A cliqueC may be maximal inGL+ , butC may not be maximal in
G, because it is possible that∃C′ ∈ MH+ such thatC′ ⊃ C and
C′

Hnb
= C. We remark that ifC is maximal inGH+ , thenC is

also maximal inG, becauseH only has connection withHnb while
L may have connection with bothH andLnb .

We address this problem as follows. For eachC ∈ MH+ , if
|CHnb

| > 1, we keepCHnb
in a hashtable. LetC′ be a max-clique

in GL+ . If |C′| = 1, thenC′ = {v} is maximal inG only if
d(v) = 0. If |C′| > 1, we hashC′ to check ifC′ exists in the
hashtable. IfC′ is not in the hashtable, thenC′ is maximal inG
and we also addC′

Lnb
(if |C′

Lnb
| > 1) into the hashtable for the

Algorithm 3 ExtMCE

Input : G, recursive depthk, size boundb
Output : M

1. if (G is empty) return ;
2. if (k = 1) /∗ 1st-step: computeGH∗ ∗/
3. Compute-H∗-graph (Alg. 1);
4. else /∗ recursive steps: computeGL∗ ∗/
5. Compute-L∗-graph with size bounded byb (Def. 10);
6. ConstructTH∗ (or TL∗) by an existing MCE algorithm A;
7. Compute-H+(or L+)-max-cliques (Alg. 2);
8. if (k = 1) /∗H+-max-cliques are max-cliques by Theorem 2∗/
9. Build a global hashtableX (see the last paragraph of Section 4.3);

10. OutputH+-max-cliques;
11. else
12. Check the maximality ofL+-max-cliques byX;
13. OutputL+-max-cliques that are globally maximal;
14. UpdateX (see the last paragraph of Section 4.3);
15. RemoveGH∗ (or GL∗) fromG;
16. ExtMCE(G, k + 1, |GH∗ |);

maximality checking in subsequent recursive steps. Otherwise,C′

is not maximal and we also removeC′ from the hashtable, since
C′ will not be computed again in subsequent steps. We also control
the number of cliques kept in the hashtable as follows. Aftereach
round of max-clique computation fromGL∗ , we delete allC in
the hashtable if∃v ∈ C such thatv ∈ L, because all max-cliques
containingv are generated after we finishGL∗ (by Theorem 2).

4.4 Overall Algorithm: ExtMCE
The overall recursive algorithmExtMCE is presented in Algo-

rithm 3. The set of all max-cliques inG can be computed by in-
voking ExtMCE(G, 1, 0). The second parameterk of the algorithm
specifies the depth of the recursive process and the last parameter
b sets a size bound on the portion ofG that is under max-clique
computation in each recursive step.b is set as0 initially for the first
step and as|GH∗ | for the following recursive steps.

We state the correctness of ExtMCE in the following theorem.

THEOREM 5. The results returned by ExtMCE is sound and
complete with respect to the set of all max-cliques inG.

PROOF. We first prove the soundness. At the first recursive step,
the set ofH+-max-cliques is computed in Line 7 and outputted
directly in Line 10 of ExtMCE. TheH+-max-cliques are proved to
be maximal inG in Theorem 2. Next, at each subsequent recursive
step,L+-max-cliques are computed (Line 7). The maximality of
the outputtedL+-max-cliques is ensured by the checking in Line
12 of ExtMCE.

We now prove the completeness. At the first step, the set of
H+-max-cliques is complete with respect to the max-cliques in
G that contain at least one vertex inH (by Theorem 2). At the
second recursive step,L+-max-cliques are computed in the same
way asH+-max-cliques (Line 7). This means that the set ofL+-
max-cliques is complete with respect to the set of max-cliques in
(G\GH∗) that contain at least one vertex inL. Combining with
the H+-max-cliques (computed fromGH∗) that contain at least
one vertex inL, it gives a complete set of max-cliques inG that
contain at least one vertex inL. Similarly by recursion, a com-
plete set of max-cliques inG that contain at least one vertex in the
correspondingL is given after each recursive step. Since the recur-
sion terminates when the graphG becomes empty (i.e., all vertices
have been considered to form max-cliques), the algorithm gives a
complete set of max-cliques inG.

Complexity. The memory space complexity of ExtMCE isO(|GH∗ |

+|TH∗ |). We needO(|G|/|GH∗ |) scans ofG for the entire pro-
cess. We now analyze the time complexity of ExtMCE when com-
pared with an in-memory MCE algorithmA. LetA(G) denote the
algorithmA when it is applied directly to the whole graphG. If we
only consider the in-memory operations, the time required for the
entire recursive steps in ExtMCE is comparable to that ofA(G).
This is because Algorithm 2 essentially expands those pathsin
TH∗ (or TL∗) that would be generated byA(G) as well, while the
computation of eachmaxCL(HNB(·)) is also necessary inA(G).
Thus, if the memory is big enough to hold the whole graphG,
ExtMCE performs comparably toA(G). However, if the mem-
ory is insufficient (a typical case for a massive graphG), A(G)
would incur many random disk accesses toG, while ExtMCE has
a bounded number of scans ofG, which is much more efficient.
These conclusions are empirically verified by our experiments.

5. UPDATE IN DYNAMIC NETWORKS
We consider two types of updates: edge insertion and edge dele-

tion. Vertex insertion/deletion can be considered as a series of edge
insertions/deletions proceded/followed by the insertion/deletion of
an isolated vertex, which is a rather trivial operation. Note thatG
is also updated, but we focus our discussion on updates directly re-
lated to theH∗-max-cliques. In other words, we only maintain the
H∗-max-cliques to be up-to-date, while we compute the set of all
max-cliquesM periodically or on demand.

We first consider the insertion of a new edgee = (u, v) and the
possible updates toH∗-max-cliques. First, ifu, v /∈ H , we do
not need to updateH or TH∗ , unlessu and/orv now becomes an
h-vertex. Next, ifu ∈ H and/orv ∈ H , insertinge creates new
H∗-max-clique(s). LetNBuv = nb(u) ∩ nb(v) denote the set of
common neighbors ofu andv. We find the cliques that can form
larger cliques with{u, v} asS = {C : C ⊆ (C′ ∩ NBuv), C

′ ∈
MH∗ , C 6= ∅}, which can be obtained easily by traversingTH∗ .
To ensure the maximality, we take away non-maximal cliques in S
and getSM = {C : C ∈ S ,∄C′ ∈ S s.t. C′ ⊃ C}. Then, for
eachC ∈ SM , we insert(C ∪ {u, v}) into TH∗ . We also remove
(C ∪ {u}) and/or(C ∪ {v}) from TH∗ if they are originally in the
tree. Note that ifS = ∅, then{u, v} is maximal and we simply
insert{u, v} into TH∗ .

We now consider deleting an edgee = (u, v). If u, v /∈ H , there
is no update needed forH andTH∗ . If u ∈ H and/orv ∈ H , we
need to remove fromTH∗ all H∗-max-cliques containing bothu
andv. Thus, we need to findS ′ = {C : u, v ∈ C,C ∈ MH∗}.
Assume thatu ≺ v, we can obtainS ′ by finding all occurrences of
v in the subtree rooted at each occurrence ofu in TH∗ , and collect-
ing theH∗-max-cliques containing bothu andv by traversing the
corresponding paths. We remove eachC ∈ S ′ from TH∗ . We also
insert(C\{u}) and/or(C\{v}) if they now become maximal.

We give an analysis on the cost of the updates as well as on the
frequency of the updates.

On edge insertion, the cost isO(|TH∗ |+ |S|2 +
∑

C∈SM
(|C ∪

{u, v}| log favg)) time, wherefavg is the average number of chil-
dren of a node inTH∗ . ComputingS takesO(|TH∗ |) time. Com-
putingSM takes time less than|S|2 since we do not need to com-
pare cliques with the same size, or those largest cliques inS . In
most cases,|S| is small because otherwise it implies thatu and
v are very closely related and hence the edge(u, v) is likely to
already exist. Finally, inserting each(C ∪ {u, v}) takes at most
O(log favg) time at each level ofTH∗ . On edge deletion, it takes
O(|TH∗ |+

∑
C∈S′(|C| log favg)) time to obtainS ′ and deleteC

(as well as to insert(C\{u}) and/or(C\{v}) if they are maximal).
Now we examine how frequent these updates are performed.

Since we only perform updates related to theH∗-max-cliques, there

is no update for the insertion or deletion of an edge(u, v), where
u, v /∈ H . As shown in Section 3.2, the size ofH , i.e.,h, is usually
very small compared to the total number of vertices inG. There-
fore, the percentage of the updates inG that can “hit” anh-vertex
and thus trigger an update inH∗-max-cliques is very low, which is
also verified in our experimental studies.

6. EXPERIMENTAL EVALUATION
We evaluate the performance of our method, comparing with the

state-of-the-artin-memoryMCE algorithm [27] and the only exist-
ing streamingMCE algorithm for dynamic networks [26], denoted
as in-mem andstreaming in our experiments. We ran all experi-
ments on a machine with a 3.0GHz Pentium 4 CPU and 2GB RAM,
running Windows XP.

Datasets. We use four datasets:protein, blogs, LiveJournal(LJ),
and Web. Protein is a human protein interaction network from
the Human Protein Database (www.hprd.org), in which vertices
are proteins and edges are protein-protein interactions. The blogs
network is collected from the top-15 popular queries published by
Technorati (technorati.com) every three hours from Nov 2006 to
Mar 2008. In theblogsnetwork, vertices are blogs and edges in-
dicate that two blogs appear in the same search result.LJ is the
free on-line community called Livejournal (www.livejournal.com),
where vertices are members and edges represent friendship between
members. TheWebgraph is obtained from the YAHOO webspam
dataset (barcelona.research.yahoo.net/webspam), wherevertices are
pages and edges are hyperlinks. We give the details of each dataset
(number of vertices and edges, physical storage size) as follows.

Table 2: Datasets (K= 1,000 and M= 1,000,000)
protein blogs LJ Web

n = |V | 20K 1M 4.8M 10M
m = |E| 40K 6.5M 43M 80M
Storage size (MB) 1 186 1310 2613

6.1 Evaluation of the H*-graph
Table 3 shows that it is very efficient to extractGH∗ from G.

The majority of the time is used to read the graph from the disk,
which is an inevitable cost.

Table 3: Time and memory usage of extractingGH∗

protein blogs LJ Web

Total time (sec) 0.3 38 243 524
Disk-read time (sec) 0.2 31 199 405
Memory (MB) 1.2 8.5 27 140

Table 4 reports the sizes ofH , Hnb , GH , GH∗ andGH+ . We
also give a better perception on the sizes ofGH , GH∗ andGH+ as
their ratio toG (given in parenthese in the table). For all datasets,
H is small but it extends to a much largerh-neighbor setHnb .
As a result,GH is too small, thus requiring many disk scans for
MCE computation, whileGH+ is too large, thus demanding too
much memory. On the contrary,GH∗ is much smaller thanGH+

but is significantly greater thanGH , thus allowing more efficient
MCE computation with reasonable memory usage. As seen from
the size ratio, LJ has a relatively smallerGH∗ andGH+ than other
datasets, which is mainly because the vertices in LJ are lessdensely
connected as indicated by its small|H | wrt. |V |.

Table 4: Sizes ofH , Hnb , GH , GH∗ andGH+

protein blogs LJ Web

|H| 77 718 987 2982
|Hnb | 4K 192K 441K 4.4M

|GH | 0.5K (1%) 37K (0.6%) 25K (0.06%) 29K (0.04%)
|GH∗ | 8.6K (22%) 840K (13%) 1.7M (4%) 25M (31%)
|GH+ | 21K (54%) 4M (64%) 11M (25%) 54M (68%)

Table 5 shows the averageclosenessof theh-vertices, the per-
centage of vertices inG that are reachable from theh-vertices
(reachability), the number of max-cliques, and the accuracy of es-
timating|TH∗ |. The closeness of anh-vertexu is defined as
AVGv∈V,dist(u,v) 6=∞(dist(u, v)), wheredist(u, v) is the length
of the shortest path fromu to v in G.

Table 5: Closeness, reachability, # of max-cliques, and|TH∗ |
protein blogs LJ Web

closeness (h-vertices) 3.1 3.4 4.3 7.1
reachability (h-vertices) 47% 56% 100% 73%

of max-cliques 25K 1.1M 173M 267M
(containh-vertices) 239 4K 69K 7.8M
(containh-neighbors) 12K 510K 43M 146M

(estimated|TH∗ |)/|TH∗ | 1.00 1.01 0.93 0.97

The closeness shows that from theh-vertices, we can reach other
vertices inG within a few steps and we are able to reach the ma-
jority of the vertices inG. This result demonstrates thatGH∗ rep-
resents a significant portion ofG and thatGH∗ also has a close
relationship with the rest part ofG.

Table 5 also reports the number of all max-cliques, the number
of those max-cliques containingh-vertices andh-neighbors. The
result shows that the number of max-cliques containingh-vertices
is significantly smaller than that of all max-cliques. The result jus-
tifies the feasibility of our update maintenance based on a much
smaller set of cliques containingh-vertices since it is much more
efficient. From theh-vertices we can extend to theh-neighbors,
while the result shows that the set of max-cliques containing h-
neighbors represents a large portion of the whole set of max-cliques.

Finally, Table 5 shows that our method of estimating|TH∗ | is
highly accurate. Thus, the result verifies the effectiveness of setting
memory-bound at the first step ofExtMCE.

6.2 Performance of ExtMCE
Figure 3 reports the total running time and peak memory con-

sumption of finding the set of all max-cliques usingExtMCE, in-
mem, andstreaming, respectively.

First, on the smaller networksprotein andblogs, ExtMCE is as
fast asin-mem, but with only 1 quarter of the memory usage of
in-mem. The result verifies our assertion in Section 4.4 that the
time complexity ofExtMCEis indeed comparable to that of an in-
memory MCE algorithm.

On the larger networks, the advantage ofExtMCEover in-mem
is immediately seen. As shown in Figure 3(b),in-memruns out of
memory, whileExtMCEcomputes the result for all the networks
with a bounded memory consumption. The corresponding running
time for in-memis thus not shown in Figure 3(a) sincein-memdoes
not complete the MCE task.

We are only able to obtain the result ofstreamingfor the small-
estproteinnetwork, which already takes many orders of magnitude
more time to complete. The result is becausestreamingreads an

1

10

100

1k

10k

100k

protein blogs LJ Web

R
un

ni
ng

 ti
m

e
(s

ec
)

ExtMCE
in-mem

streaming

(a) Running Time

 0

 500

 1000

 1500

 2000

 2500

protein blogs LJ Web

M
em

or
y

us
ag

e
(M

B
)

ExtMCE
in-mem

streaming

(b) Memory Consumption

Figure 3: Performance ofExtMCE

edge at a time and updates the current set of max-cliques for each
edge. We report this result to demonstrate that althoughstreaming
reads the graph only once, the time complexity of such a streaming
algorithm for MCE computation is extremely high. On the con-
trary,ExtMCEreads the graphO(|G|/|GH∗ |) times, but is able to
compute MCE efficiently with bounded memory usage.

We further analyzeExtMCE by showing the number of recur-
sions it requires for each dataset. As shown in Table 6, the number
of recursions actually performed byExtMCEis very close to the es-
timated number,|G|/|GH∗ |. LJ has a higher number of recursions
since itsH∗-graph is relatively smaller as shown in Table 4.

Table 6: Actual/estimated number of recursions
protein blogs LJ Web

of recursions 5 9 25 7
|G|/|GH∗ | 4.5 7.7 24.6 3.2

Time (1st recursion) 67% 36% 2% 34%

Table 6 also shows that the percentage of the total running time
used for the first recursive step, i.e.,ExtMCEoperates onGH∗ . It
shows that a large portion of the time is spent on computing the
max-cliques at the first step (exceptLJ), which also justifies the
choice ofGH∗ for dynamic update maintenance. We also find that
the peak memory consumption indeed occurs at the first recursive
step, which verifies the correctness ofO(|GH∗ | + |TH∗ |) as the
memory bound forExtMCE.

6.3 Performance on Update Maintenance
Table 7 reports the results for update maintenance. We use the

blogsnetwork, whose edges are associated with a timestamp, span-
ning over 12 months. We average the results for every two month-
period, shown as P1-P6 in Table 7. The network grows from 347K
edges to 6.5M edges.

Table 7 shows that the average time of processing an edge inser-
tion that triggers an update inTH∗ , shown as “Avg. update time”,
is only 2 to 3 msec. The exception is P1 which requires 10 msec.
This is because the initial network is not large enough and hence
TH∗ changes considerably during P1, which is also reflected by
the rapid increase in the number ofh-vertices from P1 to P2.

Table 7 also shows “# of updates inGH∗”, which is the number
of edge insertions that trigger an update inTH∗ , and “# of updates
in G”, which is the number of all edges inserted into the network.
On average, the percentage of edges that trigger an update inTH∗

is only 3.8%, which is a small portion of the total updates. Thus,
updating onlyTH∗ is a feasible solution to handle frequent updates.

Among the existing algorithms,streamingis the only one that
updates the set of max-cliques upon each edge insertion. However,
streamingis three orders of magnitude slower than our algorithm
on average. We do not report the result forstreamingbecause it

Table 7: Results for update maintenance

P1 P2 P3 P4 P5 P6

Avg. update time (msec) 10 3 2 2 2 3

of updates inGH∗ 3K 11K 19K 25K 28K 28K
of updates inG 385K 457K 550K 461K 526K 670K

of h-vertices 294 425 508 566 614 696
% ofh-vertices retained 92 92 95 96 94 96

Memory (MB) 418 427 436 443 451 463

Time w/ TH∗ (sec) 12 22 45 68 86 114
Time w/oTH∗ (sec) 36 62 104 142 177 226

takes too long to complete all updates (it has taken 190 hoursto
update only 40K edges at the time of writing).

The number ofh-vertices increases stably as the network in-
creases, except the initial network which is relatively small and thus
unstable. We also show % ofh-vertices retained, that is, the per-
centage ofh-vertices inPi that are also inPi+1. The result shows
that the majority of theh-vertices remains to beh-vertices.

We also show the memory consumption, which increases as the
network grows. Note that the memory consumption is the same
amount of memory needed for computing the set of all max-cliques
by ExtMCE, sinceO(|GH∗ |+ |TH∗ |) sets the bound for the mem-
ory usage ofExtMCE.

Finally, the last two rows of Table 7 report the time to compute
the set of all max-cliques from the dynamically maintainedTH∗

(“Time w/ TH∗”) and from scratch (“Time w/oTH∗”), respec-
tively. The result shows that it is much more efficient to compute
the set of all max-cliques from the dynamically maintainedTH∗

than from scratch from the network, thus demonstrating the bene-
fit of update maintenance as well as the feasibility of maintaining
MH∗ (i.e.,TH∗) for M.

7. RELATED WORK
There is a large literature on MCE. We discuss the more promi-

nent and recent ones, a comprehensive review can be found in [9].
The first significant improvement on MCE was the algorithms [2, 7]
that use thebacktrackingmethod. They takeO(n2) memory space.
Further improvements [19, 27, 9] were made by selecting goodpiv-
ots to prune the backtracking search tree. The optimal worst-case
time of backtracking-based MCE was shown to beO(3n/3) [27].
Recently, parallel algorithms [12, 25] were proposed to enumer-
ate max-cliques from different points of the search tree in parallel.
However, all these works did not focus on reducing the memory
complexity and requireO(m+ n) memory space in the best case.
Output-sensitive MCE algorithm was also introduced [28] which is
based onreverse search, and recent work [21] used matrix multipli-
cation to reduce the time delay toO(d4max) for sparse graphs (but
with O(nm) preprocessing time), wheredmax is the maximum de-
gree of a graph. There is also algorithm that obtains ak-clique by
joining two (k − 1)-cliques [20]. However, all these algorithms
require memory space at leastΩ(m + n). Stix [26] proposed an
algorithm that updates the set of max-cliques upon each edgein-
sertion, and the graph is read only once. Finally, we are aware of a
recent work that adopts the concept ofh-index for triangle count-
ing [13]. Their work does not address the memory issue and takes
O(m+n) memory, while the problem of MCE is also substantially
more difficult than that of triangle counting.

8. CONCLUSIONS
We propose ExtMCE, the first external-memory algorithm for

MCE computation on large real-world networks. ExtMCE recur-
sively processes a small part of a large graph at a time, whileensur-
ing that the set of max-cliques computed in the local steps iscorrect
and complete in the whole graph. ExtMCE bounds the memory us-
age by theH∗-graph, a novel concept defined based on the notion
of h-index. We test ExtMCE on large networks of up to 10 million
vertices and 80 million edges and verify that the effectiveness of us-
ing theH∗-graph for bounding memory usage. Our experimental
results show that ExtMCE achieves comparable running time com-
pared with the state-of-the-art in-memory MCE algorithm [27], but
uses significantly less memory. For the larger networks, thein-
memory algorithm does not work while ExtMCE still computes
MCE efficiently with bounded memory usage. We also compare
with a streaming MCE algorithm [26] and show that ExtMCE is
orders of magnitude more efficient. We also verify the feasibility
of update maintenance on large networks based on theH∗-graph.

9. ACKNOWLEDGMENTS
This research is supported in part by the AcRF Tier-1 Grant

(M52020092) from Ministry of Education of Singapore, the Chi-
nese University of Hong Kong (CUHK) Direct Grant No. 2050474,
the RGC Research Direct Grant of the CUHK Projects 2050421
and 2150472, the CUHK Postdoctoral Fellowship Grant 2008-2009,
and the RGC of the Hong Kong SAR, CUHK No. 419008.

10. REFERENCES
[1] F. N. Abu-Khzam, N. E. Baldwin, M. A. Langston, and N. F.

Samatova. On the relative efficiency of maximal clique
enumeration algorithms, with applications to high throughput
computational biology. InInternational Conference on
Research Trends in Science and Technology, 2005.

[2] E. A. Akkoyunlu. The enumeration of maximal cliques of
large graphs.SIAM J. Comput., 2(1):1–6, 1973.

[3] H. R. Bernard, P. D. Killworth, and L. Sailer. Informant
accuracy in social network data iv: a comparison of
clique-level structure in behavioral and cognitive network
data.Social Networks, 2(3):191–218, 1979.

[4] N. M. Berry, T. H. Ko, T. Moy, J. Smrcka, J. Turnley, and
B. Wu. Emergent clique formation in terrorist recruitment.In
The AAAI-04 Workshop on Agent Organizations: Theory and
Practice, 2004.

[5] G. Bianconi and M. Marsili. Emergence of large cliques in
random scale-free networks.Europhysics Letters,
74(4):740–746, 2006.

[6] V. Boginski, S. Butenko, and P. M. Pardalos. Statistical
analysis of financial networks.Computational Statistics &
Data Analysis, 48(2):431–443, 2005.

[7] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques
of an undirected graph.Commun. ACM, 16(9):575–577,
1973.

[8] J. M. Byskov. Algorithms for k-colouring and finding
maximal independent sets. InSODA, pages 456–457, 2003.

[9] F. Cazals and C. Karande. A note on the problem of
reporting maximal cliques.Theor. Comput. Sci.,
407(1-3):564–568, 2008.

[10] G. Creamer, R. Rowe, S. Hershkop, and S. J. Stolfo.
Segmentation and automated social hierarchy detection
through email network analysis. InWebKDD/SNA-KDD,
pages 40–58, 2007.

[11] S. N. Dorogovtsev and J. F. F. Mendesand. Evolution of
networks: From biological nets to the internet and www.
Oxford University Press, 2003.

[12] N. Du, B. Wu, L. Xu, B. Wang, and P. Xin. Parallel
algorithm for enumerating maximal cliques in complex
network. InMining Complex Data, pages 207–221. 2009.

[13] D. Eppstein and E. S. Spiro. Theh-index of a graph and its
application to dynamic subgraph statistics. InWADS, pages
278–289, 2009.

[14] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. InSIGCOMM, pages
251–262, 1999.

[15] K. Faust and S. Wasserman. Social network analysis:
Methods and applications.Cambridge University Press,
1995.

[16] J. E. Hirsch. An index to quantify an individual’s scientific
research output.Proceedings of the National Academy of
Sciences of the United States of America,
102(46):16569–16572, 2005.

[17] P. Kilby, J. K. Slaney, S. Thiébaux, and T. Walsh. Estimating
search tree size. InAAAI, 2006.

[18] D. E. Knuth. Estimating the efficiency of backtrack
programs.Mathematics of Computation, 29(129):121–136,
1975.

[19] I. Koch. Enumerating all connected maximal common
subgraphs in two graphs.Theor. Comput. Sci.,
250(1-2):1–30, 2001.

[20] F. Kose, W. Weckwerth, T. Linke, and O. Fiehn. Visualizing
plant metabolomic correlation networks using
clique-metabolite matrices.Bioinformatics,
17(12):1198–1208, 2001.

[21] K. Makino and T. Uno. New algorithms for enumerating all
maximal cliques. InSWAT, pages 260–272, 2004.

[22] N. Modani and K. Dey. Large maximal cliques enumeration
in sparse graphs. InCIKM, pages 1377–1378, 2008.

[23] S. Mohseni-Zadeh, P. Brézellec, and J.-L. Risler. Cluster-c,
an algorithm for the large-scale clustering of protein
sequences based on the extraction of maximal cliques.
Computational Biology and Chemistry, 28(3):211–218,
2004.

[24] M. E. J. Newman. The structure and function of complex
networks.SIAM Review, 45:167–256, 2003.

[25] M. C. Schmidt, N. F. Samatova, K. Thomas, and B.-H. Park.
A scalable, parallel algorithm for maximal clique
enumeration.J. Parallel Distrib. Comput., 69(4):417–428,
2009.

[26] V. Stix. Finding all maximal cliques in dynamic graphs.
Computational Optimization and applications, 27:173–186,
2004.

[27] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time
complexity for generating all maximal cliques and
computational experiments.Theor. Comput. Sci.,
363(1):28–42, 2006.

[28] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new
algorithm for generating all the maximal independent sets.
SIAM J. Comput., 6(3):505–517, 1977.

[29] B. Zhang, B.-H. Park, T. V. Karpinets, and N. F. Samatova.
From pull-down data to protein interaction networks and
complexes with biological relevance.Bioinformatics,
24(7):979–986, 2008.

