

Anonymizing Transaction Databases for Publication
Yabo Xu, Ke Wang
Simon Fraser University

BC, Canada

{yxu, wangk}@cs.sfu.ca

Ada Wai-Chee Fu
The Chinese University of Hong Kong

Shatin, Hong Kong

adafu@cse.cuhk.edu.hk

Philip. S. Yu
University of Illinois at Chicago

IL 60607, USA

psyu@cs.uic.edu

ABSTRACT
This paper considers the problem of publishing “transaction data”
for research purposes. Each transaction is an arbitrary set of items
chosen from a large universe. Detailed transaction data provides
an electronic image of one's life. This has two implications. One,
transaction data are excellent candidates for data mining research.
Two, use of transaction data would raise serious concerns over
individual privacy. Therefore, before transaction data is released
for data mining, it must be made anonymous so that data subjects
cannot be re-identified. The challenge is that transaction data has
no structure and can be extremely high dimensional. Traditional
anonymization methods lose too much information on such data.
To date, there has been no satisfactory privacy notion and
solution proposed for anonymizing transaction data. This paper
proposes one way to address this issue.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; K.4.1 [Public
Policy Issues]: Privacy

General Terms
Algorithms, Theory, Performance, Experimentation

Keywords
Anonymity, transaction database, privacy, data publishing

1. INTRODUCTION
1.1 Motivations
In this paper, a transaction is an arbitrary set of items chosen from
a large universe. Examples of transactions are web search queries,
purchase records, click streams, emails. Transaction data are
generated in a wide variety of activities including querying and
browsing web services, online/offline shopping and product
reviews. This has made transactions rich sources for data mining
[15], including association rule mining [8], user behavior
prediction [14], recommender systems (http://www.amazon.com/),
information retrieval [18] and personalized web search [19].
Detailed transaction data provides an electronic image of one's
life, possibly containing sensitive information. Therefore, before
data can be released for data mining, it must be made anonymous

so that data subjects cannot be re-identified. We first consider two
examples for re-identification on transaction data.

Example 1 AOL recently released a database of query logs to the
public for research purposes [1]. However, by examining query
terms, the searcher No. 4417749 was traced back to Thelma
Arnold, a 62-year-old widow who lives in Lilburn. Even if a
query does not contain address or name, a searcher may still be
re-identified from combinations of query terms that are unique
enough about the searcher. According to [15], this scandal leads
to not only the disclosure of private information for AOL users,
but also damages to data publishers’ enthusiasm on offering
anonymized transaction data for research purposes.■

Example 2 A web-based retailer released online shopping data to
a marketing company for customer behavior analysis. Albert, who
works in the marketing company, learnt that his colleague Jane
purchased a Printer, a Frame and a Camera from this website
some days ago. Albert matched these items against all transaction
records and surprisingly found only 3 transactions matched, out of
which 2 also contains AdultToy. Albert then concluded, with 67%
confidence, that Jane bought AdultToy. Although privacy policies
may be in place, nothing will stop such attacks on an individual. ■

In these examples, the data publisher (i.e., the retailer) publishes a
collection of person-specific transactions for research purposes.
Each transaction contains an arbitrary set of items chosen from a
universe U. An item can be either public (i.e., Printer, Frame and
Camera) or private (i. e., AdultToy). One data recipient, the
attacker (i.e., Albert), seeks to re-identify the subject of some
transactions. As prior knowledge, the attacker knows that a target
person (i.e., Jane) has a transaction in the published data and that
the transaction contains certain public items (e.g., Printer, Frame
and Camera). The re-identification is successful if very few
transactions contain these items.

The publisher’s goal is publishing the data, not data mining
results. The publisher has no interest or ability in data mining and
the data recipient wants to receive the data and have the complete
control over how to mine the data. This scenario is different from
publishing data mining results so that no sensitive information is
revealed such as in [5][6][7]. Also, the published data should be
“semantically interpretable”. For example, the recipient may want
to visually examine each transaction; therefore, publishing
encrypted data, or randomized data [9], or synthetic data [12] data
does not serve our purposes. Our scenario requires publishing
sensitive information, but hiding the identity of data subjects. This
is different from hiding sensitive information in the above works.

Privacy models such as k-anonymity [4] and l-diversity [11] exist
to prevent re-identification attacks on relational data. The key is
to form “equivalence classes” on a quasi-identifier (QID), e.g.,
{Sex, Zip, BirthDate}, so that the records in the same equivalence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08...$5.00.

767

class are not distinguishable. If applied to transaction data, the
QID would contain one attribute for each public item in the
universe U. Typically, U for transaction data is very large, say
10,000 items in Example 2, and each transaction contains a small
fraction of the items in U, say 1% or less. For such high
dimensional QID, forming equivalence classes means suppressing
mostly all items. A similar observation was made in the previous
study [21]. But that study did not provide a solution to the high
dimensional problem.

A few works [2][3] have attempted to anonymize query logs, but
considered only re-identifications via one or two query terms. The
work on anonymizing social networks [16] is loosely related to
ours. In [16], the authors model prior knowledge as small
subgraphs with a few nodes, in a similar way that we model
attackers’ prior knowledge as subsets of public items. In [17],
authors demonstrated that the anonymity of Netflix subscribers
can be compromised by as little prior knowledge as no more than
8 movie ratings and dates. These works however did not propose
solutions to the problems identified.

1.2 Contributions
Given a large universe U, it is unlikely that an attacker has prior
knowledge on the status of all public items in U. Instead, the
attacker is constrained by the “effort” required to acquire prior
knowledge on each item (e.g., search the Yellow Books, hire a
spy). In this paper, we measure the “power” of the attacker by the
maximum number p of public items that can be obtained as prior
knowledge in a single attack, and measure the level of protection
relative to that power of attackers. Given the ultimate goal of
publishing data, this “relative protection” of privacy, which is not
security, makes sense; “absolute protection” means no data
publishing at all – a safe but totally useless solution.

Contribution 1 Our first contribution is a novel privacy notion
for transaction data. We say that a database D has (h,k,p)-
coherence if, for every such combination β of no more than p
public items, either no transaction contains β, or the set of
transactions containing β, called β-cohort, contains at least k
transactions and no more than h percent of these transactions
contains a common private item. In other words, (h,k,p)-
coherence ensures that, for an attacker with the power p, the
probability of linking an individual to a transaction is limited to
1/k and the probability of linking an individual to a private item is
limited to h.

Example 3 (The running example) Suppose that a health care
provider published the database D in Figure 1 for research on life
styles and illnesses. “Activities” refers to the activities a person
engages in (e.g., drinking, smoking) and are public. “Medical
History” refers to the person’s major illness and is private. Each
person can have an arbitrary number of activities and illness
chosen from a universe U. Let k = 2, p = 2, h = 80%. D violates
(h,k,p)-coherence. ab-cohort (we use ab for {a,b}) has only one
transaction T2, so an “attacker” acquiring the prior knowledge ab
on a target individual can uniquely identify T2 as the transaction
of the individual. bf-cohort has two transactions T2 and T3, both
containing “Hepatitis”. So an “attacker” acquiring the prior
knowledge bf can infer “Hepatitis” with 100% probability. ■

a, c, f, g
b, c, g, y, z
b, d, f, x
a, b, c, f
a, c, d, f, g
Activities

HIV
HIV

Hepatitis
Hepatitis
Diabetes

Medical HistoryTID

T4
T5

T3

T2

T1

Figure 1. D, k = 2, p = 2, h = 80%

Let us explain why (h,k,p)-coherence better preserves information
than the QID-based k-anonymity. Consider a set of public items β
with |β|≤p. β-cohort requires its transactions to contain all the
items in β, but not necessarily contain items not in β. In contrast,
QID contains one attribute for each public item in the universe U,
and an equivalence class on QID must agree on all the items in U.
Since p is typically much smaller than |QID|, more items are
suppressed to form an equivalence class on QID than to form a β-
cohort. For example, to form the equivalence classes
EC1={T1,T2,T5} and EC2={T3,T4} on the QID containing the 9
activities in Example 3, EC1 requires suppressing b, d and g and
EC2 requires suppressing all activities except a and b. In the end,
only the item a remains.

Another interesting property of (h,k,p)-coherence is that it allows
prediction of private items for the researcher, though not for the
attacker. Suppose that the health care provider in Example 3 is
interested in predicting illnesses, D contains the useful pattern
bf→ Hepatitis with 100% probability. However, for an attacker
with the power p=1, and for k = 2 and h = 80%, D is (h,k,p)-
coherent. In particular, bf is not a threat because its size exceeds
the power p=1 of the attacker. This is interesting because accurate
patterns β→e usually involve a long antecedent β [20], which sets
up a high bar to acquire such β as prior knowledge. Our privacy
notion exploits the difference between an attacker and a genuine
researcher: the former must acquire prior knowledge, but the
latter does not.

Contribution 2 Our second contribution is an algorithm for
achieving (h,k,p)-coherence while preserving as much information
as possible. We measure information loss by the amount of items
suppressed. We show that an optimal solution is NP-hard and
focus on finding a local optimal solution. The challenge is
eliminating all damaging prior knowledge from the database, i.e.,
all subsets β of public items, |β|≤p, that violate (h,k,p)-coherence.
For example, with p=4 and 1000 public items, the number of such
subsets β can be as large as 10004 and enumerating all is not an
option. We propose an efficient algorithm to eliminate such prior
knowledge from the database.

The rest of the paper is organized as follows. Section 2 defines the
notion of (h,k,p)-coherence and the problem of achieving (h,k,p)-
coherence. Section 3 presents our solution. Section 4 presents
experimental results. Section 5 concludes the paper.

2. PROBLEM STATEMENTS
Let U={e1,…,em} be the universe of items. An item is either
public or private (but not both). Public items correspond to
potentially identifying information on which prior knowledge
could be acquired by an attacker. Private items correspond to
sensitive information to be protected. An itemset is a set of items
from U. A public itemset is an itemset containing only public

768

items. D={T1,…, Tn} denotes a database of transactions. Each
transaction Ti is a set of items from U and corresponds to an
individual. If an individual has several transactions, we merge all
his transactions into a single transaction.

Private items typically refer to financial information, health
information, sexual orientation, religion and political beliefs.
Public items refer to any items that are potentially public,
therefore, all non-private items. In specialized applications such
as heath care, financial sectors and insurance industry, well
defined guidelines for public/private items often exist.
Public/private items may also be specified by data subjects during
data collection. For our discussion purpose, we assume that
public/private items have been specified.

To launch an attack on a target individual, the attacker must know
that the individual has a transaction in D. Also, the attacker has
the prior knowledge that the transaction contains some public
items β. Let |β| denote the number of items in β. We describe such
an attack by β→e, for some private item e that the attacker
intends to infer. β-cohort refers to the set of transactions that
contain β as a subset. Sup(β), the support of β, denotes the
number of transactions in β-cohort. The probability that a
transaction contains e, given that it contains β, is

P(β→e)=Sup(β∪{e})/Sup(β).

We define Pbreach(β), called the breach probability of β, to be the
maximum P(β→e) for any private item e. Since P(β→e)≥P(β→α)
for any set α containing e, we consider only a single private item
e in an attack β→e.

In Example 2, the attacker has the prior knowledge β={Printer,
Frame, Camera} and finds that, out of the 3 transactions that
contain β, 2 also contains e =AdultToy. Sup(β)=3, Sup(β∪{e})=2,
and P(β→e)=2/3. So the attacker infers that Jane bought
AdultToy with the probability P(β→e)=2/3=67%.

2.1 Coherence
Our goal is to bound Pbreach(β) for all possible public itemsets β
that can be acquired by the attacker as prior knowledge on a target
individual. As the size |β| increases, so does the attacker’s effort
required to acquire the prior knowledge β. Suppose that the
“power” of the attacker is measured by the maximum size |β| of
such prior knowledge β. An attacker with the power p can
potentially acquire any public itemset β as prior knowledge on a
target individual, where |β|≤p. If either Sup(β)<k or Pbreach(β)>h,
by focusing on the transactions in β-cohort, the attacker is able to
link a target individual to a transaction with more than 1/k
probability, or to a private item with more than h probability. To
prevent such linking, we define the following privacy notion.

Definition 1 (Coherence) Let β be a public itemset with |β|≤p and
Sup(β)>0. β is called a mole wrt (h,k,p) if either Sup(β)<k or
Pbreach(β)>h; otherwise, β is called a non-mole wrt (h,k,p). We say
that D is (h, k, p)-coherent if D contains no moles wrt (h,k,p). ■

Intuitively, a mole is a piece of prior knowledge that could be
used to link a target individual to a transaction with more than 1/k
probability, or to a private item with more than h probability. If a
database is (h,k,p)-coherent, such linking is not possible.

Example 4 In Example 1, suppose that Ms Thelma Arnold
searches her own name and “Diabetes”, her query log will be

Ti={Thelma, Arnold, Diabetes}. If β={Thelma, Arnold} is unique
in D, Sup(β)=1 and β is a mole wrt (k = 2, p = 2, h = 80%). In
Example 3, where k = 2, p = 2, h = 80%, ab is a mole because
Sup(ab)=1. bf is a mole because Pbreach(bf)=100%. a is a non-mole
because Sup(a)=3 and Pbreach(a)=1/3. ■

2.2 Item Suppression/Information Loss
If D does not have coherence, we will modify D to satisfy
coherence before publishing it. We believe that the modification
operation should satisfy the following requirements: (R1) Private
items are essential for research and should remain intact. (R2) A
published transaction should not contain external items not in the
original transaction. (R3) The support of any itemset in the
published data should be the same as in the original data. Many
data mining problems rely on the support of itemsets [8][13][20].
For example, association rule mining [8] is aimed to find all
patterns α→β, where α and β are itemsets, such that
Sup(α∪β)/Sup(α) is above some threshold value. Such patterns
are good candidates for prediction and classification [20]. If
Sup(α∪β) or Sup(α) on the modified data is different from those
obtained on the original data, even a small difference could lead
to a significant difference in Sup(α∪β)/Sup(α), thus an arbitrary
prediction or classification.

Item Suppression To meet the above requirements, we consider
suppression of public items to achieve coherence. By suppressing
an item from D, we simply delete the item from all transactions
that contain the item. For example, after suppressing the items a
and f from the transactions {a, b, HIV}, {a, d, f, HIV} and {b, d,
Diabetes}, the transactions become {b, HIV}, {d, HIV} and {b, d,
diabetes}.

Observation 1 By suppressing an item, (1) every itemset
containing the item are eliminated from the database, and (2)
every itemset that remains in the database has the same support as
in the original database. Therefore, item suppression satisfies R2
and R3. In contrast, suppressing an item from some but not all
transactions that contain the item will violate R3 because the
support statistic may be altered. We do not consider such partial
suppression.

Suppression of each item leads to some loss of information. The
best way to model information loss is considering the specific
purpose of data. However, this approach is not applicable if the
purpose of the data is not known at the time of publication.
Publication on the web and publication as required by law, such
as “public records”, are such examples because there is no
specific data recipient. Another downside of specialized
information metrics is that a different release must be published
for each purpose, leaving the attacker with multiple releases to
launch more powerful attacks.

Information Loss Our approach is to let the data publisher assign
a certain information loss to the suppression of an item e, denoted
IL(e), based on some perceived importance of the item. In
particular, IL(e)=1 charges one unit of information loss for the
item e suppressed, and IL(e)=Sup(e) charges one unit of
information loss for each occurrence of the item e suppressed.
The latter penalizes more the suppression of an item e that occurs
in more transactions. Suppose that D is transformed to D’ by
suppressing zero or more public item. IL(D, D’)= ∑IL(e) denotes

769

the total information loss in the transformation, where ∑ is over
all the items e suppressed.

2.3 Problem
Here is the problem we want to study.

Definition 2 D’ is called a (h,k,p)-cohesion of D if D is
transformed to a (h,k,p)-coherent D’ by suppressing some public
items. D’ is called an optimal (h,k,p)-cohesion of D if D’ is a
(h,k,p)-cohesion of D and for any other (h,k,p)-cohesion D” of D,
IL(D, D”)≥ IL(D, D’). The optimal cohesion problem is to find an
optimal (h,k,p)-cohesion of D.■

Theorem 1 D has no (h,k,p)-cohesion if and only if the empty
itemset is a mole wrt (h,k,p).
Proof: The empty itemset is a mole if some private item is
contained in more than h percent of all transactions. If the empty
itemset is a mole, it cannot be eliminated by item suppression and
D has no (h,k,p)-cohesion. If D has no (h,k,p)-cohesion, the empty
itemset must be a mole, otherwise suppressing all public items
would give a (h,k,p)-cohesion. ■

Theorem 2 For k=2, p=2, and IL(e)=1, the optimal cohesion
problem is NP-hard.

Proof: The following vertex cover problem is NP-hard1: A vertex
cover for an undirected graph G = (V,E) is a subset S of its
vertices such that each edge has at least one endpoint in S. To
map an instance of the vertex cover problem to an instance of
optimal cohesion problem, let the item universe U contain all the
vertexes in V and let the database D contain a transaction {a,b}
for each edge <a,b> in E. Let all items in U be public items. For
k=2, p=2 and any h, every transaction {a,b} in D is a mole
because {a,b} has support 1. So for IL(e)=1, S is a vertex cover
for G if and only if D’ is an optimal (h,k,p)-cohesion of D, where
D’ is D after suppressing the items in S. ■

Since the optimal cohesion problem is inherently hard, we
consider a heuristic solution to the problem. From now on, we
assume that D has a (h,k,p)-cohesion.

3. GREEDY ALGORITHM
For a given loss metric IL(e), we want to suppress some public
items from D such that the resulting database is (h,k,p)-coherent
and ∑IL(e) over all suppressed items e is minimized. To prune
the search space, the meaningful first step is to suppress all public
items that must be suppressed. A public item must be suppressed
if the item on its own is a mole, in which case this mole cannot be
eliminated unless the item is suppressed. This observation is
stated below.

Observation 2 If a public item is a (size-1) mole, the item will
not occur in any (h,k,p)-cohesion of D, thus, can be suppressed in
a preprocessing step. In Figure 1, each of x, y, z is a size-1 mole.
Figure 2 shows the database after suppressing them. For tracking
changes, we cross out a suppressed item instead of deleting it. In
the following discussion, we assume that all size-1 moles have
been suppressed from D. The remaining task is to eliminate all
moles of size in [2,p] from D.

1 http://en.wikipedia.org/wiki/Vertex_cover_problem

a, c, f, g
b, c, g, y, z
b, d, f, x
a, b, c, f
a, c, d, f, g
Activities

HIV
HIV

Hepatitis
Hepatitis
Diabetes

Medical HistoryTID

T4
T5

T3

T2

T1

Figure 2. D after the preprocessing step

There are two cases for a mole β wrt (h,k,p): either Sup(β)<k or
Pbreach(β)>h. For a mole β with Sup(β)<k, every superset β’ of β
with |β’|≤p is also a mole because Sup(β’)≤Sup(β)<k; for a mole β
with Pbreach(β)>h and Sup(β)≥k, a superset β’ of β may or may not
be a mole because Pbreach(β’)≥Pbreach(β) does not always hold. The
first case implies that the number of moles may grow fast and
considering all moles is not practical. We consider a smaller set of
“minimal moles” defined below.

Definition 3 A mole is minimal if every proper subset is a non-
mole.■

Example 5 In Figure 1, all of x, y, z are size-1 minimal moles
because the empty itemset is not a mole. All of ab, ad, bd, bf, bg,
cd, dg are size-2 minimal moles. For example, ab is a minimal
mole because it is a mole but the subsets a and b are non-moles. ■

Observation 3 D is (h, k, p)-coherent if and only if D contains no
minimal mole. This observation follows because each mole
contains a minimal mole, so if we can eliminate all minimal
moles, we also eliminate all moles.

Our strategy is greedily eliminating minimal moles. Let MM(e)
denote the number of minimal moles containing the public item e.
By suppressing the item e, we eliminate MM(e) minimal moles at
the cost of IL(e) information loss. To eliminate all minimal moles
and minimize information loss, we greedily suppress the public
item e that maximizes MM(e)/IL(e). The following algorithm is
based on this heuristics.

Suppression Algorithm Figure 3 outlines our item suppression
algorithm for achieving coherence. Line 1 suppresses all size-1
moles in the preprocessing step (Observation 2). Subsequently, in
each iteration Line 3 suppresses a remaining public item e having
the maximum MM(e)/IL(e). There are two key steps. The first
key step is checking if there are minimal moles in D on Line 2.
The second key step is identifying the item e to suppress on Line
3 since MM(e) is dynamically changing. In the rest of this
section, we propose an efficient algorithm for these steps. The
general idea is first finding all minimal moles from D and then
maintaining minimal moles and MM(e) in each iteration.

1. suppress all size-1 moles from D (Observation 2);

2. while there are minimal moles in D do
3. suppress the public item e with the maximum

 MM(e)/IL(e) from D;

Figure 3. Outline of greedy algorithm

3.1 Identifying Minimal Moles
Let us consider how to find all minimal moles. We assume that
public items are ordered according to some pre-determined order.

770

Imagine that all public itemsets are organized into the lattice with
subsets below supersets. To find all minimal moles, we start from
size-1 non-moles at the bottom and walk up the lattice if the
current node is a non-mole (Definition 1) and contains no mole.
We stop walking up when the current node becomes a mole for
the first time, at which point the current node is a minimal mole
because every subset is a non-mole. The non-moles that contain
no mole have potential to be extended into a minimal mole. This
type of non-moles is defined below.

Definition 4 A non-mole is said to be extendible if it contains no
mole. ■

Essentially, the above walking up of the lattice corresponds to
constructing extendible non-moles in the growing size until it
reaches minimal moles. Let Mi denote the set of all minimal
moles of size i and let Fi denote the set of all extendible non-
moles of size i. Let β = <e1, …, ei-1, ei, ei+1> be a minimal mole in
Mi+1. From Definition 3, no i-subset of β is in Mi, and both
<e1, … , ei-1, ei > and <e1, …, ei-1, ei+1> are in Fi. Similarly, from
Definition 4, for an extendible non-mole β=<e1, …, ei-1, ei, ei+1>
in Fi+1, no i-subset of β is in Mi, and both < e1, …, ei-1, ei> and <
e1, …, ei-1, ei+1> are in Fi. This gives rise to the following
construction.

Observation 4 Every minimal mole in Mi+1 and every extendible
non-mole in Fi+1 has the form β=< e1, …,ei-1, ei, ei+1>, such that <
e1, …, ei-1, ei> and < e1, …, ei-1, ei+1> are in Fi, no i–subset of β is
in Mi, and ei precedes ei+1.

1. find M1 and F1 in one scan of D;

2. while i<l and Fi is not empty do
3. generate the candidate set Ci+1 for Mi+1 and Fi+1
 from Fi based on Observation 4;
4. scan D to count Sup(β) and Pbreach(β) for all β in Ci+1;

5. forall β in Ci+1 do
6. if Sup(β) < k or Pbreach(β)>h

7. then add β to Mi+1 else add β to Fi+1;
8. i++;
9. output all Mi;

Figure 4. Identifying minimal moles

Figure 4 shows the construction of Mi+1 and Fi+1. Line 1 finds M1
and F1 in one scan of D. At level i≥1, Line 3 generates all
candidates <e1, …, ei-1, ei, ei+1>, Ci+1, for Mi+1 and Fi+1 based on
Observation 4. At Line 4, Sup(β) and Pbreach(β) of all candidates β
in Ci+1 are computed in one scan of D. At Line 6-7, candidates are
added to Mi+1 or Fi+1 based on Sup(β) and Pbreach(β) following
Definition 3 and Definition 4.

The above computation shares some similarity with Apriori [8]
for finding frequent itemsets, where an itemset is frequent if its
support is above some threshold. The key to Apriori is that every
proper subset of a frequent itemset is a frequent itemset. However,
a minimal mole does not have this property because a mole
involves conditions on both breach probability and support.
Instead, every proper subset of a minimal mole and an extendible
non-mole is an extendible non-mole. Therefore, we have to

construct Mi+1 and Fi+1 in parallel. Observe that Fi is not larger
than the set of frequent itemsets wrt the minimum support k
because each non-mole is a frequent itemset wrt k. For this reason,
finding minimal moles is not more expensive than finding
frequent itemsets.

3.2 Eliminating Minimal Moles
Let M* denote the set of all minimal moles of size 2≤i≤p found in
Section 3.1 (size-1 moles have been eliminated from D). In the
next step, we eliminate all moles in M* from D. This is done by
iteratively suppressing the remaining public item e with the
maximum MM(e)/IL(e). The key is computing MM(e) and IL(e).
For a remaining public item e’ with e’≠ e, by suppressing e,
IL(e’)=Sup(e’) is not affected and all minimal moles that contain
both e’ and e are eliminated (Observation 1). Therefore, MM(e’)
should be decreased by the number of minimal moles that contain
both e’ and e. We introduce the following MOLE-tree to organize
minimal moles and update MM(e’).

Definition 5 (MOLE-tree) The MOLE-tree for M* contains the
root labeled “null”. Each root-to-leaf path represents a minimal
mole in M*. Each node (except for the root) has three fields: label
- the item at this node; mole-num - the number of minimal moles
that pass this node; node-link – the link pointing to the next node
with the same label. The Score table contains three fields for each
remaining public item e: MM(e), IL(e), head-of-link(e) that points
to the first node on the node-link for e. ■

The key property of the MOLE-tree is that, for each public item e
in the Score table, we can find all minimal moles containing e by
following the node-link for e, starting from head-of-link(e).

Example 6 Figure 5 shows the MOLE-tree for M*={db, da, dg,
dc, ba, bg, bf}, where items are arranged in the descending order
of MM(e). Let IL(e)=Sup(e). The node <b:3> means that 3
minimal moles pass the node, i.e., ba, bg, bf. The entry <b:4,3> in
the Score table means that MM(b)=4, IL(b)=3. The 4 minimal
moles containing b are found by following the link in the entry:
db, ba, bg, bf . If b is suppressed, we can find and delete these
minimal moles by following this link.■

b:3d:4

b:1 c:1g:1a:1

c: 1,4

f: 1,4

g: 2,3

a: 2,3

b: 4,3

d: 4,2

Score Table (Item: MM, IL) root

g:1a:1 f:1

Figure 5. MOLE-tree, k=2, p=2, h=80%

Figure 6 describes the overall algorithm for eliminating all
minimal moles from D. Line 1 deletes all size-1 moles. Line 2
finds all size-2 or larger minimal moles M*. Line 3 builds the
MOLE-tree. Line 5-9 iteratively selects the public item e with the
maximum MM(e)/IL(e) for suppression. The main step is deleting
e from the MOLE-tree (Line 7-9), i.e., deleting all minimal moles
containing e. To delete all minimal moles containing e, for each
node on the node-link of e, Line 8 deletes the entire subtree at

771

node and Line 9 updates the ancestors of node. Finally, Line 10
suppresses all items in SuppItem from D. Let us explain Step 8
and 9 in details.

Step 8: This step deletes all the minimal moles in the subtree at
node. For each node w in the subtree at node, if w has the label e’,
MM(e’) is decremented by mole_num(w), to account for the
elimination of all minimal moles passing w. If MM(e’) becomes
0, delete the entry for e’ from the Score table.

Step 9: This step updates the mole_num for all ancestors of node.
For an ancestor node w of node, if w has the label e’,
mole_num(w) and MM(e’) are decremented by mole_num(node),
to account for the elimination of all minimal moles passing node.
If mole_num(w) becomes 0, delete the node w. If MM(e’)
becomes 0, delete the entry for e’ from the Score table.

1. let D be the database with size-1 moles removed;
2. find minimal moles M* from D (Figure 4);
3. build the MOLE-tree for M*;
4. initialize SuppItem to the empty set;
5. while Score table is not empty do
6. add the item e with the maximum MM(e)/IL(e) to
SuppItem;

7. forall each node on the node-link for e do
8. delete all minimal moles that pass node;
9. update the mole-num at node’s ancestors;
10. suppress all items in SuppItem from D;

Figure 6. Overall greedy algorithm

Example 7 Consider the MOLE-tree in Figure 5. Since the item d
has the maximum MM/IL, we first suppress d by deleting all
minimal moles passing the (only) node for d (Line 8). To do this,
we can traverse the subtree at the node for d and decrease MM for
b, a, g, and c by 1, and decreases MM for d by 4. Since MM(d)
and MM(c) become 0, the entries for d and c are deleted from the
Score table. The new MOLE-tree and Score table are shown in
Figure 7. Next, the item b has the maximum MM/IL and is
suppressed. As a result, all remaining moles are deleted and now
the Score table becomes empty. ■

b:3
g:1,3

f:1,4

a:1,3
b:3,3

Score Table (Item: MM, IL)
root

g:1a:1 f:1

Figure 7. MOLE-tree after deleting d

Cost Analysis The overall work consists of two parts. The first
part involves finding minimal moles (Figure 4). As discussed in
Section 3.1, this part is not more expensive than finding frequent
itemsets. The second part involves inserting and deleting minimal
moles using the MOLE-tree (Figure 6). Each minimal mole is
inserted into and deleted from the MOLE-tree exactly once, thus,
the work is proportional to the number of minimal moles |M*|.
The benefit of dealing with minimal moles is three-fold: speed up

the work for finding minimal moles, reduce the space for storing
the MOLE-tree, and reduce the work for eliminating moles.

4. EMPIRICAL STUDIES
This section evaluates the data distortion of the proposed
anonymization. The data distortion is defined by the percentage of
item occurrence suppressed, S/N. S is the occurrence of the items
suppressed, i.e., ∑IL(e) over all suppressed items e with
IL(e)=Sup(e). N is the occurrence of all items in the original
database. We consider the following approaches:

 “RmAll” – suppress all public items. Thus, S/N is the
percentage of the occurrence of public items over the occurrence
of all items.
 “k-anonymity” – k-anonymization on the QID containing all

public items. We used the global recoding TDS in [10] because it
preserves the support of remaining itemsets (see Observation 1
and the follow-up discussion). Since l-diversity is also based on
the QID, we consider only k-anonymization.

 “MM/IL” – greedily suppress the public item with the
maximum MM/IL. This is the method presented in Section 3. We
also consider two variants: “MM” – greedily suppress the public
item with the maximum MM, and “1/IL” – greedily suppress the
public item with the minimum IL.

We considered three vastly different datasets: Connect, Retail,
and T40I10D100K, all being publicly available from FIMI
Repository2. As a preprocessing step, we removed the items with
support less than 0.1%|D|, where |D| is the number of transactions.
Such items usually are pruned due to insufficient statistical
significance by frequent itemset mining [8] and classification
tasks [20]. Table 1 provides a brief description of these datasets
after preprocessing. Connect is a real dataset containing game
state information. Retail is a real dataset supplied by anonymous
Belgian retail supermarket store. T40I10D100K is a synthetic
dataset. Retail and T40I10D100K have a very large item universe
U, thus, extremely high dimensionality if represented by a
relational table. In this aspect, Retail is more similar to the AOL
query log data set in Example 1. Connect is denser but still
considered high dimensional in relational data. Due to such a
diverse data characteristics, we do not expect that all data sets
respond equally well in terms of data distortion.

Table 1. Dataset statistics after preprocessing

Dataset # Trans-
actions |D|

Average
Length

Items
|U|

Data size
(K bytes)

Connect 67,557 43 129 2,836

Retail 88,162 7.5 2117 2,930

T40I10D100K 100,000 39.4 862 15,796

2 http://fimi.cs.helsinki.fi/data/

772

0%

15%

30%

45%

0 100 200 300 400

MM/IL MM 1/IL k-anonymity RmAll

0%

15%

30%

45%

2 3 4 5 6 7

0%

20%

40%

60%

80%

30% 40% 50% 60% 70%

(a) Distortion vs k (b) Distortion vs p (c) Distortion vs δ

Figure 8. Distortion on Connect

0%
5%

10%
15%
20%
25%

0 10 20 30 40 50

0%
5%

10%
15%
20%
25%

2 3 4 5 6 7
0%

10%
20%
30%
40%
50%
60%

0% 10% 20% 30% 40%

(a) Distortion vs k (b) Distortion vs p (c) Distortion vs δ

Figure 9. Distortion on Retail

0%

5%

10%

15%

20%

0 10 20 30 40 50
0%

5%

10%

15%

20%

2 3 4 5 6 7
0%

15%

30%

0% 10% 20% 30%

(a) Distortion vs k (b) Distortion vs p (c) Distortion vs δ

Figure 10. Distortion on T40I10D100K

4.1 Public Items/Private items
First we explain our strategy of specifying public and private
items. We introduce a parameter δ to determine the percentage of
public items. For each data set, we randomly select δ|U| items
from U as public items. The set of private items consists of all
non-public items e, where e occurs in some transaction as the non-
public item of highest support. This choice is conservative
because it generates more moles with a high breach probability,
thus forcing elimination of more moles and increasing distortion.
All item selections are random and the distortion reported is the
average of five random selections. Below, we study the effect of δ,
h, k, p on distortion and runtime for achieving (h,k,p)-coherence.

4.2 Connect
Figure 8(a-c) shows the distortion for Connect with p, k and δ
being varied one at a time. The default setting is δ=40%, k=100,
p=5. h has little impact and is set h=40%. The key findings are
summarized as follows. “RmAll” has the highest distortion of
41.94%. The distortion of “k-anonymity” is significantly higher
than “MM”, “MM/IL” and “1/IL”, suggesting that the traditional

k-anonymization is not suitable. “MM” has a higher distortion
than “MM/IL” and “1/IL”. In fact, “MM” tends to suppress high
frequency items to eliminate more moles at each step, but this
also leads to a larger distortion. “1/IL” and “MM/IL” have a small
distortion because they minimize information loss at each step.
“MM/IL” sometimes suppresses high frequency items if doing so
eliminates many moles, which is exactly the design goal of this
selection criterion. k and p do not have a major impact on Connect
because the number of moles only increases slightly. As δ
increases, “RmAll” and “k-anonymity” distort the data more
severely than other methods.

4.3 Retail
Figure 9 (a-c) shows distortion of Retail vs k, p, and δ. The
default setting is δ=20%, k=20, p=4 and h=40%. “k-anonymity”
did not finish within a set time limit due to a large item universe.
The distortion of “MM/IL” and “1/IL” is about 8% lower than
“RmAll” and the gap increases with a larger δ. Compared to
Connect, this gap is smaller because this dataset is sparser and
more public items were suppressed to eliminate moles even for

773

small k and p. With AOL query logs having similar data
characteristics, we anticipate that anonymizing AOL query logs
will lead to a similar data distortion.

4.4 T40I10D100K
Figure 10 (a-c) shows distortion of T40I10D100K vs k, p and δ.
The default setting is δ=15%, k=30, p=4 and h=40%. The trend is
similar to that for Retail except that distortion is smaller. For
small k and p, say k=5 and p=2, this dataset is dense enough so
that most itemsets of size ≤p have support ≥k, thus, enjoys a low
distortion as seen on Connect. As k and p increase, a large portion
of itemsets turns into moles, leading to a high distortion as seen
on Retail.

4.5 Efficiency
Our second goal is to evaluate the efficiency of the proposed
anonymization algorithm. All programs were coded in C++ and
run on a PC with 2GHz CPU, 512M memory and Windows XP.
“k-anonymity” did not finish on Retail and T40I10D100K within
a set time limit. Since all of “MM/IL”, “MM” and “1/IL” have a
similar runtime, we report only the efficiency of “MM/IL”. The

runtime vs h was omitted as the number of moles having high
breach probability is very small. Figure 11-13 show the runtime
vs δ, k, p, with the default settings used earlier. TotalTime
represents the total runtime for “MM/IL” and FindMole
represents the runtime for finding moles. So the time for
eliminating moles is TotalTime-FindMole.

Runtime vs δ (Figure 11). For a larger δ, there are more public
items and the runtime increases quickly. Recall that the search of
minimal moles proceeds bottom-up in the lattice of itemsets and
the set of minimal moles forms a cut of the lattice (Section 3.1).
For the dense Connect, the number of moles is small, but the
search of minimal moles goes into the higher part of the lattice
and dominates the runtime. For the sparse Retail, there are many
moles, but most are not searched because the cut for minimal
moles is close to the bottom. As a result, the number of moles
generated is small and little time is spent on eliminating minimal
moles. For T40I10D100K, being less dense than Connect and
being denser than Retail leads to many minimal moles in the
middle part of the lattice. Therefore, both search and elimination
of minimal moles take time.

0
200
400
600
800

1000

30% 40% 50% 60% 70%

R
un

tim
e(

 s
ec

on
d) TotalTime

FindMole

0
2
4
6
8

10

0% 10% 20% 30% 40%

0

100

200

300

400

0% 10% 20% 30%

(a) Connect (b) Retail (c) T40I10D100K

Figure 11. Runtime vs δ

0

100

200

300

0 100 200 300 400

R
un

tim
e(

se
co

nd
)

0
2
4
6
8

10

0 10 20 30 40 50

0

10

20

30

40

0 10 20 30 40 50

(a) Connect (b) Retail (c) T40I10D100K

Figure 12. Runtime vs k

0
200
400
600
800

1000

2 3 4 5 6 7

R
un

tim
e(

se
co

nd
)

0.0

0.5

1.0

1.5

2 3 4 5 6 7

0

5

10

15

20

2 3 4 5 6 7

(a) Connect (b) Retail (c) T40I10D100K

Figure 13. Runtime vs p

774

Runtime vs k (Figure 12). k has different effects on the three
datasets. For the dense Connect, even when k is increased from 50
to 400, most itemsets have support ≥k and the search for minimal
moles goes into many iterations, so the runtime is not reduced by
a large k. In contrast, the runtime drops quickly on the sparse
Retail. As most itemsets have a low support, the search process
for minimal moles tends to stop at a lower part of the lattice with
a larger k, which reduces the runtime quickly. The trend on
T40I10D100K is similar to that on Retail.

Runtime vs p (Figure 13). The increase of p results in a boost of
runtime on the dense Connect due to the increase of search space
of moles. On the contrary, for Retail, the increase of p after p=3
hardly has any effect on runtime because most 3-itemsets have
turned into moles and the search for minimal moles stops early.
T40I10D100K follows this trend except its turning point is
delayed to p=5.

5. CONCLUSION AND FUTURE WORK
An important research problem is anonymizing transaction
databases for publication. The traditional anonymization for
relational data loses too much information due to the high
dimensionality of transaction data. To address this problem, we
model the power of attackers by the maximum size of public
itemsets that may be acquired as prior knowledge, and propose a
novel privacy notion called “coherence” suitable for transactional
databases. The empirical study shows that the coherence can be
achieved efficiently while with a low data distortion, especially
compared to the traditional privacy model such as k-anonymity.
This work is directly motivated by the recent privacy breaches on
two well-known transactional datasets[1] [17], which have caused
huge impact in public space. We believe our work represents an
important step to address these privacy problems generated in
real-life scenarios. Yet, we also think that there are quite a few
promising directions to be explored towards a more satisfactory
solution. First, the current coherence model treat every public
item equally identifying, while in practice different public items
may have different weights to identify a transaction. Secondly,
the current model relies on the assumption that an item is either
public or private. However, in certain situations, the line between
public/private may be blurred, i.e. different users may treat
different item as private items. We will explore all these in our
future work.

6. REFERENCES
[1] M. Barbaro, T. Zeller and S. Hansell. A Face Is Exposed for

AOL Searcher No. 4417749. New York Times, Aug 9, 2006.
[2] E. Adar. User 4XXXXX9: Anonymizing Query Logs. Query

Log Analysis Workshop, WWW 2007.
[3] R. Kumar, J. Novak, B. Pang, and A. Tomkins. On

Anonymizing Query Logs via Token-based Hashing. WWW
2007.

[4] L. Sweeney. Achieving k-Anonymity Privacy Protection
Using Generalization and Suppression. International Journal

on Uncertainty, Fuzziness and Knowledge-based Systems,
10(5), 2002.

[5] V. S. Verykios, A. K. Elmagarmid, E. Bertino, Y. Saygin,
and E. Dasseni. Association Rule Hiding. TKDE, 16(4):434-
447, 2004.

[6] Y. Saygin, V. S. Verykios, C. Clifton. Using Unknowns to
Prevent Discovery of Association Rules, Conference on
Research Issues in Data Engineering, 2002.

[7] F. Bonchi, F. Giannotti and D. Pedreschi. Blocking
Anonymity Threats Raised by Frequent Itemset Mining.
ICDM 2005.

[8] R. Agrawal, T. Imielinski, and A. N. Swami. Mining
Association Rules between Sets of Items in Large Databases.
SIGMOD 1993.

[9] A. Evfimievski, R. Srikant, R. Agrawal and J. Gehrke.
Privacy Preserving Association Rule Mining. SIGKDD
2002.

[10] B. Fung, K. Wang and P. Yu. Top-Down Specialization for
Information and Privacy Preservation. ICDE 2005.

[11] A. Machanavajjhala, J. Gehrke, D. Kifer, and M.
Venkitasubramaniam. l-Diversity: Privacy beyond k-
Anonymity. ICDE 2006.

[12] Y. Wang, X. Wu. Approximate Inverse Frequent Itemset
Mining: Privacy, Complexity, and Approximation. ICDM
2005.

[13] S. Brin, R. Motwani, and C. Silverstein. Beyond Market
Basket: Generalizing Association Rules to Correlations.
SIGMOD 1997.

[14] E. Adar, D. S. Weld, B. N. Bershad, S. D. Gribble. Why We
Search: Visualizing and Predicting User Behavior. WWW
2007.

[15] K. Hafner. Researchers Yearn to Use AOL Logs, but They
Hesitate. New York Times, August 23, 2006.

[16] L. Backstrom, C. Dwork and J. Kleinberg. Wherefore Art
Thou R3579x?: Anonymized Social Networks, Hidden
Patterns, and Structural Steganography. WWW 2007.

[17] A. Narayanan and V. Shmatikov. How to Break Anonymity
of the Netflix Prize Dataset. ArXiv Computer Science e-
prints, October 2006.

[18] H. Cui, J. Wen, J. Nie, and W. Ma. Probabilistic Query
Expansion Using Query Logs. WWW 2002.

[19] Z. Dou, R. Song, and J. Wen. A Large-scale Evaluation and
Analysis of Personalized Search Strategies. WWW 2007.

[20] B. Liu, W. Hsu, and Y. Ma. Integrating Classification and
Association Rule Mining. KDD 1998.

[21] C. Aggarwal. On k-Anonymity and the Curse of
Dimensionality. VLDB 2005

775

