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ABSTRACT

Reachability querying is a basic graph operation with nauger
important applications in databases, network analysisypta-
tional biology, software engineering, etc. Although mangéxes
have been proposed to answer reachability queries, mokeof t
are only efficient for handling relatively small graphs. Wepgnse
TF-label, an efficient and scalable labeling scheme forgssing
reachability queries. TF-label is constructed based orvalnopo-
logical folding (TF) that recursively folds an input graptta half
so as to reduce the label size, thus improving query effigietwe
show that TF-label is efficient to construct and proposeiefiical-
gorithms and optimization schemes. Our experiments véhify
TF-label is significantly more scalable and efficient tham state-
of-the-art methods in both index construction and querg@ssing.

1. INTRODUCTION

A reachability query asks whether there exists a path from one
vertex to another vertex in a directed graph. Reachabiliigryg
ing is one of the fundamental operations in directed grajiisas
a wide range of applications such as processing recursiegesu
in data and knowledge base management, querying assasiatio
and logical reasoning in Web and Semantic Web graphs, patter
matching in graphs and XML documents, analyzing the biaali
function of genes, checking connections in geographicgadian
systems, social network analysis, ontology querying, foganal-
ysis, and many more.

Reachability querying has been extensively studied in &st p
[1, 2, 3, 4, 5, 6, 10, 11, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27]. In recent years, there is a shift of interest to hatalige
graphs. The more recent works [6, 18, 19, 24, 27] have higtdi
the applications of reachability querying in large graphshsas
Web graphs, Semantic Web and RDF graphs, social networfs, la
XML databases, etc., and more efforts have been given toghe d
velopment of scalable methods for answering reachabilibrigs.

As pointed out in [18], most existing methods can only handle
relatively small graphs with tens to hundreds of thousamatioces
and edges. For processing larger graphs, these methodihene e
too costly in index construction or in query processing (endis-
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cussion in Section 9), which severely limits their appii@ato real
world graphs.

For graphs with millions of vertices and edges, only a fewtmet
ods can process them with reasonably good efficiency [1224,
For larger graphs with tens of millions of vertices and eddles
only known method that attains reasonable indexing andyguer
ing efficiency is the recently proposédckbonestructure [18]. A
reachability query, where a vertexcan reach another vertéxcan
be answered by (1) first finding all backbone vertiéggsthat can
be reached frons3 and all backbone verticeB; that can reach,
and then (2) check whether any vertexBa can reach any vertex
in B;. Any existing method can be applied to the backbone graph
to process Step (2), and querying is generally faster shrebdck-
bone can be significantly smaller than the original graph.

Although the backbone is used as a general framework (called
SCARAHR18]) to further improve the scalability of any method (in-
cluding ours) for processing reachability queries, an iefficand
scalable method itself is still most crucial for query pemfiance
for the two main reasons (both verified in our experiment&stF
SCARARB itself may not be scalable to large graphs. Secore, th
backbone of a large graph may still be too large for existirgm
ods.

We propose an efficient and scalable labeling scheme, whith ¢
process large graphs that cannot be handled by SCARAB ard oth
existing methods. Given the labels©andt, i.e., a set of vertices
that are reachable fromand can reach respectively, we can an-
swer whether can reacht efficiently by simply intersecting their
labels (same as [14]). We highlight the main idea of our me:t®
follows.

We propose a novel data structure, caltegological folding
(TF), based on which we develop our labeling scheiffelabel.
Given a directed graph, we can convert it into a directed lacyc
graph (DAG) by condensing each strongly connected componen
(SCC) in the graph into a super node. Reachability queriedea
answered on the DAG since all vertices are reachable fromh eac
other within an SCC. We definetapological structure7 for the
DAG. TF is intuitively a structure obtained by foldirg into half
each time, which essentially implies a great reduction léel
size as labeling is processeddl(lg ¢) levels instead of a total of
¢ levels in7T. Then, we apply a labeling technique, inspired by the
work of [16], on the TF structure to construct labels for aasng
reachability queries.

We summarize the main contribution of our work as follows.

e We propose an efficient and scalable TF-based labeling
scheme for reachability query processing.

e \We establish the formal correctness proof which reveals var
ous important properties of the TF structure and our labelin
scheme.



e We propose optimization techniques such as special handlin
of high-degree vertices to further improve the scalabitity
our method.

We propose efficient algorithms for constructing the TF
structure and then the labels from the TF, as well as the opti-
mization techniques.

Our experiments on a wide spectrum of real and synthetic
datasets verify that TF-label achieves competitive inoigxi
performance and significantly better query performance tha
the state-of-the-art methods [18, 19, 24, 27]. In many gases
TF-label is an order to several orders of magnitude faster in
query processing. We also show that TF-label is more scal-

able and has stable performance with the change in various

graph properties.

The rest of the paper is organized as follows. We first giveesom
basic notations and problem definition in Section 2. Themubh
Sections 3 to 7 we present the details of TF and TF-label Wiifr t
design and algorithms. We evaluate the performance of bétla
in Section 8. Finally, we discuss related work in Section @ an
conclude the paper in Section 10.

2. NOTATIONS/PROBLEM DEFINITION

Given a directed graply, a reachability query asks whether
there is a path from a vertexto another vertex in G. We assume
u # v as itis trivial to process = v. Formally, adirected edgeor
simply anedge(since all edges are directed in this paper), from
to v is denoted by(u, v). A path P fromwv; to v, in G is defined by
P = (v1,...,vp) such thatv;, v;+1) isan edge irg for 1 < i <
p. We useu — v to indicate that. can reachv (or v is reachable
from u), andu - v to indicate that. cannot reach.

Given any two vertices, andv in a strongly connected compo-
nent(SCQ of G, u can always reach. With this observation, ex-
isting methods first compute a compressed grépks (Ve, Ec),
of G as follows: the set of verticeg of GG is the set of SCCs of
G, and a directed edge is createddrfrom one SCQ”; to another
SCCC; if there exists a directed edge:, v2) in G, wherev; is a
vertex inC1 andws is a vertex inCs. Then, a reachability query is
answered by checking whether there is a path fégnto C,, in G,
whereC,,, C, € Vg, u is a vertex inC,, andv is a vertex inC',.

The compressed grapfy created above is in fact directed
acyclic graph(DAG). Thus, for simplicity, we callG' the DAG of
G in this paper. Since the SCCs @fcan be computed efficiently
[15], we follow the convention of existing methods and asstinat
the input to our algorithm is the DAG of the input directedpga

Given a DAG,G = (Vg, Ec), we define the set ah-neighbors
(out-neighbory of a vertexv € Vg asnbin (v, G) = {u : (u,v) €
Ec} (nbout(v,G) = {u : (v,u) € Eg}), and thein-degree
(out-degreg of v asdeg,,, (v, G) = |nbin (v, G)| (deg,,; (v, G) =
|nbout (v, G))).

Problem definition. We study the following problem: given a
DAG G = (Vg, Ec), compute a set of vertex labels (also called
an index) for processing reachability queries, i.e., givene V¢,
the query whethes can reacht can be efficiently answered using
the labels ofs andt.

3. TOPOLOGICAL FOLDING

Through Sections 3 to 6, we present our main indexing scheme,
called TF-label, which is designed based on a notabological
folding scheme of the DAG of a directed graph. We first present
the concept of topological folding in this section.

3.1 Basic Topological Folding

Given a DAG G = (Vg, Ec), we start by assigning each vertex
in G a topological level number as follows.

DEFINITION1 (TOPOLOGICALLEVEL NUMBER). Given a
DAG G = (Vg, Ecq), thetopological level number of a vertex
v € Vg, denoted byl(v, G), is defined as follows:

o If nbin(v,G)=0: £(v,G) =1;
e Else {(v,G) = max{(¢(u,G) + 1) : u € nbin(v,G)}.

Thetopological level number of G, denoted by (&), is given by
£(G) = max{{(v,G) : v € Vg}.

SinceG is a DAG, it is easy to see that every vertex Vi has
exactly ondopological level number, which can be derived from a
topological ordering of the DAG.

Given the topological level number, we now define ttygolog-
ical levelsof a DAG and state an important property that will be
used in the definition of topological folding later on.

DEFINITION 2 (TOPOLOGICALLEVELS). A DAG G
(Va, Ec) consists oft topological levelsof vertices, denoted by
{Li(G),...,L«(G)}, wheret = £(G), and L;(G) = {v : v €
Ve, l(v,G) =i}t forl <i<t.

LEmmA 1. Each topological leveL;(G) of a DAGG, for 1 <
1 < £(QG), is anindependent seif G.

PrROOF L;(G) is an independent set &f if Vu,v € L;(G),
(u,v) ¢ E¢ and(v,u) ¢ Eg. Suppose to the contrary (ifi, v) €
Eq or (v,u) € Eg, then we have eithef(u,G) < {(v,G) or
L(v,G) < £(u, G), contradicting the fact that,v € L;(G), i.e.,
Lu,G) =L(v,G) =1 O

To clearly illustrate the concepts, for now let us assumettie
DAG G only has edges going from verticesiin(G) to vertices in
L;+1(G), and there is no edge going from any vertexif{G) to
a vertex inL;(G) wherej > ¢ + 1 (we will handle such edges in
Section 3.2). We call such a DAGlapartite DAG, wherek =
£(G). Figure 1(a) shows an example ofkgpartite DAG where
k=6.

We define aopological folding schemtat recursively folds up
G by taking away half of the levels, as follows.

DEFINITION3 (TOPOLOGICALFOLDING (TF)). Given a

((G)-partite DAGG = (Vg, Ec), the topological folding (TF)
of G is a set of DAGSG = {G1,G2,...,Gs}, where each
G; = (Va,, Eq,) is defined as follows:

Ve, = Vg oand for 2 < i < f, Vg, =

Uisi<ieca1yse) L2i(Gima);

e Forl < i < f, Eg, is a set of edges with whidf; is a
£(G;)-partite DAG andvVu,v € Vg,, v — vin G; if and
only if w — vinG.

Thetopological folding number, or TF humber, of GG, denoted
by tf(G),isgivenbytf(G) = f = |G| = |log, ¢(G) ]| + 1.

Intuitively, TF folds each; into half (i.e., taking away half of
the levels together with their vertices) to obtéin_;, starting from
G1 = G to Gy which has only one level and cannot be folded any
more. Hence, we have the name “topological folding”.



To correctly process reachability queries, it is necesgarthe
edge set¥’g, to maintain the reachability of the vertices. To effi-
ciently process reachability queries, we also want e&gh to be
as small as possible. Thus, the constructioigf is an optimiza-
tion problem, which is expensive to solve for a large grajpiges
we need to first collect the set of all paths connecting eadexe
to another and then select a subset of paths with minimum aumb
of edges while keeping the original reachability.

Although an optimal solution is costly, for the purpose afale-
ability indexing we find that a simple and efficient solutiosskd
on the following lemma is possible.

LEMMA 2. LetG = (Vg, Eg) be af(G)-partite DAG and
G = {G1,G2,...,G5 ) be a topological folding of>. For
2 <i <tf(G), Va,_,\Vag, is anindependent seif G;_1.

PrROOF According to Lemma 1, each;(G;—1) for1 < j <
£(G;-1) is an independent set 6f;_;. According to the defini-
tion of G, Vg, = Vg and for2 < i < tf(G), Vg, ,\Veg, are
the vertices at all the odd levels 6f;_;. Since each;_; is a
£(Gi—1)-partite DAG, the union of the vertices at all the odd levels
of G;_1 is clearly an independent set@f_,. [

With Lemma 2, a simple way to construct the edge g&ats is
given as follows.

o Fq, = Eg;

e For2 < i < tf(G), Eg, is constructed front;—, as fol-
lows: for eachw € L;(Gi—1), wherej is odd, create a new
edge inE¢g, from each in-neighbor (if any it+;_1) of v to
each out-neighbor (if any i6;_1) of v.

LEmMMA 3. The edge set&¢, constructed above give a valid
topological foldingG of a¢(G)-partite DAGG = (Vg, Ec).

PROOF First, eachd; is a¢(G;)-partite DAG since each edge
in Eg, only goes fromL; (G;) to L;1(G;), for1 < j < 4(G;).
Second, reachability from each vertex to another is maiathi
because each;, € L;_1(G;i—1) is connected to each,.: €
L;+1(Gi—1) by an edge irEg, if the edgequin, v) and(v, wout)
existinG;_1, wherev € L;(G;—1) andj is odd. [

Note that the correctness of the proof of Lemma 3 also depends
on the validity of Lemma 2, because if any edge v), where
u,v € Vg, ,\Va,, exists inG;_1, then the reachability estab-
lished in the proof of Lemma 3 will not be valid.

The following example illustrates the idea of topologicating.

ExampPLE 1. Figure 1 shows the topological folding of a 6-
partite DAGG (¢(G) = 6). G2 is constructed frondZ; by adding
edges(c, f), (d, f), and (f, k), and then removing all vertices in
the odd levels of7,. Next, odd level vertices 6f5 are removed to
formGs.

3.2 Dealing with Cross-Level Edges

In Section 3.1 we introduced the basic concepts and steictur
topological folding of a DAG and some of its essential projpsr
However, the DAGH of a real world directed graph is rarelyG)-
partite. On the contrary, there can be manyss-level edge G,
i.e., there can be edges from vertice€ifG) to vertices inL; (G),
wherel < i <i+1 < j </4(G), as shown in Figure 2.

To deal with these cross-level edges in the DAG, we obseate th
each DAGG; in a topological foldingG need not bé(G;)-partite,
but only need the following essential properties to be nadied
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Figure 1: Topological folding

in eachG;: (1) the set of vertices to be removed fram is an
independent set aff;_; for 2 < ¢ < tf(G); and(2) Vu,v €
(Va, NVa),u—vinG; ifandonly if u — vin G.

To construct eacliz; that satisfies the above two properties, we
devise a transformation scheme 165_1, for 2 < i < tf(QG),
with which we construct the corresponditrgnsformed topolog-
ical folding as follows:

Procedure 1. TRANSFORMED TF CONSTRUCTION
1. G1 = G, and set = 1;
2. Initialize G; =G, then do the following three steps in order:

2.1. Forl < j < ((G7)andj is odd, foreach € L;(G}):
LetU = (Lx(G7)Nnbout (v, G7)), wherek > j+1. If
U # 0, then add @ummy vertex w to L;+1(G;), add
anew edge set(w, uout) : Uour € U} and anew edge
(v,w) to Egx, and remove the edge sftv, uout) :
Uout € U} frém EG: .

Forl < j < ¢(G7)andjis odd, foreach € L;(G;):
LetU = (Lx(G}) Nnbin(v,G7)), wherek < j — 1
andk is even. IfU # (), then add @lummy vertex w to
L;_1(G7), add a new edge séfuin,w) : uin € U}
and a new edgéw, v) to E¢+, and remove the edge set
{(ttin, v) : uin € U} from Eg: .

Forl < j < ¢(G7)andjis odd, foreachv € L;(G;
add a new edge séfuin, tout) : uin € (Lj—1(G})
nbin (v, G7)); tout € (Lj+1(GF) Nnbout (v, G7)) }
EG;.* .

2.2.

2.3. ):
n
to

. Ife(Gy) > 1, initialize Gi+1 = G}, and remove all ver-
tices at odd levels of7;;1 together with all edges inci-
dent to them; then, sét= ¢ + 1 and go to Step 2. Oth-
erwise, return théransformed topological folding G*
{G1,...,G{}e} and quit.

Note that Step 2.2 ignores all Levklin-neighbors ofv if k is
odd, because for this case a dummy vertex must have beeedreat
at an even level in Step 2.1, and is thus also handled in Sgep 2.

Also note that we do not increase the number of levels in any
G; or Gy, and hence f(G) is still defined in the same way as in
Definition 3. We also define thEF numberof a vertex as follows.

DEFINITION4 (TOPOLOGICALFOLDING NUMBER). Let
G = (Vg,Ec) be aDAGG" = {G1,..., G/} be the trans-
formed topological folding of7, and letV* be the set of dummy



vertices created i-*. TheTF numberof a vertexv € (Vo UV™),
denoted byt f(v), is given byt f(v) = max{i : v € V= }.

TheTF numbenf G is given byt f (G) = |G*| = |log, £(G) |+
1. Also note that f(G) = max{tf(v) : v € Vg}.

We illustrate the concept using the following example.

ExamMPLE 2. Figure 2 shows the transformed topological fold-
ing of a DAG. The DAGZ in Figure 2(a) contains a number of
cross-level edges(a, h), (b, f), (d, f), (e, g). By Procedure 1, we
first transformG = G, to G7. At level 1, Step 2.1 is executed, we
add dummy vertex; for a, and add edge§z, a1) and(a1, k), then
edge(a, h) is removed; similarly, we adé, (b, b1) and (b1, f),
and removeb, f). Next consider level 3, is added fofe, and we
add (e, e1), (e1, g), and removée, g). At Step 2.3, we adt, e1)
and (¢, f). Finally for level 5, at Step 2.3, we ad#:, h) and
(f,h). Thus, we have constructédy, i.e., the figure on the right
in Figure 2(a). Note that inG], the vertices at all the odd levels
are independent of each other. At Step 3 these vertices meved,
and we obtainG2, as shown in Figure 2(b). Repeating the process,
we obtainG; and G'3, while G5 is simply the same a5s.

By Definition 4,¢f(v) = 1 forv € {a,b, e, g} since their last
occurrence is irG7. Similarly,t f(v) = 2forv € {a1,¢,d, b1, h},
tf(v) =3forv € {az,e1, f}, andtf(G) = 3.

W

(a) G=Gj and G, *
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Figure 2: Transformed topological folding

Next we prove(2). FromG; to G, Procedure 1 either converts
a cross-level edge to a path with a middle dummy vertex or adds
edge from an in-neighbor to an out-neighbor of an odd-legeiex
in G;. Thus, in both case$?) is true.

Lastly, we prove(3). According to Procedure 1, all the cross-
level edges irG; are removed frond/; and hence a vertex at L,
of G}, wherel < k < /(G7) andk is odd, has only in-neighbors
at L, (if any) and out-neighbors di; (if any). Since Proce-
dure 1 creates an edge from every in-neighbowdb every out-
neighbor ofw, we haveu — v in G; ifand only ifu — v in G for
anyu,v € (Vg N VG]*,), which together with{2) implies(3). O

Note that by a recursive analysis ¢8) of Lemma 4, we can
actually prove a stronger lemma that shows— v in G; if and
only if u — vin G7, for all u,v € (VG; N VG]*,), wherel < j <
1 < tf(Q) (instead ofj =i — 1 asin(3) of Lemma 4).

4. LABELING AND QUERY ANSWERING

In this section, we present our TF-based labeling scheme and
discuss reachability query answering using the labels.

4.1 The Labeling Scheme

The label of a vertex is defined as follows.

DEFINITIONS5 (VERTEXLABEL). LetG = (Vg, Ec) be a
DAG, G* = {G1,...,G{}c)} be the transformed topological
folding of G, and letV* be the set of dummy vertices created in
G*. Thein-label andout-label of a vertexv € (Vo UV™), denoted
by label;r (v) andlabeloy: (v), are defined as follows:

o labelin(v): (1) v € labelin(v), and (2) for anyu €
labelin (v), nbin (u, Gy (y)) C labelin (v).

o labelout(v): (1) v € labelout(v), and (2) for anyu €
labelout (v), nbout (u, sz(u)) C labelou: (V).

Intuitively, we add tolabel;, (v) andlabel,:(v) recursively the
in-neighbors and out-neighbors in the folding gragh of each
vertexu currently inlabeli, (v) andlabelo: (v), where: = tf (u).

The following property between a vertex and its
neighbors/out-neighbors shows that, in constructing ahelk for

in-

One concern in the process of Procedure 1 is that many dummya vertex, we only go for reachable vertices with higher TF hem

vertices and edges may be created. We will handle these itases
Sections 5 and 6. In facty; (or G;) is also not useful for reacha-
bility processing and hence deleted after the labelinggssc

The following lemma are important in establishing the ccire
ness of our method for reachability query answering in $ectil.

LEMMA 4. LetG™ = {G7,...,G{; )} be the transformed
topological folding of a DAGH = (Vg, E¢). LetG; be the graph
from whichG7 is transformed. Then(l) Vg:  \Ve, is an in-
dependent set off;_; for 2 < i < tf(G); and (2) Vu,v €
(Va, N V), wherel < i < ¢f(G), u — v in G if and only
if w — vin G;; and (3) Vu,v € (Var N VGF)’ wherej =i — 1
andl < i < tf(G),w — vin G} ifand only ifu — v in Gj.

PrROOFR We first prove(1l). According to Procedure 1, we obtain
G by removing the odd levels af;_4, i.e., V&, \Vg,. Since
there is no edge from a vertex to another vertex at the sarakitev
G7_,, each level ofG;_; is an independent set 6f;_;. For any
edge that goes from at an odd level t@ at another odd level, the
edge is removed frortr;_; and a dummy vertex is created to pre-
serve the connection fromto v. Thus, for any, v € V¢, | \Vag,,
(u, v) does not exist iGG;_ ;.

and ignore all other reachable vertices. This is a crucisibgeprin-
ciple of our labeling scheme that leadsatsignificant reduction on
the label size (compared with transitive closure), sinceheger-
tex hasO(4(G)) levels of reachable vertices, but ordy(1g ¢(G))
levels of reachable vertices with higher TF number.

LEMMA 5. If w € nbin(u, Gig(,y) OF w € nbout(u, Giye,y),
thent f(w) > tf(u).

PROOF. Sincew is in Gy, we havet f(w) > tf(u). How-
ever,tf(w) = tf(u) implies that bothw andu are in an inde-
pendent set of57,,), which contradicts the fact that the edge
(u,w) or (w,u) exists inGyy,. Thus,tf(w) # tf(u) and
tf(w) >tf(u). O

We use the following example to illustrate the labeling sobe

ExampPLE 3. Consider the labeling for vertex. Initially, a
is added tolabel;n(a) and labelowt(a). Sincetf(a) = 1 and
nbin(a,G7) = 0, we finalizelabel;n(a) = {a}. Next, since
nbout(a, G1) = {a1,¢,d}, {a1,c,d} are added tolabeloui(a).
Sincea; has an out-neighbom in G;*f = G5, we add
az 10 labelout(a). We also add{ei, f} to labelou:(a) for

a



nbout(c, G3) = {e1, f} and nbout(d,G5) = {f}. The vertices

is to be created inG}, to preserve the reachability fromv to

{az, e1, f} have TF number of 3 but they have no out-neighbor in u;1 in G;. A recursive expansion in this way gives the sub-

G3, and hence the labeling far is completed. The labels for all
vertices are shown in Table 1.

[ vertex ] labelout | labelir |
a {a,a;,c,d, q,f} {a}
b {b,b1,d, 1} {b}
e {e, e, f} {c, e}
g {9, h} {e1. f g}
a {a1, &} {a1}
c {c.el, f} {c}
d {d, 1} {d}
b, {01, 1} {b1}
h {n} {az, e, 1, h}
a {az} {as}
e {e1} {e1}
f {f} {f}

Table 1: Labeling for the example in Figure 2

4.2 Reachability Querying using Labels

We now discuss how we use the vertex labels to process reach- Pr

ability queries. Given two verticesandt in G, we ask whetheg
can reach, the query answer is given by the following equation.
if labeloui(s) N labelin, (t) # 0;

sl= { if labelou(s) O labely () — 0. D)

We give an example of reachability query processing asvallo

true,
false,

ExamMPLE 4. Consider the example in Figure 2, the labeling
is shown in Table 1. Suppose the query is to ask whettoam
reachh: sincelabelout(c) N labelin (h) = {e1, f}, the answer is
t rue. Now consider whether can reachb: sincelabelou:(a) N
labelin (b) = 0, the answer i$ al se.

Lemmas 6-9 and Theorem 1 establish the correctness of reach-vertices are irG;. Let S” = (s = v1,. ..

ability query answering by Equation (1). The lemmas thewesel
also reveal important properties and the design of the TUetstre,
and hence how TF labeling works for reachability query amswge

LEMMA 6. Given a pathP = (u1,...,uqs) in any graph in
G*, there exists a sequence of vertices= (u1 = v1,...,v8 =
uq) Suchthatforl <14 < §: (1) the edggv:, viy1) is inG; where
Jj = min(tf(vi), tf(vi+1)); and (2) the sequencé& is maximal,
i.e., no sub-sequence can be inserted betweem;aarydv; 1 such
that the resultant sequence also satis{iEs

PROOF The pathP implies that there exists a sequenge=
(u1, S1,u2,52,..., a1, Sa—1,ua), Where eactp; for 1 <i <
« is constructed (according to Procedure 1) as follows.

It l(uwi,G;) = L(uiy1,G;) + 1, where 57 =
min(tf(u;), tf(uir1)), then eitheru; or w; 41 will be re-

moved inG;41 and henceS; must be an empty set. In this case,

we have(u;, ui1) in G.

Otherwise,(u;, ui+1) is a cross-level edge i6/;, wherej =
min(¢f(us), tf(ui+1)), thensS; is a sequence of dummy vertices.
Assumej = tf(u;) (the casej = ¢f(ui+1) can be processed
similarly). To preserve the reachability fromy to w41 in Gj,
at least one dummy vertew must be created ir; together
with the edgequ;, w) and (w,ui+1). Thus, we have the edge
(ui,w) in G5. If (w,u;y1) is still a cross-level edge 6/,
wherej’ = min(¢tf(w),tf(ui+1)), then another dummy vertex

sequenceS; = (u; = wi,wa, ..., Wy—1, Wy = U;t1), Where
Si = (wa,...,wy—1),and forl <k < v, (wg, wrs1) in G5 and
J = min(tf(wg), tf(wk+1)). S; is ensured to be maximal if the
above recursive expansion is executed until no more subeseg
can be generated.

By relabeling the vertices, we obtabh= (u1 = v1,...
uq) such thatS satisfies botlfl) and(2). O

» U =

Lemma 6 is used to show that a sequence of vertitesth a
special property (as specified in the lemma) exists for a Pai
any graph inG*. The existence of such a sequence is essential in
proving the correctness of Lemma 9 and hence Theorem 1.

LEMMA 7. Given a sequence of verticeS = (s =
vi,...,vg = t), where forl < i < g, the edge(vi,viy1) iS
in G; wherej = min(tf(vi), tf(vit1)): if s andt are both in
some graplGy € G*, thens — tin G7.

PROOF. First, each edgév;, vi+1) in G impliesv; — v;11in
G . We can derive the reachability from to vs in G, as follows.

Consider the vertex; € S wheretf(v;) < ¢ andtf(v;) <
tf(v) for all v € S\{v:}. If v; exists inS, then according to
ocedure 1p;—1 must be connected to;11 in Gy, in order
to preserve the the reachability from_; to v;+1 via v;. Thus,
removingv; from S we still havev;_1 — vi11 in G, wherej =
min(¢f(vi—1),tf(vit1)). We repeat the above process with=
S\{vi} until we havet f (v) > ¢ for all remaining vertices in S,
and letS’ = (s = v1,...,vg = t) be the new sequence obtained
at the end of this process. We continue wsthas follows.

Consider the vertew; € 5" thatis notinG}, andt f(vi) > tf(v)
for all v € S"\{v;}. If v; exists inS’, then We have),_1 — v; in
G,y @ndv; = vt in Gy, +1)- Sincev; is not inG7 and
tf(vi) > ¢, v; isadummy vertex and; preserves the reachability
from vi—1 to Vit+1 in Gj, Wherej = min(tf(vifl),tf(viﬂ)).
Thus, removingy; from S” we still havev;—1 — v;11 in Gj. We
repeat the above process with= S’\{v; } until all the remaining
,vgr = t) be the new
sequence obtained at the end of this process.

Note that boths and¢ are still in.S” sinces and¢ are inG3.
According to the derivation process, we have— v;,1 in G, for
1 < < B”, from which we haves = vy — -+ = vgr = ¢
Thus,s —» tinG. O

Lemma 7 reveals an important reachability relation betweszn
tices in a sequence as defined in Lemma 6. This reachability re
tion is also crucial in the proofs of Lemmas 8 and 9.

LEMMA 8. Giventwo vertices,t € Vg, if there exists a vertex
z € labelout (s) N labelin (t), thens — tin G.

PROOF Let us first assume that # s andx # t. Then,
according to Definition 5, itc € labelou:(s), there exists a ver-
tex u € label,u:(s) such thatr € nbout(u,G’:f(u)). Moreover,
u € labelout(s) in turn implies that there exist € labelout(s)
such thatu € nbout(u', Gif(,y). Thus, we obtain a sequence

Sout = (s = u1,...,ua = ), Where forl < ¢ < « the
edge (ui, ui+1) IS In Gyp(,,)- Similarly, we obtain another se-
quenceS;, = (z = vg,...,v1 = t), where forl < i <

B the edge(vit1,v;) is in G i (i According to Lemma 5,
tf(ui) < tf(uigr) for 1 < i < o andtf(vi) < tf(vii1)
for 1 < ¢ < B. Thus, according to Lemma 7, the sequence
S={(s=ui,...,ua = =vg,...,v1 = t)implies thats — ¢
in G7, and hence — ¢t in G = G; by Lemma 4. Ifx = ¢, then



t € labelout(s) gives the sequencg = (s = u1,...,Ua = T =
ty, which implies thats — ¢ in G. And similarly forz = s. O

5. REMOVING DUMMY VERTICES

The vertex labels constructed in Section 4 contain dummy ver
tices, which may take up a lot of space and incur extra praugss

The following lemma proves the reverse statement of Lemma 8. in query answering. In this section, we propose a new laltél ali

LEMMA 9. Given two vertices,t € Vg, if s — tin G, then
there exists a vertex € labelow (s) N labelin (t).

PrROOFE We show that ifs — t in G, then there exists a se-
quence of vertice§ = (s, ..., t) such that there is a vertaxin S,
wherez € label,u:(s) andx € labelin (t).

First,s — t in G implies that thereisapatR = (s = ...,t)

dummy vertices removed.

According to Procedure 1, a dummy vertexis created only
as either an out-neighbor af or an in-neighbor ot for a cross-
level edge(u, v). If w is created as an out-neighbor @f(or an
in-neighbor ofv), thenw (or v) is called thein-source vertex (or
out-source vertey of w, denoted bysrc(w) = u (or sre(w) = v).

If sre(w) = vis avertex inG, i.e.,v is not a dummy vertex, then
v is called theroot vertex of w, denoted by-t(w). In general, we

in Gi (by Procedure 1 and Lemma 4). According to Lemma havert(w) = src(sre(- - - sre(w) - --)).

6, there exists a sequenée = (s = wi,...,w, = t) such
that for1 < i < ~, the edge(w;,w;+1) is in G} wherej =
min(¢f(w;), tf(wir1)), andsS is maximal.

Next, we show that there exists a unique verter S such that
tf(x) > tf(w) forall w € S\{z}. Itis trivially true that there
existsx such thattf(z) > tf(w) for all w € S\{z}. To re-

With the definition of in-source/out-source vertices anat rer-
tices, we define a new vertex label as follows.

DEFINITION6 (VERTEXLABEL WITHOUT DUMMIES). Let
f(w) be a function such thaf(u) = rt(u) if u is a dummy vertex,
and f(u) = u otherwise. The new labels of a vertexe Vg,

move the =’ sign, suppose to the contrary that there exists another denoted byabel2;, (v) and label2..:(v), are defined as follows:

vertex z’ such thattf(z’) = tf(x) = j, which implies thatz
andz’ are both inG;. Assume, without loss of generality, that
x appears before’ in S. Then,tf(z’) = tf(x) = j implies
thatz andz’ are both in an independent set@f; according to
Lemma 4. The independence betweemnd z’ implies that ei-
ther (1) - 2’ or (2) x reachest’ via some other vertex” in
G such thatt f(«") > tf(x). For (1), itis a contradiction since
xz — 2’ in G} according to Lemma 7. For (2), we have the path
P' = (z,...,2",...,2') in G; and by Lemma 6 we can obtain
another sequenc8’ = (z,...,z",...,z’) from P’, which con-
tradicts to the fact thaf is maximal.

We complete the proof by showing that the unique vertex
wheretf(z) > tf(w) for all w € S\{z}, is in bothlabelou:(s)
andlabel;, (t). LetS = (s = u1,...,ua = T =vg,...,01 = t).
We first consider the sub-sequente = wu1,...,ua = ). If
§ = u1 = uq = x, thenz € label,:(s) by Definition 5. Ifa > 1,
for eachu;, we find the firstu;, wherel < i < j < «, such that
tf(ui) < tf(uz). Such au; must exist since there is at least one
vertexuq wheret f(u;) < tf(ua). Moreoveru; — u; in Gy,
according to Lemma 7. Thugy;,u;) is an edge inG;;, ) be-
cause otherwisey; reachesu; in Gy, via some other vertex
ug, which contradicts to the fact thatis maximal.

Thus, we obtain a sequende = u},...,u,, = z), where
tf(uj) < tf(ujy,) and (uj,uiyq1) is an edge inG:f(u;) for
1 < i < o/. According to Definition 55 = u] € labeloui(s),
uh € labeloyt (s) sinceu) € labelyy:(s) andus € nbout(G:f(u,l)),

oo Uip1 € labeloui(s) sincew; € labelow(s) anduj,, €
nbout(G:f(u;)), con x = ul, € labelyu(s) sinceul, ; €
labelou:(s) anduy, € nbout (Gip (s, 1)). Finally, a similar analy-

sis shows that € labeli, (t). O

We note that the sequenégin the proof of Lemma 9 may not

be unique, but we only need to show the existence of one such %«

sequence for the proof.
The following theorem proves the correctness of reachwbili
guery answering by vertex labels.

THEOREM 1. Given a reachability query whether a vertex
Ve can reach another vertexe Vg, the answer given by Equation
1is correct.

PROOF The proof follows directly from Lemmas 8 and 901

o label2in(v) = {f(u) : u € labelin (v)}.
o label2ous(v) = {f(u) : u € labelow (v)}.

Intuitively, label2;,(v) is obtained by replacing every dummy
vertexu in labely, (v) with rt(w), and similarly forlabel2yu: (v).

For all v € Vg, |label2in(v)] < |labelin(v)| and
|label2ou: (V)| < |labelout (v)], SiNCe there can be multiple dummy
vertices with the same root vertex and/or the root vertex alay
ready exist in the set. Thus, compared Withel, label2 reduces
index storage space and improves querying efficiency.

The following lemma and theorem prove the correctness afque
answering usindabel2.

LeEmMA 10. Givens,t € Vg, (1) if x € label,u:(s) and
rt(z) ¢ labeloui(s), thens — rt(z) in G; and (2) if z €
labelin (t) andri(z) ¢ labelin (t), thenrt(z) — tin G.

PrROOF We first prove(1). From the proof of Lemma 8; €
labeloui(s) implies a sequence = (s = uy, ..., uq = x), where
for 1 < i < o the edge(u;, ui+1) is in Giy,,). Sincez is a
dummy vertex, according to Procedure 1 there exists ancter
quenceS: = (rt(x) = v1,...,vg-1 = src(x),vg = x), where
for 1 <i < g either the edggui, vi+1) iSin Gy, if rt(z)is an
in-source vertex, ofv;+1, v;) isin Gy, if rt(x) is an out-source
vertex.

If r¢t(x) is an in-source vertex, then we construct the proof as
follows. Lety = z. Start fromi = o« — 1toi = 2, we re-
assigny = wu; if u; = src(y) (note thati # 1 sinces = u; =
rt(x) contradictsrt(xz) ¢ labelout(s)). Let (s = ui,...,uy =
y) be the sub-sequence such that_; # src(y). According to
Procedure 1u,/_; is an in-neighbor ofrt(x) so thatu,:_ is
also connected to; in G4, (. t0 preserve the reachability from
/_1 tort(z)’s cross-level out-neighbors (now via). Note that
v2 may not be inlabelou:(s), i.e., S, because, may not be an
out-neighbor ofuq/—1 in Gy, , . i€, tf(v2) < tf(uar—1).
Thus, we have the sequente = ua, ..., uq _1,7t(z)), where
(tar—1,7t(x)) IN G{}(14(2)), from which we haves — rt(x) in G
by Lemma 7.

If r¢(z) is an out-source vertex, then we haye =
UL, ..., Ua = X = V8,V3-1 = src(x),...,v1 = rt(x)). Again,
by Lemma 7 we have — rt(z) in G.

Similarly we can provg2). [



THEOREM 2. Given a reachability query whether a vertex
Ve can reach another vertexe Vg, the answer given by Equation
1 with “label” replaced by “label2” is correct.

PROOF Let X = labelout(s) N labelin(t) and X2 =
label2ous(s) N label2i, (t). We show that(l) if X # 0, then
X2 #0,and(2)if X = 0, thenX2 = 0.

We first prove(1). If X # 0, then either (iHz € X, z is not a
dummy vertex, or (iilVx € X, x is a dummy vertex. For (i) is
also in X2 according to Definition 6 and hencé2 # (. For (ii),
rt(x) isin X2 and henceX2 # 0.

We now prove(2). Suppose to the contrary that2 # (), which
must be caused by the replacement of some dummy vertex
rt(z), i.e., rt(x) € X2 for some dummy vertex. We have the
following possible cases:

(i) If z € labelou:(s) andrt(x) ¢ labelou:(s): then we have
rt(z) € label2,u:(s) as a replacement of. Thus, by
Lemma 10, we have — r¢(z) in G.

Otherwise,rt(z) is originally in label,.:(s) sincert(z) €
X 2. Thus, we havet(z) = s, ors — rt(z) in G by Lemma
8 sincert(x) € label,u:(s) andri(z) € labelin (rt(z)).

If @ € labelin () andrt(x) ¢ labelin(t): then similarly as
(i) we havert(z) — tin G by Lemma 10.

Otherwise, similarly as (i) we have eithet(xz) = ¢, or
rt(z) - tinG.

(ii)

For every combination of the cases in (i) and (ii) above, wesha
s — tin G, which impliesX # (¢ by Lemma 9 and thus a contra-
diction. Therefore, we have our result thét= @ implies X2 = 0.

Given(1) and(2), the correctness of the theorem follows directly
from Theorem 1. O

The following example illustrates the conceptlabel2.

EXAMPLE 5. Table 2 shows the labeling of the same graph in

EXAMPLE 6. Consider the example in Figure 3(g).s a high-
degree vertex witlleg,,, (f, G1) * deg,,.(f, G1) = 3x5 = 15. By
Procedure 1f is removed at the first iteration and we need to add
many edges in order to maintain reachability % as shown in
Figure 3(b). In the DAG of many real graphs, often we have a few
vertices with very high degree (these vertices normallyespond
to giant SCCs in the original directed graph). For examptethie
p2p dataset, we have a vertexwith deg,, (v, G1) = 43562 and
deg,.+(v, G1) = 366. Such high-degree vertices will take up a lot
of space in the intermediate graphs and hence incur a sigmific
amount of extra processing in the overall labeling process.

T® O O ®) ®©
(©) G;

Figure 3: Problem caused by high-degree vertices

Here we propose a method to address this problem. For simplic
ity, in the subsequent discussion we focus on handling tigree
vertices inG1 = G, but we remark that the method applies to other
G, in the same way.

Given a vertexv € V¢, we define the set of vertices that are
reachable from asreachout (v, G) = {u : v — u}, and the set of
vertices that can rea@hasreachin (v, G) = {u: u — v}. LetH

Example 3 with dummy vertices removed. In Table 1, we have pe the set of top high-degree vertices defined as followd: € H

labelout(b) = {b,b1,d, f}, butlabel2o.:(b) = {b,d, f} in Table
2 sincert(b1) = b already exists idabel oyt (b). For labelowt(c) =
{c, e1, f} in Table 1, we replace dummy vertexwith rt(e1) = e
and obtainlabel2,.:(c) = {c,e, f} in 2. Similarly, we obtain
label? for all other vertices inG.

[ vertex] label2out | label2, |
a {a,c,d, e f} {a}
b {b, d, f} {b}
e {e. f} {c, e}
g {9, h} {e.f.o}
[ {c,e, f} {c}
d {d, 1} {d}
h {h} {a,e,f,h}
f {f {f

Table 2: Removing dummy vertices from the labels in Table 1

6. HANDLING HIGH-DEGREE VERTICES

In the construction o7, ; from G}, or G from G;, many new

edges may be created to connect the in-neighbors of a vertex

to v’s out-neighbors. Although such connections are necegsary
preserve reachability afteris removed, the construction is costly
in the presence of high-degree vertices since the numbedgafse
created is given bydeg,,, (v, G;) * deg,,,.(v, G;)). The following
example illustrates the problem caused by high-degre&esrt

and’U € VG\H7 (degzn(h7 G) * degout(hvG)) 2 (degzn(v7G) *
deg,.;(v,G)). We may sek as theh-index value of a graph [8,
9

We propose a new vertex label of a vertexc Vi, denoted by
label3in (v) andlabel3,.: (v), which havedummy vertices removed
as in Section 5 antdigh-degree vertices handlex$ follows:

1. Foreacthe H, label3;n (h)={h} andlabel3 ou:(h)={h}.

2. For eaclw € Ve \H, initialize label3:n(v) = {h : h €
H,v € reachout(h,G)} andlabel3out(v) = {h : h €
H,v € reachin(h, G)}.

3. Remove all vertices i/, together with all edges incident to
them, fromG. Let G’ be the remaining graph.

4. For eachv € Vg (i.e.,v € Vg\H), constructlabel2;, (v)
andlabel2..+ (v) from G’ as discussed in Sections 3-5.

5. ForeacheVe\H, label3in(v)=label2in(v)Ulabels iy (v)
andlabel3 out (V) = label2 out(v) U label3 out (v).

The following theorem proves the correctness of reachwbili
query answering usinigbel3 obtained from the above steps.

THEOREM 3. Given a reachability query whether a vertex
Ve can reach another vertexe Vg, the answer given by Equation
1 with “label” replaced by “label3” is correct.



ProoOF First, we show that it — ¢ in G, i.e., there exists a
pathP = (s,...,t) in G, then the answer returnedtis ue.

1. If P contains no vertex iiiZ, thenP must be in the remain-
ing graphG’. Thus, query answering usingabel2”, which
is constructed fronG’ and contained in label3”, returns
true as proved in Theorem 2.

2. If P contains at least one vertéxc H, then we must have
h € label3out(s) andh € label3:n(t). Thus, the answer
returned ig r ue.

Next, we show that ifs -~ ¢ in G, then the answer returned
is f al se. Suppose to the contrary that the answetrisie, i.e.,
Jz € (label3oui(s) N label3in (t)).

1. If z € H, then we haves € reachin(z,G) andt €
reachout(x, G), assuming thatt # s andz # ¢. Thus,
we haves — x andx — t in G, which impliess — ¢ in
G. Now if z = sorz = ¢, thent € reachout(z = 5,G) Or
s € reachin(z = t,G), which again implies — ¢ in G. In
each case, the result contradicts to the fact¢hat ¢ in G.

2. Ifz ¢ H,thenx € label2,u:(s) andx € label2;n (t), which
impliess — t in G’ by Theorem 2. Sincé&’ is a subgraph
of G, we haves — t in G, which is a contradiction.

O
The following example further illustrates the idea.

EXAMPLE 7. Consider the example in Figure 3. We first
obtain reachin (f,G) = {a,b,c,d,e} and reachou:(f,G) =
{h,i,3,k,l,m,n}. Then, we initializelabel3 for the ver-
tices: label3o,ut(v) = {f} for eachv € {a,b,c,d, e}, and
label8in(v) = {f} for eachv € {h,4,j,k,I,m,n}. Then, we
removef and all edges incident tgf, which gives the graph as
shown in Figure 4(a). Next we construct the TF and therl2
from the DAG in Figure 4(a). Finally, we merdebel2 and label3
to obtain the finalabel3 as shown in Table 3(a).

Compared withlabel2 computed for the graph in Figure 3(a),
which is shown in Table 3(bjabel3 is considerably smaller. The
example also reveals that after removing the high-degregces,
the graph becomes much easier to handle.

:@ ?g;?@) 12@@ @@
: %@@j@ (®) G

4 ® 1 ®
(@) G =G, (¢) G;

Figure 4: Topological folding with high-degree vertex remeed

7. ALGORITHM AND COMPLEXITY

In this section, we discuss the algorithmic and complexsty i

[ [ label3out | label3in | | | label2out [ label2iy |
a | {a.c,f} {a} a | {a,c,fh,ijk} {a}
b | {b,d.efk} {b} b | {b,d,efh,ijk} {b}
c | {cf} {c} ¢ | {c.fh,ijk} {c}
d [ {df {d} d | {d,fh,ijk} {d}
e | {efk} {e} e | {e,fh,jk} {e}
f1{f {f f [ {fh,ijk} {c,d,e,f}
9 | {g.k {e.q} g | {9,k {e.q}
h | {h} {f.n} h | {h} {n}
i i {f.i} i {i {i}
i [ {im} {f.it 1 1{ {i}
k | {k {f.k} k | {k} {k}
I I {f.} ] {I,n} {in
m | {m} {f,m} m [ {m,n} {i,m}
n [ {n} {f.,m,n} n | {n} {f,i,j,n}

(@) (b)

Table 3: Labeling for G in Figure3(a): (a) label3; (b) label2

Algorithm 1: LabelingG" = {G1,..., G}y })

o

=

1 LetVg, =0, wherei = tf(G) +1;
2 fori=1,...,tf(G)do
3 foreachv € (Vgr\Vg, ) do
4 labelin (v) + {v} U{u: (u,v) € Gi};
5 labelout (v) <= {v} U{u: (v,u) € G},
for i = tf(G),...,1do
foreachv € (VG; \Vag,,,)do
foreachu € label;,, (v) do

|_ labelyn, (v) <+ labely, (v) U labelyy, (u);
foreachu € labelout(v) do

|_ labelout (V)  labelout (v) U labelout (u);

PO ©Wo NO

2 return label;, (v) andlabelyy: (v) for all verticesw;

sets which terminates as soon as the first common elementrid fo
and thus the complexity is bounded by the label size. The pre-
processing phase includes computing the DAG from an input di
rected graph, topological sorting of the resulting DAG, stouc-

tion of the transformed TF structure, and the label consbnc
The steps before labeling are either simple or have beeeness

in sufficient details. We therefore focus our discussiontenla-
beling algorithm here.

We propose an efficient top-down algorithm to construct #re v
tex labels defined in Definition 5. As shown in Algorithm 1, e
1-5 initializeslabel;, (v) andlabel 0.+ (v) for each vertew to con-
tain the in-neighbors and out-neighborswin G;;,,. Note that
for eachv € (Vor\Va,,,), tf(v) = i sincev no longer exists
in Git1. Line 1is introduced so thdt/:\Ve,, ,) = Vir when
i =tf(G)inLines 3and 7, sinc& ;)41 does not really exist.

Lines 6-11 performs a top-down operation starting at thaést
level of the TF structure. At each level for each vertexw €
(Var\Va,,, ), we simply include the in-label (out-label) ofs in-
neighbors (out-neighbors) iiabel;n (v) (labelowt (v)).

The correctness of Algorithm 1 follows from Definition 5 and
Lemma 5. While the algorithm does not remove dummy vertices,
we discuss how it can be handled with little additional oeadh as
inspired by the following lemma.

LEMMA 11. For any vertexw € Vi and anyG; € G*, at most

sues of our proposed method. Our method consists of two main W0 dummy vertices will be created @ whose root vertex is.

phases, namely, the pre-processing or indexing phase eigi¢ny
processing phase. Query processing is just an interseatitwio

PrROOF According to Procedure 1, initially we may create one
dummy vertexu,.: as an out-neighbor af and/or another dummy



vertexu;, as an in-neighbor of. And u,.+ andu;, must be cre-
ated inGy(,). At most one dummy vertex (let it beoy.) will
be created as an out-neighborwf,; since all incoming edges of
Uuoyt Are Not cross-level edges by construction. Amg: must be
created inG;, wherej = t f(uou:). Similarly, at most one dummy
vertex will be created as an out-neighborwaf,:, and so on. A
similar analysis applies to;,, and thus in any>; € G*, we have
at most two dummy vertices created whose root vertex is_]

If v is the root vertex of any dummy vertex ands the in-source
vertex, then Lemma 11 implies the existence of a unique segue
Sout = (U = u1,...,ua), Whereu;_; is the in-source vertex of
u; for 1 < j < «; thus, we can use only two labelsbel;, (u;)
andlabelo.:(uy), to keep the labels for all dummy vertices at
each leveli = tf(u;) in Lines 6-11 of Algorithm 1. Similarly,
the same strategy applies to another unique sequencésithe
root vertex of a set of dummy vertex ands the out-source vertex.
Thus, in the top-down labeling process, in total we mairgaimost
four labels for each vertex € V¢ for all dummy vertices created
with v as their root vertex.

Next we analyze the complexity of the pre-processing phase.
Computing the DAG takes linear time in the size of the input
directed graph. Given the DAG = (Vg, Eq), topological
sorting takesO(|Vs| + |E¢l|) time. Then, we apply Proce-
dure 1 to construct the TF structure, which tal@$lg ((G))
iterations of Steps 2 and 3. At theth iteration, we need
O(ZUEVG* (deg,,, (v, G} )*deg,,.(v,G}))) time for the construc-

tion. From Lemma 11|V« | < 2|Vg,| and the degree of a dummy
vertexw is bounded by that ofrc(w). The total time complexity
is given by C1 O(Xi<i<ige(a) ZveVGi(degin(%Gi) *
deg . (v, Gi))). The complexity of Algorithm 1, to-
gether with dummy vertex handling, is bounded B2 =
O(Z1§iglg °(G) Z’UE(VG;« \VGi+1)(Zu€nbin(v7G;¥) labelin (u) +

2 uenbous (v,6+) labelout(u))). Both C1 and C2 depend on the
characteristics of the input DAG, especially the vertexrdeg
Both C'1 and(C2 can be significantly reduced by removing the set
of high-degree vertice#f, which takesO(|H|(|Vg,| + |Ec,|))
time to removeH and addh € H to the labels of other vertices as
discussed in Section 6.

8. EXPERIMENTAL EVALUATION

We implemented our method@F-label, in C++ (all source codes
will be made available). We compare TF-label with the folow
ing state-of-the-art methods for processing reachabilitgries:
PathTree [19], GRAIL [27], PWAHS8 [24], ScaPathTreeand
ScaGRAIL. ScaPathTree and ScaGRAIL are the application of
PathTree and GRAIL in th&CARAB framework [18], i.e., first
computing the backbone of the input DAG and then applying
PathTree or GRAIL for reachability querying (more detailsSiec-
tion 1). Though in theory any existing method can be applied i
SCARAB, we were not able to do so for PWAH8 and TF-label due
to unfamiliarity with their system. ScaPathTree and ScaGRA
were provided by the authors of [18].

first set of 7 datasets are from 3 different domains, whileste®nd

set of 5 datasets are from 5 different domains. We want to exam
ine the differences in the spectrum of datasets that ouradetan
handle versus those of existing methods.

Real datasets.We used the following 7 large real datasets that are
used in [18, 27] for scalability testi t eseer, ci t eseer x and

ci t - pat ent (pat ent) are citation networks, in which non-leaf
vertices have an average out-degree of 10 tog&3;uni pr ot is

the joint graph of Gene Ontologyterm and the annotations fiee
UniProt databasenww.uniprot.org, which is the universal protein
resource;uni prot 22m uni pr ot 100m and uni pr ot 150m

are the subsets of the complete RFG graph of UniProt.

We also used 5 real datasets from Stanford Large Network
Dataset Collection. We selected one large directed gramim fr
each of the following categoriegmai | - EUAI | (emai | ) from
communication networkssoc- Li veJour nal 1 (LJ) from so-
cial networks, p2p- Gnut el I a31 (p2p) from Internet peer-
to-peer networksweb- Googl e (web) from Web graphs, and
wi ki -tal k (wi ki) from Wikipedia networks. In addition,
ci t - pat ent from citation networks is already included in the
first 7 graphs. Detailed descriptions of the datasets canurelfin
(snap.stanford.edu/data

Table 4 lists the number of vertices and edges in the original
rected graphg, as well as in the DAGY of G, respectively. We do
not show|Vg| and|Eg| for the datasets obtained from [27] since
the authors did not provide these numbers. Note that egistigth-
ods for reachability querying assume that the input is a DA®.
also show the topological level number@f ¢(G), as well as the
average degree of the vertices (denotedhy) in G.

Table 4: Real datasets (K= 10°)

[ Dataset [ Vol [Egl] [Vel] [Ecl[G) [ davy |
citeseer — — 694K 312K 13 | 0.45
citeseerx — — 6540K | 15011K 59 [ 2.30
go- uni pr ot — — 6968K | 34770K 21| 4.99
pat ent — — | 3775K| 16519K 32| 4.38
uni prot 22m — — 1595K [ 1595K 4| 1.00
uni prot 100m — — | 16087K | 16087K 9| 1.00
uni prot 150m — — | 25038K | 25038K 10 | 1.00
enai | 265K 420K 231K 223K 7] 0.97
LJ 4848K | 68994K 971K | 1024K 24 | 1.05
p2p 63K 148K 48K 55K 14717 114
web 876K | 5105K 372K 518K 34 ] 1.39
W Ki 2394K | 5021K [ 2282K | 2312K 8| 1.01

Indexing Performance. We first report indexing performance re-
sults, but remark that (online) query performance shouldhiee
more important performance indicator, provided that (o#iin-
dexing performance is reasonable. We report the index anst
tion time (total elapsed time in seconds) in Table 5. Thetsisor
time for each dataset is highlightedbold.

For the datasets from [27], GRAIL has the best performande an

All source codes of the methods we compare with are the latest the performance of ScaGRAIL is close to that of GRAIL. The in-

version provided by their authors, and all were implemeirtech+

and compiled using the same gcc compiler as TF-label. We ran datasets.

all experiments on a computer with an Intel 3.3 GHz CPU, 16GB
RAM, and running Ubuntu 11.04 Linux OS.

8.1 Performance on Real Datasets
We first evaluate the performance of our method on real-world

dexing time of TF-label is comparable to that of PWAHS for inos
Foci t eseer x and pat ent, TF-label is 135 and
8.5 times faster than PWAHS8. Compared with ScaPathTree, our
method is from a few times to 74 times faster. ScaPathTree was
not able to obtain the results foi t eseer x andpat ent , while
PathTree can only run ari t eseer.

For the datasets from the Stanford Collection, TF-labehes t

datasets from a wide spectrum of domains. As shown below, the best for indexing all the datasets. TF-label is about twastdr than



Table 5: Index construction time (in sec)

Table 7: Total query processing time (in milli-sec)

GRAIL and ScaGRAIL on average, and up to orders of magnitude

TF-label | PathTree| ScaPathTred GRAIL | ScaGRAIL | PWAH8
TF-label | PathTree| ScaPathTred GRAIL | ScaGRAIL | PWAH8 Citeseer 6 98 85 174 63 112
citeseer 0.73 26.76 1.60 0.79 0.98 0.76 citeseerx 160 - - 18861 684 187
citeseerx 63.60 — — 7.80 15.43 | 8597.02 go- uni prot 48 — 142 365 109 449
go- uni pr ot 47.49 — 724.67 13.95 16.60 52.46 pat ent 419 — — 6726 1240 14593
pat ent 162.44 — — 7.24 36.23 | 1380.76 uni pr ot 22m 34 = 115 259 97 210
uni pr ot 22m 2.27 — 10.26 2.10 2.09 2.09 uni pr ot 100m 79 — 198 407 155 275
uni prot 100m 40.29 — 1301.71 27.25 28.94 24.10 uni pr ot 150m 95 — 862 433 183 294
uni prot 150m 55.48 — 4107.77 43.86 48.22 41.07 emai | 14 - 124 6715 03 146
emai | 0.10 — 0.61 0.26 0.26 ] 166.98] LJ 51 — 207 | 3741919 999 —
LJ 0.55 — 31.93 1.08 1.17 — p2p 12 22 36 9192 24 11
p2p 0.03 2.16 0.13 0.04 0.04 1.40 web 49 — 196 | 436682 1548 142
web 0.40 - 11.12 0.41 0.62 | 1559.91 Wi Ki 39 - — | 457529 139 —
wi ki 0.96 — — 2.54 2.35 —

slow for processing some datasets. For example, ScaGRAIL is
particularly slow in processingeb, for which ScaPathTree and

faster than PWAHS8, PathTree and ScaPathTree. We note that wePWAH8 perform reasonably well. Similarly, ScaPathTreeldsvs

did not specifically pick these datasets, but rather simplgcied
one large graph from each category of directed graphs (Weahe
out two categories because the DAGs of these graphs are &b sm
for which most existing methods will be efficient enough).efdr
fore, the result shows that our method is able to perform feell
graphs from various domains.

Table 6 reports the index size (in MB). For theuBi pr ot
datasets, TF-label is from about 3 to 10 times smaller thaottar
methods. Focit eseer, TF-label is only worse than PathTree,
but much better than the other methods. But ¢ort eseer x,
pat ent andgo- uni prot, TF-label is much larger. However,
for the second set of 5 datasets, TF-label is much smalleli in a
cases excei2p for which it is larger than PathTree.

Table 6: Index or label size (in MB)

TF-label | PathTree| ScaPathTred GRAIL | ScaGRAIL | PWAH8
citeseer 2 1 28 11 28 7
citeseerx 1524 — — 100 285 149
go- uni pr ot 431 — 403 106 387 244
pat ent 4732 — — 58 206 5334
uni prot 22m 6 — 68 24 67 19
uni prot 100m 77 — 685 246 673 209
uni prot 150m 132 — 1071 382 1049 349
enai | 0.9 — 10 4 10 2
LJ 4 — 41 15 41 —
p2p 0.2 0.1 2 0.7 2 0.2
web 3 — 16 6 16 4
w ki 9 — — 35 95 —

Overall, the results of indexing time and index size show dlia
method is very competitive in indexing performance, esgigcior
the datasets from the Stanford Collection. In fact, only GR#nd
ScaGRAIL are able to beat TF-label for indexing a few dataset
However, next we will show that GRAIL and ScaGRAIL are sig-
nificantly slower in query processing than TF-label for @tabets.

Query Performance. We randomly generate 1 million queries
for each dataset and Table 7 reports the total time takemtthieu
queries (the shortest time for each dataset is highlighmtédlid).

The result clearly shows that TF-label outperforms all pthe
methods in all cases except fp2p, for which TF-label is com-
parable with PWAH8. ScaGRAIL can run on all datasets, but is
from about 2 to 32 times slower than TF-label. ScaPathTree an
PWAHS are also significantly slower than TF-label, and thag-c
not scale to run on a number of datasets. GRAIL is up to orders
of magnitude slower than TF-label and PathTree cannot $ogle
processing most of the datasets.

Another important feature of TF-label is that it has statdedy
performance for all datasets, unlike the other methods hwhre

in processinguni pr ot 150mand PWAHS is slow in processing
pat ent . Such a stable performance from TF-label is important
for handling datasets from various application domains.

We also emphasize that TF-label can be further applied in the
SCARAB framework, as do ScaGRAIL and ScaPathTree, to im-
prove the performance. Thus, our result is impressive sifee
label even significantly outperforms the existing methopisliad
in SCARAB. In the next experiment, we show that TF-label esal
well where all existing methods, including SCARAB, canncdle,
for both indexing and querying.

8.2 Scalability and Effects of Various Graph
Properties

We use synthetic datasets to control the different progef
the DAG graph and hence assess their effects on the perfoeman
of our method, for both efficiency and scalability.

Synthetic datasets. We consider three important properties of the
DAG graph: (1)the number of verticedc), (2) the average vertex
degree(dav,), and (3)the number of topological level§(()). We
generate three categories of datasets as follows{let 10°):
(C1) Fixdawy = 3 and{(G) = 7, then: setVe = 5M, 10M,
20M, 40M and801M, respectively.
(C2) FixVe = 1M and{(G) = 7, then: setl,,, = 10, 20, 30,
40 and50, respectively.
(C3) FixVe = 1M andda.y = 3, then: se?(G) = 3,7, 15, 31
and63, respectively.

For the generation of a DAG' with |V| vertices,|¢(G)| levels,
and average degrek.,,, we first creatéVz| vertices and distribute
them to the|¢(G)| levels. Then, for each vertexat each levet,
wherel < ¢ < |[¢(G)|, we add one edge from a vertex selected
randomly at level — 1 to v, and add edges fromto (davg — 1)
randomly selected vertices at leyet> 7 in G. To test query per-
formance, we randomly generate 1 million queries for eathsed.

Effect of number of vertices. Figure 5 reports the performance
results of processing the (C1) datasets, where we vary timbeu
of vertices|Vz| from 5M to 8OM (M = 10°).

For index construction, TF-label is significantly fastearnhall
other methods except GRAIL. Compared with GRAIL, TF-label
is slower whenVg| < 20M, but is 3 times faster whefVg| >
40M. When|Vg| = 80M, all other methods failed (we termi-
nated GRAIL after it took two orders of magnitude longer time
than ours). PWAHS could only handié// vertices, while PathTree
failed even with5 M vertices (thus not shown in Figure 5). More-
over, ScaPathTree and ScaGRAIL also cannot scale welle sinc
SCARARB failed to construct the backbone for such large ddsas
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Figure 7: Performance on varying topological level number:from (22 — 1) to (26 — 1)

The index size of TF-label is about twice that of GRAIL, and of magnitude slower than TF-label in query processing fostnod
is 1.5 to 3 times smaller than that of the other methods (fer th the cases.
datasets they can handle). As an index without reasonable query performance is nolyreal
For query processing, TF-label is again significantly fiatitan useful, we can conclude that TF-label is the only method show
all the other methods. Moreover, we also see that GRAIL is the to be scalable with the increase in average vertex degredabef
slowest and is over an order of magnitude slower than TH:labe scales linearly when average degree increases.
When|Vg| = 40M, GRAIL is 6400 times slower than TF-label.
Overall, TF-label is shown to be much more scalable than the
existing methods with the increase in the number of vertices
also in the graph size. The results also show that the indeen-
formance of TF-label scales linearly with the increase enghaph
size, but remains reasonably stable in query performartoe ra-
son that query time does not increases much when the graph siz
increases is because the average label size remains stédidé,
can be observed as the index size increases only linearly.

Effect of number of topological levels. Figure 7 reports the per-
formance results of processing the (C3) datasets, whereamwe v
the number of topological levels fro@* — 1) to (2° — 1) (which
means thatf(G) ranges from 2 to 6).

For index construction, TF-label is from a few times to 60esm
faster than PathTree, ScaPathTree, and PWAHS8. TF-labastsrf
than ScaGRAIL for the level number up to 15, but is slower than
both ScaGRAIL and GRAIL in other cases. Butin these cases Sca
GRAIL and GRAIL are too slow in query processing. The index
Effect of average vertex degree Figure 6 reports the performance  size also shows a similar trend.
results of processing the (C2) datasets, where we vary grage For query processing, TF-label significantly outperforrhshe
vertex degree fromo to 50. other methods in all cases. Especially when the level nurimber

The results show that both PathTree and ScaPathTree cannotreases to 15 or more, TF-label is an order to two orders ofitnag
scale to process datasets with average degree of even Enfthu  tude faster than the other methods.
shown in Figure 6). PWAHS8 can only process datasets with-aver  The results also show that TF-label scales roughly lineahign
age degree up to 20, and is up to two orders of magnitude worsethe level number increases, while the other methods scaldypo
than TF-label in both indexing and query performance. especially for query processing.

TF-label is about twice faster than ScaGRAIL but is signifiba
slower than GRAIL in indexing, while the index size of TF-is
also much larger. However, for the more critical online queer- 9. RELATED WORK
formance, both ScaGRAIL. and GRAIL are too slow..ScaGRAIL is A reachability query can be answereda|Ve| + |Ec|) time
about two orders of magnitude slower and GRAIL is three arder by a BFS or DFS in the input grap, or in O(1) time by pre-



computing the transitive closure [22] ®(|Va||Eg|) time. Exist-
ing methods all strive to attain high online query efficienath a
low offline index construction cost.

The full transitive closure is often too large and henceawsila-
beling or compression schemes have been processed to thduce
label size [1, 5, 6, 17, 19, 24, 25]. Although these methotiseae
reasonable query efficiency, most of them have a high indecasst
and are not efficient enough for processing large graphs.eAdisy
cussed in Section 1, a backbone structure was proposed asrage
framework [18] on which existing methods such as [19] canfhke a
plied to handle larger graphs. However, we show in Sectidra8 t
the performance of our method is significantly better tharstiate-
of-the-art methods [19, 27] applied in the backbone frantewo

There is another category of methods that construct veaiteds
by traversing the graph only [4, 23, 27], and hence have &ivela
low index construction cost. While these methods can efftlyie
answer a subset of queries that are supported by the labesni
eral a much larger subset of queries are not covered by tlex ind
and are very costly to process as it requires graph traversal

There are also a number of methods [2, 3, 10, 11, 12, 20, 21]
that can be considered as improvements over the 2-hop [di#é)s
which constructdabel;, (v) andlabel,.:(v) for each vertexw and
queries are answered as in Equation (1). Unlike our methesgt
methods are all very costly to construct and cannot scalartel
graphs.

Due to space limit, we cannot discuss every method in greater

details. More detailed discussions on the above existintpaas
can be found in [6, 18, 27, 28].

This work is inspired by the work [16], where a hierarchical
structure is proposed for processing shortest path distquneries.
However, the application of the topological structure dreldesign
of topological folding are unique. In particular, our TFustiure
has at moslg ¢(G) levels, which is small for real graphs, while the
hierarchical structure in [16] can have many levels.

10. CONCLUSIONS

We introduced a novel and highly effective indexing scheme,
TF-label, for reachability querying in large graphs. Basedan
extensive set of experimental studies, we showed that B&l-teas
a very stable high performance in query processing, whitjpis
ically an order of magnitude faster than the best previouthaus
[18, 19, 24, 27], while TF-label also enjoys competitiveerihg
performance. To our knowledge TF-label is the only trulylaioke
method since known scalable methods suffer from slow query r
sponse time for graphs with large sizes, large average elegne
large number of topological levels, while TF-label stayfcefnt.
The ability to handle a wide range of different graph proipsralso
demonstrates the suitability of TF-label for processiraps from
various application domains.

A useful extension of the current work is to develop 1/0-édfint
algorithms to index graphs that cannot fit in main memory. iMet
ods developed in [7, 13, 26] may be applied to achieve this tas
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