
TF-Label: a Topological-Folding Labeling Scheme for
Reachability Querying in a Large Graph

James Cheng, Silu Huang, Huanhuan Wu, Ada Wai-Chee Fu
Department of Computer Science and Engineering

The Chinese University of Hong Kong
{jcheng, slhuang, hhwu, adafu}@cse.cuhk.edu.hk

ABSTRACT
Reachability querying is a basic graph operation with numerous
important applications in databases, network analysis, computa-
tional biology, software engineering, etc. Although many indexes
have been proposed to answer reachability queries, most of them
are only efficient for handling relatively small graphs. We propose
TF-label, an efficient and scalable labeling scheme for processing
reachability queries. TF-label is constructed based on a novel topo-
logical folding (TF) that recursively folds an input graph into half
so as to reduce the label size, thus improving query efficiency. We
show that TF-label is efficient to construct and propose efficient al-
gorithms and optimization schemes. Our experiments verifythat
TF-label is significantly more scalable and efficient than the state-
of-the-art methods in both index construction and query processing.

1. INTRODUCTION
A reachability query asks whether there exists a path from one

vertex to another vertex in a directed graph. Reachability query-
ing is one of the fundamental operations in directed graphs.It has
a wide range of applications such as processing recursive queries
in data and knowledge base management, querying associations
and logical reasoning in Web and Semantic Web graphs, pattern
matching in graphs and XML documents, analyzing the biological
function of genes, checking connections in geographic navigation
systems, social network analysis, ontology querying, program anal-
ysis, and many more.

Reachability querying has been extensively studied in the past
[1, 2, 3, 4, 5, 6, 10, 11, 12, 14, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27]. In recent years, there is a shift of interest to handle large
graphs. The more recent works [6, 18, 19, 24, 27] have highlighted
the applications of reachability querying in large graphs such as
Web graphs, Semantic Web and RDF graphs, social networks, large
XML databases, etc., and more efforts have been given to the de-
velopment of scalable methods for answering reachability queries.

As pointed out in [18], most existing methods can only handle
relatively small graphs with tens to hundreds of thousands vertices
and edges. For processing larger graphs, these methods are either
too costly in index construction or in query processing (more dis-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13,June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

cussion in Section 9), which severely limits their application to real
world graphs.

For graphs with millions of vertices and edges, only a few meth-
ods can process them with reasonably good efficiency [19, 24,27].
For larger graphs with tens of millions of vertices and edges, the
only known method that attains reasonable indexing and query-
ing efficiency is the recently proposedbackbonestructure [18]. A
reachability query, where a vertexs can reach another vertext, can
be answered by (1) first finding all backbone verticesBs that can
be reached froms and all backbone verticesBt that can reacht,
and then (2) check whether any vertex inBs can reach any vertex
in Bt. Any existing method can be applied to the backbone graph
to process Step (2), and querying is generally faster since the back-
bone can be significantly smaller than the original graph.

Although the backbone is used as a general framework (called
SCARAB[18]) to further improve the scalability of any method (in-
cluding ours) for processing reachability queries, an efficient and
scalable method itself is still most crucial for query performance
for the two main reasons (both verified in our experiments). First,
SCARAB itself may not be scalable to large graphs. Second, the
backbone of a large graph may still be too large for existing meth-
ods.

We propose an efficient and scalable labeling scheme, which can
process large graphs that cannot be handled by SCARAB and other
existing methods. Given the labels ofs andt, i.e., a set of vertices
that are reachable froms and can reacht respectively, we can an-
swer whethers can reacht efficiently by simply intersecting their
labels (same as [14]). We highlight the main idea of our method as
follows.

We propose a novel data structure, calledtopological folding
(TF), based on which we develop our labeling scheme,TF-label.
Given a directed graph, we can convert it into a directed acyclic
graph (DAG) by condensing each strongly connected component
(SCC) in the graph into a super node. Reachability queries can be
answered on the DAG since all vertices are reachable from each
other within an SCC. We define atopological structureT for the
DAG. TF is intuitively a structure obtained by foldingT into half
each time, which essentially implies a great reduction in the label
size as labeling is processed inO(lg `) levels instead of a total of
` levels inT . Then, we apply a labeling technique, inspired by the
work of [16], on the TF structure to construct labels for answering
reachability queries.

We summarize the main contribution of our work as follows.

• We propose an efficient and scalable TF-based labeling
scheme for reachability query processing.

• We establish the formal correctness proof which reveals vari-
ous important properties of the TF structure and our labeling
scheme.



• We propose optimization techniques such as special handling
of high-degree vertices to further improve the scalabilityof
our method.

• We propose efficient algorithms for constructing the TF
structure and then the labels from the TF, as well as the opti-
mization techniques.

• Our experiments on a wide spectrum of real and synthetic
datasets verify that TF-label achieves competitive indexing
performance and significantly better query performance than
the state-of-the-art methods [18, 19, 24, 27]. In many cases,
TF-label is an order to several orders of magnitude faster in
query processing. We also show that TF-label is more scal-
able and has stable performance with the change in various
graph properties.

The rest of the paper is organized as follows. We first give some
basic notations and problem definition in Section 2. Then, through
Sections 3 to 7 we present the details of TF and TF-label with their
design and algorithms. We evaluate the performance of TF-label
in Section 8. Finally, we discuss related work in Section 9 and
conclude the paper in Section 10.

2. NOTATIONS/PROBLEM DEFINITION
Given a directed graphG, a reachability query asks whether

there is a path from a vertexu to another vertexv in G. We assume
u 6= v as it is trivial to processu = v. Formally, adirected edge, or
simply anedge(since all edges are directed in this paper), fromu
to v is denoted by(u, v). A pathP from v1 to vp in G is defined by
P = 〈v1, . . . , vp〉 such that(vi, vi+1) is an edge inG for 1 ≤ i <
p. We useu → v to indicate thatu can reachv (or v is reachable
from u), andu 9 v to indicate thatu cannot reachv.

Given any two verticesu andv in a strongly connected compo-
nent(SCC) of G, u can always reachv. With this observation, ex-
isting methods first compute a compressed graph,G = (VG, EG),
of G as follows: the set of verticesVG of G is the set of SCCs of
G, and a directed edge is created inG from one SCCC1 to another
SCCC2 if there exists a directed edge(v1, v2) in G, wherev1 is a
vertex inC1 andv2 is a vertex inC2. Then, a reachability query is
answered by checking whether there is a path fromCu toCv in G,
whereCu, Cv ∈ VG, u is a vertex inCu andv is a vertex inCv.

The compressed graphG created above is in fact adirected
acyclic graph(DAG). Thus, for simplicity, we callG the DAG of
G in this paper. Since the SCCs ofG can be computed efficiently
[15], we follow the convention of existing methods and assume that
the input to our algorithm is the DAG of the input directed graph.

Given a DAG,G = (VG, EG), we define the set ofin-neighbors
(out-neighbors) of a vertexv ∈ VG asnbin(v,G) = {u : (u, v) ∈
EG} (nbout(v,G) = {u : (v, u) ∈ EG}), and thein-degree
(out-degree) of v asdeg in(v,G) = |nbin(v,G)| (degout(v,G) =
|nbout(v,G)|).

Problem definition. We study the following problem: given a
DAG G = (VG, EG), compute a set of vertex labels (also called
an index) for processing reachability queries, i.e., givens, t ∈ VG,
the query whethers can reacht can be efficiently answered using
the labels ofs andt.

3. TOPOLOGICAL FOLDING
Through Sections 3 to 6, we present our main indexing scheme,

calledTF-label, which is designed based on a noveltopological
folding scheme of the DAG of a directed graph. We first present
the concept of topological folding in this section.

3.1 Basic Topological Folding
Given a DAGG = (VG, EG), we start by assigning each vertex

in G a topological level number as follows.

DEFINITION 1 (TOPOLOGICALLEVEL NUMBER). Given a
DAG G = (VG, EG), the topological level number of a vertex
v ∈ VG, denoted bỳ (v,G), is defined as follows:

• If nbin(v,G) = ∅: `(v,G) = 1;

• Else: `(v,G) = max{(`(u,G) + 1) : u ∈ nbin(v,G)}.

Thetopological level number ofG, denoted bỳ(G), is given by
`(G) = max{`(v,G) : v ∈ VG}.

SinceG is a DAG, it is easy to see that every vertexv ∈ VG has
exactly onetopological level number, which can be derived from a
topological ordering of the DAG.

Given the topological level number, we now define thetopolog-
ical levelsof a DAG and state an important property that will be
used in the definition of topological folding later on.

DEFINITION 2 (TOPOLOGICALLEVELS). A DAG G =
(VG, EG) consists oft topological levelsof vertices, denoted by
{L1(G), . . . , Lt(G)}, wheret = `(G), andLi(G) = {v : v ∈
VG, `(v,G) = i} for 1 ≤ i ≤ t.

LEMMA 1. Each topological levelLi(G) of a DAGG, for 1 ≤
i ≤ `(G), is an independent setof G.

PROOF. Li(G) is an independent set ofG if ∀u, v ∈ Li(G),
(u, v) /∈ EG and(v, u) /∈ EG. Suppose to the contrary if(u, v) ∈
EG or (v, u) ∈ EG, then we have either̀(u,G) < `(v,G) or
`(v,G) < `(u,G), contradicting the fact thatu, v ∈ Li(G), i.e.,
`(u,G) = `(v,G) = i.

To clearly illustrate the concepts, for now let us assume that the
DAG G only has edges going from vertices inLi(G) to vertices in
Li+1(G), and there is no edge going from any vertex inLi(G) to
a vertex inLj(G) wherej > i + 1 (we will handle such edges in
Section 3.2). We call such a DAG ak-partite DAG , wherek =
`(G). Figure 1(a) shows an example of ak-partite DAG where
k = 6.

We define atopological folding schemethat recursively folds up
G by taking away half of the levels, as follows.

DEFINITION 3 (TOPOLOGICALFOLDING (TF)). Given a
`(G)-partite DAGG = (VG, EG), the topological folding (TF)
of G is a set of DAGs,G = {G1, G2, . . . , Gf}, where each
Gi = (VGi

, EGi
) is defined as follows:

• VG1
= VG and for 2 ≤ i ≤ f , VGi

=
⋃

1≤j≤b`(Gi−1)/2c
L2j(Gi−1);

• For 1 ≤ i ≤ f , EGi
is a set of edges with whichGi is a

`(Gi)-partite DAG and∀u, v ∈ VGi
, u → v in Gi if and

only if u → v in G.

Thetopological folding number, or TF number, of G, denoted
by tf(G), is given bytf(G) = f = |G| = blog2 `(G)c+ 1.

Intuitively, TF folds eachGi into half (i.e., taking away half of
the levels together with their vertices) to obtainGi−1, starting from
G1 = G toGf which has only one level and cannot be folded any
more. Hence, we have the name “topological folding”.



To correctly process reachability queries, it is necessaryfor the
edge setsEGi

to maintain the reachability of the vertices. To effi-
ciently process reachability queries, we also want eachEGi

to be
as small as possible. Thus, the construction ofEGi

is an optimiza-
tion problem, which is expensive to solve for a large graph, since
we need to first collect the set of all paths connecting each vertex
to another and then select a subset of paths with minimum number
of edges while keeping the original reachability.

Although an optimal solution is costly, for the purpose of reach-
ability indexing we find that a simple and efficient solution based
on the following lemma is possible.

LEMMA 2. Let G = (VG, EG) be a `(G)-partite DAG and
G = {G1, G2, . . . , Gtf(G)} be a topological folding ofG. For
2 ≤ i ≤ tf(G), VGi−1

\VGi
is an independent setof Gi−1.

PROOF. According to Lemma 1, eachLj(Gi−1) for 1 ≤ j ≤
`(Gi−1) is an independent set ofGi−1. According to the defini-
tion of G, VG1

= VG and for2 ≤ i ≤ tf(G), VGi−1
\VGi

are
the vertices at all the odd levels ofGi−1. Since eachGi−1 is a
`(Gi−1)-partite DAG, the union of the vertices at all the odd levels
of Gi−1 is clearly an independent set ofGi−1.

With Lemma 2, a simple way to construct the edge setsEGi
is

given as follows.

• EG1
= EG;

• For 2 ≤ i ≤ tf(G), EGi
is constructed fromGi−1 as fol-

lows: for eachv ∈ Lj(Gi−1), wherej is odd, create a new
edge inEGi

from each in-neighbor (if any inGi−1) of v to
each out-neighbor (if any inGi−1) of v.

LEMMA 3. The edge setsEGi
constructed above give a valid

topological foldingG of a `(G)-partite DAGG = (VG, EG).

PROOF. First, eachGi is a`(Gi)-partite DAG since each edge
in EGi

only goes fromLj(Gi) to Lj+1(Gi), for 1 ≤ j ≤ `(Gi).
Second, reachability from each vertex to another is maintained
because eachuin ∈ Lj−1(Gi−1) is connected to eachuout ∈
Lj+1(Gi−1) by an edge inEGi

if the edges(uin, v) and(v, uout)
exist inGi−1, wherev ∈ Lj(Gi−1) andj is odd.

Note that the correctness of the proof of Lemma 3 also depends
on the validity of Lemma 2, because if any edge(u, v), where
u, v ∈ VGi−1

\VGi
, exists inGi−1, then the reachability estab-

lished in the proof of Lemma 3 will not be valid.
The following example illustrates the idea of topological folding.

EXAMPLE 1. Figure 1 shows the topological folding of a 6-
partite DAGG (`(G) = 6). G2 is constructed fromG1 by adding
edges(c, f), (d, f), and (f, h), and then removing all vertices in
the odd levels ofG1. Next, odd level vertices ofG2 are removed to
formG3.

3.2 Dealing with Cross-Level Edges
In Section 3.1 we introduced the basic concepts and structure of

topological folding of a DAG and some of its essential properties.
However, the DAGG of a real world directed graph is rarely`(G)-
partite. On the contrary, there can be manycross-level edgesin G,
i.e., there can be edges from vertices inLi(G) to vertices inLj(G),
where1 ≤ i < i+ 1 < j ≤ `(G), as shown in Figure 2.

To deal with these cross-level edges in the DAG, we observe that
each DAGGi in a topological foldingG need not bè(Gi)-partite,
but only need the following essential properties to be maintained

� ��
Figure 1: Topological folding

in eachGi: (1) the set of vertices to be removed fromGi is an
independent set ofGi−1 for 2 ≤ i ≤ tf(G); and (2) ∀u, v ∈
(VGi

∩ VG), u → v in Gi if and only if u → v in G.
To construct eachGi that satisfies the above two properties, we

devise a transformation scheme forGi−1, for 2 ≤ i ≤ tf(G),
with which we construct the correspondingtransformed topolog-
ical folding as follows:

Procedure 1. TRANSFORMED TF CONSTRUCTION:

1. G1 = G, and seti = 1;

2. InitializeG∗
i=Gi, then do the following three steps in order:

2.1. For1 ≤ j ≤ `(G∗
i ) andj is odd, for eachv ∈ Lj(G

∗
i ):

LetU = (Lk(G
∗
i )∩nbout(v,G

∗
i )), wherek > j+1. If

U 6= ∅, then add adummy vertexw toLj+1(G
∗
i ), add

a new edge set{(w, uout) : uout ∈ U} and a new edge
(v, w) to EG∗

i
, and remove the edge set{(v, uout) :

uout ∈ U} from EG∗

i
.

2.2. For1 ≤ j ≤ `(G∗
i ) andj is odd, for eachv ∈ Lj(G

∗
i ):

Let U = (Lk(G
∗
i ) ∩ nbin(v,G

∗
i )), wherek < j − 1

andk is even. IfU 6= ∅, then add adummy vertexw to
Lj−1(G

∗
i ), add a new edge set{(uin, w) : uin ∈ U}

and a new edge(w, v) toEG∗

i
, and remove the edge set

{(uin, v) : uin ∈ U} fromEG∗

i
.

2.3. For1 ≤ j ≤ `(G∗
i ) andj is odd, for eachv ∈ Lj(G

∗
i ):

add a new edge set{(uin, uout) : uin ∈ (Lj−1(G
∗
i )∩

nbin(v,G
∗
i )), uout ∈ (Lj+1(G

∗
i )∩nbout(v,G

∗
i ))} to

EG∗

i
.

3. If `(G∗
i ) > 1, initialize Gi+1 = G∗

i , and remove all ver-
tices at odd levels ofGi+1 together with all edges inci-
dent to them; then, seti = i + 1 and go to Step 2. Oth-
erwise, return thetransformed topological folding G

∗ =
{G∗

1, . . . , G
∗
tf(G)} and quit.

Note that Step 2.2 ignores all Level-k in-neighbors ofv if k is
odd, because for this case a dummy vertex must have been created
at an even level in Step 2.1, and is thus also handled in Step 2.2.

Also note that we do not increase the number of levels in any
Gi or G∗

i , and hencetf(G) is still defined in the same way as in
Definition 3. We also define theTF numberof a vertex as follows.

DEFINITION 4 (TOPOLOGICALFOLDING NUMBER). Let
G = (VG, EG) be a DAG,G∗ = {G∗

1 , . . . , G
∗
tf(G)} be the trans-

formed topological folding ofG, and letV ∗ be the set of dummy



vertices created inG∗. TheTF numberof a vertexv ∈ (VG ∪V ∗),
denoted bytf(v), is given bytf(v) = max{i : v ∈ VG∗

i
}.

TheTF numberofG is given bytf(G) = |G∗| = blog2 `(G)c+
1. Also note thattf(G) = max{tf(v) : v ∈ VG}.

We illustrate the concept using the following example.

EXAMPLE 2. Figure 2 shows the transformed topological fold-
ing of a DAG. The DAGG in Figure 2(a) contains a number of
cross-level edges:(a, h), (b, f), (d, f), (e, g). By Procedure 1, we
first transformG = G1 to G∗

1. At level 1, Step 2.1 is executed, we
add dummy vertexa1 for a, and add edges(a, a1) and(a1, h), then
edge(a, h) is removed; similarly, we addb1, (b, b1) and (b1, f),
and remove(b, f). Next consider level 3,e1 is added fore, and we
add(e, e1), (e1, g), and remove(e, g). At Step 2.3, we add(c, e1)
and (c, f). Finally for level 5, at Step 2.3, we add(e1, h) and
(f, h). Thus, we have constructedG∗

1, i.e., the figure on the right
in Figure 2(a). Note that inG∗

1, the vertices at all the odd levels
are independent of each other. At Step 3 these vertices are removed,
and we obtainG2, as shown in Figure 2(b). Repeating the process,
we obtainG∗

2 andG3, whileG∗
3 is simply the same asG3.

By Definition 4,tf(v) = 1 for v ∈ {a, b, e, g} since their last
occurrence is inG∗

1. Similarly,tf(v) = 2 for v ∈ {a1, c, d, b1, h},
tf(v) = 3 for v ∈ {a2, e1, f}, andtf(G) = 3.

� � � � � � �
	


 � �
 �� ��
��� �� � � � � ����

� ! " # $ %
&

' () *+ ,
-

. / 0 1 2345 6 78 9 :;< = > ?@ AB C
D E

F GH I J K
L M

Figure 2: Transformed topological folding

One concern in the process of Procedure 1 is that many dummy
vertices and edges may be created. We will handle these casesin
Sections 5 and 6. In fact,G∗

i (or Gi) is also not useful for reacha-
bility processing and hence deleted after the labeling process.

The following lemma are important in establishing the correct-
ness of our method for reachability query answering in Section 4.1.

LEMMA 4. Let G∗ = {G∗
1, . . . , G

∗
tf(G)} be the transformed

topological folding of a DAGG = (VG, EG). LetGi be the graph
from whichG∗

i is transformed. Then,(1) VG∗

i−1
\VGi

is an in-
dependent set ofG∗

i−1 for 2 ≤ i ≤ tf(G); and (2) ∀u, v ∈
(VGi

∩ VG∗

i
), where1 ≤ i ≤ tf(G), u → v in G∗

i if and only
if u → v in Gi; and (3) ∀u, v ∈ (VG∗

i
∩ VG∗

j
), wherej = i − 1

and1 < i ≤ tf(G), u → v in G∗
i if and only ifu → v in G∗

j .

PROOF. We first prove(1). According to Procedure 1, we obtain
Gi by removing the odd levels ofG∗

i−1, i.e., V ∗
Gi−1

\VGi
. Since

there is no edge from a vertex to another vertex at the same level in
G∗

i−1, each level ofG∗
i−1 is an independent set ofG∗

i−1. For any
edge that goes fromu at an odd level tov at another odd level, the
edge is removed fromG∗

i−1 and a dummy vertex is created to pre-
serve the connection fromu to v. Thus, for anyu, v ∈ V ∗

Gi−1
\VGi

,
(u, v) does not exist inG∗

i−1.

Next we prove(2). FromGi to G∗
i , Procedure 1 either converts

a cross-level edge to a path with a middle dummy vertex or addsan
edge from an in-neighbor to an out-neighbor of an odd-level vertex
in Gi. Thus, in both cases,(2) is true.

Lastly, we prove(3). According to Procedure 1, all the cross-
level edges inGj are removed fromG∗

j and hence a vertexw atLk

of G∗
j , where1 ≤ k ≤ `(G∗

j ) andk is odd, has only in-neighbors
atLk−1 (if any) and out-neighbors atLk+1 (if any). Since Proce-
dure 1 creates an edge from every in-neighbor ofw to every out-
neighbor ofw, we haveu → v in Gi if and only ifu → v in G∗

j for
anyu, v ∈ (VGi

∩ VG∗

j
), which together with(2) implies(3).

Note that by a recursive analysis on(3) of Lemma 4, we can
actually prove a stronger lemma that showsu → v in G∗

i if and
only if u → v in G∗

j , for all u, v ∈ (VG∗

i
∩ VG∗

j
), where1 ≤ j <

i ≤ tf(G) (instead ofj = i− 1 as in(3) of Lemma 4).

4. LABELING AND QUERY ANSWERING
In this section, we present our TF-based labeling scheme and

discuss reachability query answering using the labels.

4.1 The Labeling Scheme
The label of a vertex is defined as follows.

DEFINITION 5 (VERTEX LABEL ). Let G = (VG, EG) be a
DAG, G∗ = {G∗

1, . . . , G
∗
tf(G)} be the transformed topological

folding ofG, and letV ∗ be the set of dummy vertices created in
G

∗. Thein-label andout-label of a vertexv ∈ (VG∪V ∗), denoted
by labelin (v) and labelout(v), are defined as follows:

• labelin (v): (1) v ∈ labelin (v), and (2) for anyu ∈
labelin (v), nbin(u,G∗

tf(u)) ⊂ labelin(v).

• labelout(v): (1) v ∈ labelout(v), and (2) for anyu ∈
labelout(v), nbout(u,G∗

tf(u)) ⊂ labelout (v).

Intuitively, we add tolabelin (v) andlabelout(v) recursively the
in-neighbors and out-neighbors in the folding graphG∗

i of each
vertexu currently inlabelin (v) andlabelout(v), wherei = tf(u).

The following property between a vertex and its in-
neighbors/out-neighbors shows that, in constructing the labels for
a vertex, we only go for reachable vertices with higher TF number
and ignore all other reachable vertices. This is a crucial design prin-
ciple of our labeling scheme that leads toa significant reduction on
the label size (compared with transitive closure), since each ver-
tex hasO(`(G)) levels of reachable vertices, but onlyO(lg `(G))
levels of reachable vertices with higher TF number.

LEMMA 5. If w ∈ nbin(u,G
∗
tf(u)) or w ∈ nbout(u,G

∗
tf(u)),

thentf(w) > tf(u).

PROOF. Sincew is in G∗
tf(u), we havetf(w) ≥ tf(u). How-

ever, tf(w) = tf(u) implies that bothw andu are in an inde-
pendent set ofG∗

tf(u), which contradicts the fact that the edge
(u,w) or (w, u) exists inG∗

tf(u). Thus, tf(w) 6= tf(u) and
tf(w) > tf(u).

We use the following example to illustrate the labeling scheme.

EXAMPLE 3. Consider the labeling for vertexa. Initially, a
is added tolabel in(a) and labelout(a). Sincetf(a) = 1 and
nbin(a,G

∗
1) = ∅, we finalizelabel in(a) = {a}. Next, since

nbout(a,G
∗
1) = {a1, c, d}, {a1, c, d} are added tolabelout(a).

Since a1 has an out-neighbora2 in G∗
tf(a1)

= G∗
2, we add

a2 to labelout(a). We also add{e1, f} to labelout(a) for



nbout(c,G
∗
2) = {e1, f} andnbout(d,G

∗
2) = {f}. The vertices

{a2, e1, f} have TF number of 3 but they have no out-neighbor in
G∗

3, and hence the labeling fora is completed. The labels for all
vertices are shown in Table 1.

vertex labelout label in

a {a, a1, c, d, e1, f} {a}
b {b, b1, d, f} {b}
e {e, e1, f} {c, e}
g {g, h} {e1, f, g}
a1 {a1, a2} {a1}
c {c, e1, f} {c}
d {d, f} {d}
b1 {b1, f} {b1}
h {h} {a2, e1, f, h}
a2 {a2} {a2}
e1 {e1} {e1}
f {f} {f}

Table 1: Labeling for the example in Figure 2

4.2 Reachability Querying using Labels
We now discuss how we use the vertex labels to process reach-

ability queries. Given two verticess andt in G, we ask whethers
can reacht, the query answer is given by the following equation.

s → t =

{

true, if labelout(s) ∩ labelin (t) 6= ∅;
false, if labelout(s) ∩ labelin (t) = ∅.

(1)

We give an example of reachability query processing as follows.

EXAMPLE 4. Consider the example in Figure 2, the labeling
is shown in Table 1. Suppose the query is to ask whetherc can
reachh: sincelabelout(c) ∩ label in(h) = {e1, f}, the answer is
true. Now consider whethera can reachb: sincelabelout(a) ∩
label in(b) = ∅, the answer isfalse.

Lemmas 6-9 and Theorem 1 establish the correctness of reach-
ability query answering by Equation (1). The lemmas themselves
also reveal important properties and the design of the TF structure,
and hence how TF labeling works for reachability query answering.

LEMMA 6. Given a pathP = 〈u1, . . . , uα〉 in any graph in
G

∗, there exists a sequence of verticesS = 〈u1 = v1, . . . , vβ =
uα〉 such that for1 ≤ i < β: (1) the edge(vi, vi+1) is inG∗

j where
j = min(tf(vi), tf(vi+1)); and (2) the sequenceS is maximal,
i.e., no sub-sequence can be inserted between anyvi andvi+1 such
that the resultant sequence also satisfies(1).

PROOF. The pathP implies that there exists a sequenceS =
〈u1, S1, u2, S2, . . . , uα−1, Sα−1, uα〉, where eachSi for 1 ≤ i <
α is constructed (according to Procedure 1) as follows.

If `(ui, G
∗
j ) = `(ui+1, G

∗
j ) + 1, where j =

min(tf(ui), tf(ui+1)), then either ui or ui+1 will be re-
moved inGj+1 and henceSi must be an empty set. In this case,
we have(ui, ui+1) in G∗

j .
Otherwise,(ui, ui+1) is a cross-level edge inGj , wherej =

min(tf(ui), tf(ui+1)), thenSi is a sequence of dummy vertices.
Assumej = tf(ui) (the casej = tf(ui+1) can be processed
similarly). To preserve the reachability fromui to ui+1 in Gj ,
at least one dummy vertexw must be created inG∗

j together
with the edges(ui, w) and (w, ui+1). Thus, we have the edge
(ui, w) in G∗

j . If (w, ui+1) is still a cross-level edge inGj′ ,
wherej′ = min(tf(w), tf(ui+1)), then another dummy vertex

is to be created inG∗
j′ to preserve the reachability fromw to

ui+1 in G∗
j . A recursive expansion in this way gives the sub-

sequenceS′
i = 〈ui = w1, w2, . . . , wγ−1, wγ = ui+1〉, where

Si = 〈w2, . . . , wγ−1〉, and for1 ≤ k < γ, (wk, wk+1) in G∗
j and

j = min(tf(wk), tf(wk+1)). S′
i is ensured to be maximal if the

above recursive expansion is executed until no more sub-sequence
can be generated.

By relabeling the vertices, we obtainS = 〈u1 = v1, . . . , vβ =
uα〉 such thatS satisfies both(1) and(2).

Lemma 6 is used to show that a sequence of verticesS with a
special property (as specified in the lemma) exists for a pathP in
any graph inG∗. The existence of such a sequence is essential in
proving the correctness of Lemma 9 and hence Theorem 1.

LEMMA 7. Given a sequence of verticesS = 〈s =
v1, . . . , vβ = t〉, where for1 ≤ i < β, the edge(vi, vi+1) is
in G∗

j wherej = min(tf(vi), tf(vi+1)): if s and t are both in
some graphG∗

φ ∈ G
∗, thens → t in G∗

φ.

PROOF. First, each edge(vi, vi+1) in G∗
j impliesvi → vi+1 in

G∗
j . We can derive the reachability fromv1 to vβ in G∗

φ as follows.
Consider the vertexvi ∈ S wheretf(vi) < φ and tf(vi) ≤

tf(v) for all v ∈ S\{vi}. If vi exists inS, then according to
Procedure 1,vi−1 must be connected tovi+1 in G∗

tf(vi)
in order

to preserve the the reachability fromvi−1 to vi+1 via vi. Thus,
removingvi from S we still havevi−1 → vi+1 in G∗

j , wherej =
min(tf(vi−1), tf(vi+1)). We repeat the above process withS =
S\{vi} until we havetf(v) ≥ φ for all remaining verticesv in S,
and letS′ = 〈s = v1, . . . , vβ′ = t〉 be the new sequence obtained
at the end of this process. We continue withS′ as follows.

Consider the vertexvi ∈ S′ that is not inG∗
φ andtf(vi) ≥ tf(v)

for all v ∈ S′\{vi}. If vi exists inS′, then we havevi−1 → vi in
G∗

tf(vi−1)
andvi → vi+1 in G∗

tf(vi+1)
. Sincevi is not inG∗

φ and
tf(vi) > φ, vi is a dummy vertex andvi preserves the reachability
from vi−1 to vi+1 in G∗

j , wherej = min(tf(vi−1), tf(vi+1)).
Thus, removingvi from S′ we still havevi−1 → vi+1 in G∗

j . We
repeat the above process withS′ = S′\{vi} until all the remaining
vertices are inG∗

φ. Let S′′ = 〈s = v1, . . . , vβ′′ = t〉 be the new
sequence obtained at the end of this process.

Note that boths and t are still inS′′ sinces and t are inG∗
φ.

According to the derivation process, we havevi → vi+1 in G∗
φ for

1 ≤ i ≤ β′′, from which we haves = v1 → · · · → vβ′′ = t.
Thus,s → t in G∗

φ.

Lemma 7 reveals an important reachability relation betweenver-
tices in a sequence as defined in Lemma 6. This reachability rela-
tion is also crucial in the proofs of Lemmas 8 and 9.

LEMMA 8. Given two verticess, t ∈ VG, if there exists a vertex
x ∈ labelout (s) ∩ labelin(t), thens → t in G.

PROOF. Let us first assume thatx 6= s and x 6= t. Then,
according to Definition 5, ifx ∈ labelout(s), there exists a ver-
tex u ∈ labelout (s) such thatx ∈ nbout(u,G

∗
tf(u)). Moreover,

u ∈ labelout(s) in turn implies that there existsu′ ∈ labelout(s)
such thatu ∈ nbout(u

′, G∗
tf(u′)). Thus, we obtain a sequence

Sout = 〈s = u1, . . . , uα = x〉, where for1 ≤ i < α the
edge(ui, ui+1) is in G∗

tf(ui)
. Similarly, we obtain another se-

quenceSin = 〈x = vβ , . . . , v1 = t〉, where for1 ≤ i <
β the edge(vi+1, vi) is in G∗

tf(vi)
. According to Lemma 5,

tf(ui) < tf(ui+1) for 1 ≤ i < α and tf(vi) < tf(vi+1)
for 1 ≤ i < β. Thus, according to Lemma 7, the sequence
S = 〈s = u1, . . . , uα = x = vβ , . . . , v1 = t〉 implies thats → t
in G∗

1, and hences → t in G = G1 by Lemma 4. Ifx = t, then



t ∈ labelout(s) gives the sequenceS = 〈s = u1, . . . , uα = x =
t〉, which implies thats → t in G. And similarly forx = s.

The following lemma proves the reverse statement of Lemma 8.

LEMMA 9. Given two verticess, t ∈ VG, if s → t in G, then
there exists a vertexx ∈ labelout(s) ∩ labelin (t).

PROOF. We show that ifs → t in G, then there exists a se-
quence of verticesS = 〈s, . . . , t〉 such that there is a vertexx in S,
wherex ∈ labelout(s) andx ∈ labelin (t).

First, s → t in G implies that there is a pathP = 〈s = . . . , t〉
in G∗

1 (by Procedure 1 and Lemma 4). According to Lemma
6, there exists a sequenceS = 〈s = w1, . . . , wγ = t〉 such
that for 1 ≤ i < γ, the edge(wi, wi+1) is in G∗

j wherej =
min(tf(wi), tf(wi+1)), andS is maximal.

Next, we show that there exists a unique vertexx in S such that
tf(x) > tf(w) for all w ∈ S\{x}. It is trivially true that there
existsx such thattf(x) ≥ tf(w) for all w ∈ S\{x}. To re-
move the ‘=’ sign, suppose to the contrary that there exists another
vertexx′ such thattf(x′) = tf(x) = j, which implies thatx
andx′ are both inG∗

j . Assume, without loss of generality, that
x appears beforex′ in S. Then, tf(x′) = tf(x) = j implies
that x andx′ are both in an independent set ofG∗

j according to
Lemma 4. The independence betweenx andx′ implies that ei-
ther (1)x 9 x′ or (2) x reachesx′ via some other vertexx′′ in
G∗

j such thattf(x′′) > tf(x). For (1), it is a contradiction since
x → x′ in G∗

j according to Lemma 7. For (2), we have the path
P ′ = 〈x, . . . , x′′, . . . , x′〉 in G∗

j and by Lemma 6 we can obtain
another sequenceS′ = 〈x, . . . , x′′, . . . , x′〉 from P ′, which con-
tradicts to the fact thatS is maximal.

We complete the proof by showing that the unique vertexx,
wheretf(x) > tf(w) for all w ∈ S\{x}, is in bothlabelout(s)
andlabelin (t). LetS = 〈s = u1, . . . , uα = x = vβ , . . . , v1 = t〉.
We first consider the sub-sequence〈s = u1, . . . , uα = x〉. If
s = u1 = uα = x, thenx ∈ labelout(s) by Definition 5. Ifα > 1,
for eachui, we find the firstuj , where1 ≤ i < j ≤ α, such that
tf(ui) < tf(uj). Such auj must exist since there is at least one
vertexuα wheretf(ui) < tf(uα). Moreover,ui → uj in G∗

tf(ui)

according to Lemma 7. Thus,(ui, uj) is an edge inG∗
tf(ui)

be-
cause otherwise,ui reachesuj in G∗

tf(ui)
via some other vertex

uk, which contradicts to the fact thatS is maximal.
Thus, we obtain a sequence〈s = u′

1, . . . , u
′
α′ = x〉, where

tf(u′
i) < tf(u′

i+1) and (u′
i, u

′
i+1) is an edge inG∗

tf(u′

i
) for

1 ≤ i < α′. According to Definition 5,s = u′
1 ∈ labelout (s),

u′
2 ∈ labelout(s) sinceu′

1 ∈ labelout(s) andu′
2 ∈ nbout(G

∗
tf(u′

1
)),

. . ., u′
i+1 ∈ labelout(s) since u′

i ∈ labelout(s) and u′
i+1 ∈

nbout(G
∗
tf(u′

i
)), . . ., x = u′

α′ ∈ labelout(s) since u′
α′−1 ∈

labelout (s) andu′
α ∈ nbout(G

∗
tf(u′

α′
−1

)). Finally, a similar analy-

sis shows thatx ∈ labelin(t).

We note that the sequenceS in the proof of Lemma 9 may not
be unique, but we only need to show the existence of one such
sequence for the proof.

The following theorem proves the correctness of reachability
query answering by vertex labels.

THEOREM 1. Given a reachability query whether a vertexs ∈
VG can reach another vertext ∈ VG, the answer given by Equation
1 is correct.

PROOF. The proof follows directly from Lemmas 8 and 9.

5. REMOVING DUMMY VERTICES
The vertex labels constructed in Section 4 contain dummy ver-

tices, which may take up a lot of space and incur extra processing
in query answering. In this section, we propose a new label with all
dummy vertices removed.

According to Procedure 1, a dummy vertexw is created only
as either an out-neighbor ofu or an in-neighbor ofv for a cross-
level edge(u, v). If w is created as an out-neighbor ofu (or an
in-neighbor ofv), thenu (or v) is called thein-source vertex (or
out-source vertex) of w, denoted bysrc(w) = u (or src(w) = v).
If src(w) = v is a vertex inG, i.e.,v is not a dummy vertex, then
v is called theroot vertex of w, denoted byrt(w). In general, we
havert(w) = src(src(· · · src(w) · · · )).

With the definition of in-source/out-source vertices and root ver-
tices, we define a new vertex label as follows.

DEFINITION 6 (VERTEX LABEL WITHOUT DUMMIES). Let
f(u) be a function such thatf(u) = rt(u) if u is a dummy vertex,
and f(u) = u otherwise. The new labels of a vertexv ∈ VG,
denoted bylabel2in (v) and label2out(v), are defined as follows:

• label2in (v) = {f(u) : u ∈ labelin (v)}.

• label2out(v) = {f(u) : u ∈ labelout(v)}.

Intuitively, label2in (v) is obtained by replacing every dummy
vertexu in labelin (v) with rt(u), and similarly forlabel2out (v).

For all v ∈ VG, |label2in (v)| ≤ |labelin (v)| and
|label2out (v)| ≤ |labelout (v)|, since there can be multiple dummy
vertices with the same root vertex and/or the root vertex mayal-
ready exist in the set. Thus, compared withlabel , label2 reduces
index storage space and improves querying efficiency.

The following lemma and theorem prove the correctness of query
answering usinglabel2 .

LEMMA 10. Given s, t ∈ VG, (1) if x ∈ labelout(s) and
rt(x) /∈ labelout(s), then s → rt(x) in G; and (2) if x ∈
labelin (t) andrt(x) /∈ labelin (t), thenrt(x) → t in G.

PROOF. We first prove(1). From the proof of Lemma 8,x ∈
labelout(s) implies a sequenceS = 〈s = u1, . . . , uα = x〉, where
for 1 ≤ i < α the edge(ui, ui+1) is in G∗

tf(ui)
. Sincex is a

dummy vertex, according to Procedure 1 there exists anotherse-
quenceS2 = 〈rt(x) = v1, . . . , vβ−1 = src(x), vβ = x〉, where
for 1 ≤ i < β: either the edge(vi, vi+1) is inG∗

tf(vi)
if rt(x) is an

in-source vertex, or(vi+1, vi) is inG∗
tf(vi)

if rt(x) is an out-source
vertex.

If rt(x) is an in-source vertex, then we construct the proof as
follows. Let y = x. Start fromi = α − 1 to i = 2, we re-
assigny = ui if ui = src(y) (note thati 6= 1 sinces = u1 =
rt(x) contradictsrt(x) /∈ labelout(s)). Let 〈s = u1, . . . , uα′ =
y〉 be the sub-sequence such thatuα′−1 6= src(y). According to
Procedure 1,uα′−1 is an in-neighbor ofrt(x) so thatuα′−1 is
also connected tov2 in G∗

tf(rt(x)) to preserve the reachability from
uα′−1 to rt(x)’s cross-level out-neighbors (now viav2). Note that
v2 may not be inlabelout(s), i.e., S, becausev2 may not be an
out-neighbor ofuα′−1 in G∗

tf(uα′
−1

), i.e., tf(v2) < tf(uα′−1).

Thus, we have the sequence〈s = u1, . . . , uα′−1, rt(x)〉, where
(uα′−1, rt(x)) in G∗

tf(rt(x)), from which we haves → rt(x) in G
by Lemma 7.

If rt(x) is an out-source vertex, then we have〈s =
u1, . . . , uα = x = vβ , vβ−1 = src(x), . . . , v1 = rt(x)〉. Again,
by Lemma 7 we haves → rt(x) in G.

Similarly we can prove(2).



THEOREM 2. Given a reachability query whether a vertexs ∈
VG can reach another vertext ∈ VG, the answer given by Equation
1 with “ label” replaced by “label2 ” is correct.

PROOF. Let X = labelout (s) ∩ labelin (t) and X2 =
label2out (s) ∩ label2in (t). We show that(1) if X 6= ∅, then
X2 6= ∅, and(2) if X = ∅, thenX2 = ∅.

We first prove(1). If X 6= ∅, then either (i)∃x ∈ X, x is not a
dummy vertex, or (ii)∀x ∈ X, x is a dummy vertex. For (i),x is
also inX2 according to Definition 6 and henceX2 6= ∅. For (ii),
rt(x) is inX2 and henceX2 6= ∅.

We now prove(2). Suppose to the contrary thatX2 6= ∅, which
must be caused by the replacement of some dummy vertexx by
rt(x), i.e., rt(x) ∈ X2 for some dummy vertexx. We have the
following possible cases:

(i) If x ∈ labelout(s) andrt(x) /∈ labelout (s): then we have
rt(x) ∈ label2out (s) as a replacement ofx. Thus, by
Lemma 10, we haves → rt(x) in G.

Otherwise,rt(x) is originally in labelout(s) sincert(x) ∈
X2. Thus, we havert(x) = s, ors → rt(x) in G by Lemma
8 sincert(x) ∈ labelout(s) andrt(x) ∈ label in(rt(x)).

(ii) If x ∈ labelin (t) andrt(x) /∈ labelin (t): then similarly as
(i) we havert(x) → t in G by Lemma 10.

Otherwise, similarly as (i) we have eitherrt(x) = t, or
rt(x) → t in G.

For every combination of the cases in (i) and (ii) above, we have
s → t in G, which impliesX 6= ∅ by Lemma 9 and thus a contra-
diction. Therefore, we have our result thatX = ∅ impliesX2 = ∅.

Given(1) and(2), the correctness of the theorem follows directly
from Theorem 1.

The following example illustrates the concept oflabel2 .

EXAMPLE 5. Table 2 shows the labeling of the same graph in
Example 3 with dummy vertices removed. In Table 1, we have
labelout(b) = {b, b1, d, f}, but label2 out(b) = {b, d, f} in Table
2 sincert(b1) = b already exists inlabelout(b). For labelout(c) =
{c, e1, f} in Table 1, we replace dummy vertexe1 with rt(e1) = e
and obtainlabel2 out(c) = {c, e, f} in 2. Similarly, we obtain
label2 for all other vertices inG.

vertex label2 out label2 in

a {a, c, d, e, f} {a}
b {b, d, f} {b}
e {e, f} {c, e}
g {g, h} {e,f,g}
c {c, e, f} {c}
d {d, f} {d}
h {h} {a,e,f,h}
f {f} {f}

Table 2: Removing dummy vertices from the labels in Table 1

6. HANDLING HIGH-DEGREE VERTICES
In the construction ofG∗

i+1 fromG∗
i , orG∗

i fromGi, many new
edges may be created to connect the in-neighbors of a vertexv
to v’s out-neighbors. Although such connections are necessaryto
preserve reachability afterv is removed, the construction is costly
in the presence of high-degree vertices since the number of edges
created is given by(deg in(v,Gi) ∗ degout(v,Gi)). The following
example illustrates the problem caused by high-degree vertices.

EXAMPLE 6. Consider the example in Figure 3(a),f is a high-
degree vertex withdeg in(f,G1)∗degout(f,G1) = 3∗5 = 15. By
Procedure 1,f is removed at the first iteration and we need to add
many edges in order to maintain reachability inG2 as shown in
Figure 3(b). In the DAG of many real graphs, often we have a few
vertices with very high degree (these vertices normally correspond
to giant SCCs in the original directed graph). For example, in the
p2p dataset, we have a vertexv with deg in(v,G1) = 43562 and
degout(v,G1) = 366. Such high-degree vertices will take up a lot
of space in the intermediate graphs and hence incur a significant
amount of extra processing in the overall labeling process.

N O P Q R Q S
T

U V WX YZ
[\]̂
_ ` a b c de f g h i

jk lm n o pq r stuvw xy z { |} ~� � � � �� �
Figure 3: Problem caused by high-degree vertices

Here we propose a method to address this problem. For simplic-
ity, in the subsequent discussion we focus on handling high-degree
vertices inG1 = G, but we remark that the method applies to other
Gi in the same way.

Given a vertexv ∈ VG, we define the set of vertices that are
reachable fromv asreachout(v,G) = {u : v → u}, and the set of
vertices that can reachv asreach in(v,G) = {u : u → v}. LetH
be the set of top-k high-degree vertices defined as follows:∀h ∈ H
andv ∈ VG\H , (deg in(h,G) ∗ degout(h,G)) ≥ (deg in(v,G) ∗
degout(v,G)). We may setk as theh-index value of a graph [8,
9].

We propose a new vertex label of a vertexv ∈ VG, denoted by
label3in (v) andlabel3out (v), which havedummy vertices removed
as in Section 5 andhigh-degree vertices handledas follows:

1. For eachh∈H , label3 in(h)={h} andlabel3 out(h)={h}.

2. For eachv ∈ VG\H , initialize label3 in(v) = {h : h ∈
H,v ∈ reachout(h,G)} and label3 out(v) = {h : h ∈
H,v ∈ reach in(h,G)}.

3. Remove all vertices inH , together with all edges incident to
them, fromG. LetG′ be the remaining graph.

4. For eachv ∈ VG′ (i.e., v ∈ VG\H), constructlabel2in (v)
andlabel2out (v) from G′ as discussed in Sections 3-5.

5. For eachv∈VG\H , label3 in(v)=label2 in(v)∪label3 in(v)
andlabel3 out(v) = label2 out(v) ∪ label3 out(v).

The following theorem proves the correctness of reachability
query answering usinglabel3obtained from the above steps.

THEOREM 3. Given a reachability query whether a vertexs ∈
VG can reach another vertext ∈ VG, the answer given by Equation
1 with “ label” replaced by “label3 ” is correct.



PROOF. First, we show that ifs → t in G, i.e., there exists a
pathP = 〈s, . . . , t〉 in G, then the answer returned istrue.

1. If P contains no vertex inH , thenP must be in the remain-
ing graphG′. Thus, query answering using “label2 ”, which
is constructed fromG′ and contained in “label3 ”, returns
true as proved in Theorem 2.

2. If P contains at least one vertexh ∈ H , then we must have
h ∈ label3 out(s) andh ∈ label3 in(t). Thus, the answer
returned istrue.

Next, we show that ifs 9 t in G, then the answer returned
is false. Suppose to the contrary that the answer istrue, i.e.,
∃x ∈ (label3out (s) ∩ label3in (t)).

1. If x ∈ H , then we haves ∈ reach in(x,G) and t ∈
reachout(x,G), assuming thatx 6= s andx 6= t. Thus,
we haves → x andx → t in G, which impliess → t in
G. Now if x = s or x = t, thent ∈ reachout(x = s,G) or
s ∈ reach in(x = t, G), which again impliess → t in G. In
each case, the result contradicts to the fact thats 9 t in G.

2. If x /∈ H , thenx ∈ label2out (s) andx ∈ label2in (t), which
impliess → t in G′ by Theorem 2. SinceG′ is a subgraph
of G, we haves → t in G, which is a contradiction.

The following example further illustrates the idea.

EXAMPLE 7. Consider the example in Figure 3. We first
obtain reach in(f,G) = {a, b, c, d, e} and reachout(f,G) =
{h, i, j, k, l, m,n}. Then, we initializelabel3 for the ver-
tices: label3 out(v) = {f} for each v ∈ {a, b, c, d, e}, and
label3 in(v) = {f} for eachv ∈ {h, i, j, k, l,m, n}. Then, we
removef and all edges incident tof , which gives the graph as
shown in Figure 4(a). Next we construct the TF and thenlabel2

from the DAG in Figure 4(a). Finally, we mergelabel2 and label3
to obtain the finallabel3 as shown in Table 3(a).

Compared withlabel2 computed for the graph in Figure 3(a),
which is shown in Table 3(b),label3 is considerably smaller. The
example also reveals that after removing the high-degree vertices,
the graph becomes much easier to handle.

� � � � � � �
� � ��� ��

� �� � � � � �� � � � � ¡ ¢£ ¤
¥ ¦ § ¨

©ª«¬­ ®¯ °
Figure 4: Topological folding with high-degree vertex removed

7. ALGORITHM AND COMPLEXITY
In this section, we discuss the algorithmic and complexity is-

sues of our proposed method. Our method consists of two main
phases, namely, the pre-processing or indexing phase and the query
processing phase. Query processing is just an intersectionof two

label3 out label3 in

a {a,c,f} {a}
b {b,d,e,f,k} {b}
c {c,f} {c}
d {d,f} {d}
e {e,f,k} {e}
f {f} {f}
g {g,k} {e,g}
h {h} {f,h}
i {i,l} {f,i}
j {j,m} {f,j}
k {k} {f,k}
l {l} {f,l}
m {m} {f,m}
n {n} {f,l,m,n}

label2 out label2 in

a {a,c,f,h,i,j,k} {a}
b {b,d,e,f,h,i,j,k} {b}
c {c,f,h,i,j,k} {c}
d {d,f,h,i,j,k} {d}
e {e,f,h,i,j,k} {e}
f {f,h,i,j,k} {c,d,e,f}
g {g, k} {e,g}
h {h} {h}
i {i} {i}
j {j} {j}
k {k} {k}
l {l,n} {i,l}
m {m,n} {j,m}
n {n} {f,i,j,n}

(a) (b)

Table 3: Labeling for G in Figure3(a): (a) label3 ; (b) label2

Algorithm 1: Labeling(G∗ = {G∗
1 , . . . , G

∗
tf(G)})

1 Let VGi
= ∅, wherei = tf(G) + 1;

2 for i = 1, ..., tf(G) do
3 foreach v ∈ (VG∗

i
\VGi+1

) do
4 labelin (v)← {v} ∪ {u : (u, v) ∈ G∗

i };
5 labelout (v)← {v} ∪ {u : (v, u) ∈ G∗

i };

6 for i = tf(G), ...,1 do
7 foreach v ∈ (VG∗

i
\VGi+1

) do
8 foreachu ∈ label in(v) do
9 labelin (v)← labelin (v) ∪ labelin (u);

10 foreachu ∈ labelout(v) do
11 labelout (v)← labelout (v) ∪ labelout (u);

12 return labelin (v) andlabelout (v) for all verticesv;

sets which terminates as soon as the first common element is found
and thus the complexity is bounded by the label size. The pre-
processing phase includes computing the DAG from an input di-
rected graph, topological sorting of the resulting DAG, construc-
tion of the transformed TF structure, and the label construction.
The steps before labeling are either simple or have been presented
in sufficient details. We therefore focus our discussion on the la-
beling algorithm here.

We propose an efficient top-down algorithm to construct the ver-
tex labels defined in Definition 5. As shown in Algorithm 1, Lines
1-5 initializeslabel in(v) andlabelout(v) for each vertexv to con-
tain the in-neighbors and out-neighbors ofv in G∗

tf(v). Note that
for eachv ∈ (VG∗

i
\VGi+1

), tf(v) = i sincev no longer exists
in Gi+1. Line 1 is introduced so that(VG∗

i
\VGi+1

) = VG∗

i
when

i = tf(G) in Lines 3 and 7, sinceGtf(G)+1 does not really exist.
Lines 6-11 performs a top-down operation starting at the highest

level of the TF structure. At each leveli, for each vertexv ∈
(VG∗

i
\VGi+1

), we simply include the in-label (out-label) ofv’s in-
neighbors (out-neighbors) inlabel in(v) (labelout(v)).

The correctness of Algorithm 1 follows from Definition 5 and
Lemma 5. While the algorithm does not remove dummy vertices,
we discuss how it can be handled with little additional overhead, as
inspired by the following lemma.

LEMMA 11. For any vertexv ∈ VG and anyG∗
i ∈ G

∗, at most
two dummy vertices will be created inG∗

i whose root vertex isv.

PROOF. According to Procedure 1, initially we may create one
dummy vertexuout as an out-neighbor ofv and/or another dummy



vertexuin as an in-neighbor ofv. And uout anduin must be cre-
ated inG∗

tf(v). At most one dummy vertex (let it bewout) will
be created as an out-neighbor ofuout since all incoming edges of
uout are not cross-level edges by construction. Andwout must be
created inG∗

j , wherej = tf(uout). Similarly, at most one dummy
vertex will be created as an out-neighbor ofwout, and so on. A
similar analysis applies touin and thus in anyG∗

i ∈ G
∗, we have

at most two dummy vertices created whose root vertex isv.

If v is the root vertex of any dummy vertex andv is the in-source
vertex, then Lemma 11 implies the existence of a unique sequence
Sout = 〈v = u1, . . . , uα〉, whereuj−1 is the in-source vertex of
uj for 1 < j ≤ α; thus, we can use only two labels,labelin(uj)
and labelout(uj), to keep the labels for all dummy verticesuj at
each leveli = tf(uj) in Lines 6-11 of Algorithm 1. Similarly,
the same strategy applies to another unique sequence ifv is the
root vertex of a set of dummy vertex andv is the out-source vertex.
Thus, in the top-down labeling process, in total we maintainat most
four labels for each vertexv ∈ VG for all dummy vertices created
with v as their root vertex.

Next we analyze the complexity of the pre-processing phase.
Computing the DAG takes linear time in the size of the input
directed graph. Given the DAGG = (VG, EG), topological
sorting takesO(|VG| + |EG|) time. Then, we apply Proce-
dure 1 to construct the TF structure, which takesO(lg `(G))
iterations of Steps 2 and 3. At thei-th iteration, we need
O(

∑

v∈VG∗

i

(deg in(v,G
∗
i )∗degout(v,G

∗
i ))) time for the construc-

tion. From Lemma 11,|VG∗

i
| ≤ 2|VGi

| and the degree of a dummy
vertexw is bounded by that ofsrc(w). The total time complexity
is given by C1 = O(

∑

1≤i≤lg `(G)

∑

v∈VGi
(deg in(v,Gi) ∗

degout(v,Gi))). The complexity of Algorithm 1, to-
gether with dummy vertex handling, is bounded byC2 =
O(

∑

1≤i≤lg `(G)

∑

v∈(VG∗

i
\VGi+1

)(
∑

u∈nbin(v,G∗

i
) labelin (u) +

∑

u∈nbout(v,G
∗

i
) labelout(u))). Both C1 andC2 depend on the

characteristics of the input DAG, especially the vertex degree.
BothC1 andC2 can be significantly reduced by removing the set
of high-degree verticesH , which takesO(|H |(|VGi

| + |EGi
|))

time to removeH and addh ∈ H to the labels of other vertices as
discussed in Section 6.

8. EXPERIMENTAL EVALUATION
We implemented our method,TF-label, in C++ (all source codes

will be made available). We compare TF-label with the follow-
ing state-of-the-art methods for processing reachabilityqueries:
PathTree [19], GRAIL [27], PWAH8 [24], ScaPathTreeand
ScaGRAIL. ScaPathTree and ScaGRAIL are the application of
PathTree and GRAIL in theSCARAB framework [18], i.e., first
computing the backbone of the input DAG and then applying
PathTree or GRAIL for reachability querying (more details in Sec-
tion 1). Though in theory any existing method can be applied in
SCARAB, we were not able to do so for PWAH8 and TF-label due
to unfamiliarity with their system. ScaPathTree and ScaGRAIL
were provided by the authors of [18].

All source codes of the methods we compare with are the latest
version provided by their authors, and all were implementedin C++
and compiled using the same gcc compiler as TF-label. We ran
all experiments on a computer with an Intel 3.3 GHz CPU, 16GB
RAM, and running Ubuntu 11.04 Linux OS.

8.1 Performance on Real Datasets
We first evaluate the performance of our method on real-world

datasets from a wide spectrum of domains. As shown below, the

first set of 7 datasets are from 3 different domains, while thesecond
set of 5 datasets are from 5 different domains. We want to exam-
ine the differences in the spectrum of datasets that our method can
handle versus those of existing methods.

Real datasets.We used the following 7 large real datasets that are
used in [18, 27] for scalability test:citeseer, citeseerx and
cit-patent (patent) are citation networks, in which non-leaf
vertices have an average out-degree of 10 to 30;go-uniprot is
the joint graph of Gene Ontologyterm and the annotations from the
UniProt database (www.uniprot.org), which is the universal protein
resource;uniprot22m, uniprot100m and uniprot150m
are the subsets of the complete RFG graph of UniProt.

We also used 5 real datasets from Stanford Large Network
Dataset Collection. We selected one large directed graph from
each of the following categories:email-EuAll (email) from
communication networks,soc-LiveJournal1 (LJ) from so-
cial networks, p2p-Gnutella31 (p2p) from Internet peer-
to-peer networks,web-Google (web) from Web graphs, and
wiki-talk (wiki) from Wikipedia networks. In addition,
cit-patent from citation networks is already included in the
first 7 graphs. Detailed descriptions of the datasets can be found in
(snap.stanford.edu/data).

Table 4 lists the number of vertices and edges in the originaldi-
rected graph,G, as well as in the DAGG of G, respectively. We do
not show|VG | and |EG | for the datasets obtained from [27] since
the authors did not provide these numbers. Note that existing meth-
ods for reachability querying assume that the input is a DAG.We
also show the topological level number ofG, `(G), as well as the
average degree of the vertices (denoted bydavg ) in G.

Table 4: Real datasets (K= 103)

Dataset |VG | |EG| |VG| |EG| `(G) davg

citeseer − − 694K 312K 13 0.45
citeseerx − − 6540K 15011K 59 2.30
go-uniprot − − 6968K 34770K 21 4.99
patent − − 3775K 16519K 32 4.38
uniprot22m − − 1595K 1595K 4 1.00
uniprot100m − − 16087K 16087K 9 1.00
uniprot150m − − 25038K 25038K 10 1.00

email 265K 420K 231K 223K 7 0.97
LJ 4848K 68994K 971K 1024K 24 1.05
p2p 63K 148K 48K 55K 14 1.14
web 876K 5105K 372K 518K 34 1.39
wiki 2394K 5021K 2282K 2312K 8 1.01

Indexing Performance. We first report indexing performance re-
sults, but remark that (online) query performance should bethe
more important performance indicator, provided that (offline) in-
dexing performance is reasonable. We report the index construc-
tion time (total elapsed time in seconds) in Table 5. The shortest
time for each dataset is highlighted inbold.

For the datasets from [27], GRAIL has the best performance and
the performance of ScaGRAIL is close to that of GRAIL. The in-
dexing time of TF-label is comparable to that of PWAH8 for most
datasets. Forciteseerx and patent, TF-label is 135 and
8.5 times faster than PWAH8. Compared with ScaPathTree, our
method is from a few times to 74 times faster. ScaPathTree was
not able to obtain the results forciteseerx andpatent, while
PathTree can only run onciteseer.

For the datasets from the Stanford Collection, TF-label is the
best for indexing all the datasets. TF-label is about twice faster than



Table 5: Index construction time (in sec)

TF-label PathTree ScaPathTree GRAIL ScaGRAIL PWAH8

citeseer 0.73 26.76 1.60 0.79 0.98 0.76
citeseerx 63.60 − − 7.80 15.43 8597.02
go-uniprot 47.49 − 724.67 13.95 16.60 52.46
patent 162.44 − − 7.24 36.23 1380.76
uniprot22m 2.27 − 10.26 2.10 2.09 2.09
uniprot100m 40.29 − 1301.71 27.25 28.94 24.10
uniprot150m 55.48 − 4107.77 43.86 48.22 41.07
email 0.10 − 0.61 0.26 0.26 166.98
LJ 0.55 − 31.93 1.08 1.17 −
p2p 0.03 2.16 0.13 0.04 0.04 1.40
web 0.40 − 11.12 0.41 0.62 1559.91
wiki 0.96 − − 2.54 2.35 −

GRAIL and ScaGRAIL on average, and up to orders of magnitude
faster than PWAH8, PathTree and ScaPathTree. We note that we
did not specifically pick these datasets, but rather simply selected
one large graph from each category of directed graphs (we didleave
out two categories because the DAGs of these graphs are too small,
for which most existing methods will be efficient enough). There-
fore, the result shows that our method is able to perform wellfor
graphs from various domains.

Table 6 reports the index size (in MB). For the 3uniprot
datasets, TF-label is from about 3 to 10 times smaller than all other
methods. Forciteseer, TF-label is only worse than PathTree,
but much better than the other methods. But forciteseerx,
patent andgo-uniprot, TF-label is much larger. However,
for the second set of 5 datasets, TF-label is much smaller in all
cases exceptp2p for which it is larger than PathTree.

Table 6: Index or label size (in MB)

TF-label PathTree ScaPathTree GRAIL ScaGRAIL PWAH8

citeseer 2 1 28 11 28 7
citeseerx 1524 − − 100 285 149
go-uniprot 431 − 403 106 387 244
patent 4732 − − 58 206 5334
uniprot22m 6 − 68 24 67 19
uniprot100m 77 − 685 246 673 209
uniprot150m 132 − 1071 382 1049 349

email 0.9 − 10 4 10 2
LJ 4 − 41 15 41 −
p2p 0.2 0.1 2 0.7 2 0.2
web 3 − 16 6 16 4
wiki 9 − − 35 95 −

Overall, the results of indexing time and index size show that our
method is very competitive in indexing performance, especially for
the datasets from the Stanford Collection. In fact, only GRAIL and
ScaGRAIL are able to beat TF-label for indexing a few datasets.
However, next we will show that GRAIL and ScaGRAIL are sig-
nificantly slower in query processing than TF-label for all datasets.

Query Performance. We randomly generate 1 million queries
for each dataset and Table 7 reports the total time taken to run the
queries (the shortest time for each dataset is highlighted in bold).

The result clearly shows that TF-label outperforms all other
methods in all cases except forp2p, for which TF-label is com-
parable with PWAH8. ScaGRAIL can run on all datasets, but is
from about 2 to 32 times slower than TF-label. ScaPathTree and
PWAH8 are also significantly slower than TF-label, and they can-
not scale to run on a number of datasets. GRAIL is up to orders
of magnitude slower than TF-label and PathTree cannot scalefor
processing most of the datasets.

Another important feature of TF-label is that it has stable good-
performance for all datasets, unlike the other methods which are

Table 7: Total query processing time (in milli-sec)
TF-label PathTree ScaPathTree GRAIL ScaGRAIL PWAH8

citeseer 6 98 85 174 63 112
citeseerx 160 − − 18861 684 187
go-uniprot 48 − 142 365 109 449
patent 419 − − 6726 1240 14593
uniprot22m 34 − 115 259 97 210
uniprot100m 79 − 198 407 155 275
uniprot150m 95 − 862 433 183 294

email 14 − 124 6715 93 146
LJ 51 − 207 3741919 999 −
p2p 12 22 36 9192 24 11
web 49 − 196 436682 1548 142
wiki 39 − − 457529 139 −

slow for processing some datasets. For example, ScaGRAIL is
particularly slow in processingweb, for which ScaPathTree and
PWAH8 perform reasonably well. Similarly, ScaPathTree is slow
in processinguniprot150m and PWAH8 is slow in processing
patent. Such a stable performance from TF-label is important
for handling datasets from various application domains.

We also emphasize that TF-label can be further applied in the
SCARAB framework, as do ScaGRAIL and ScaPathTree, to im-
prove the performance. Thus, our result is impressive sinceTF-
label even significantly outperforms the existing methods applied
in SCARAB. In the next experiment, we show that TF-label scales
well where all existing methods, including SCARAB, cannot scale,
for both indexing and querying.

8.2 Scalability and Effects of Various Graph
Properties

We use synthetic datasets to control the different properties of
the DAG graph and hence assess their effects on the performance
of our method, for both efficiency and scalability.

Synthetic datasets.We consider three important properties of the
DAG graph: (1)the number of vertices(VG), (2) the average vertex
degree(davg ), and (3)the number of topological levels (`(G)). We
generate three categories of datasets as follows (letM = 106):

(C1) Fix davg = 3 and`(G) = 7, then: setVG = 5M , 10M ,
20M , 40M and80M , respectively.

(C2) FixVG = 1M and`(G) = 7, then: setdavg = 10, 20, 30,
40 and50, respectively.

(C3) FixVG = 1M anddavg = 3, then: set̀ (G) = 3, 7, 15, 31
and63, respectively.

For the generation of a DAGG with |VG| vertices,|`(G)| levels,
and average degreedavg , we first create|VG| vertices and distribute
them to the|`(G)| levels. Then, for each vertexv at each leveli,
where1 < i < |`(G)|, we add one edge from a vertex selected
randomly at leveli − 1 to v, and add edges fromv to (davg − 1)
randomly selected vertices at levelj > i in G. To test query per-
formance, we randomly generate 1 million queries for each dataset.

Effect of number of vertices. Figure 5 reports the performance
results of processing the (C1) datasets, where we vary the number
of vertices|VG| from 5M to 80M (M = 106).

For index construction, TF-label is significantly faster than all
other methods except GRAIL. Compared with GRAIL, TF-label
is slower when|VG| ≤ 20M , but is 3 times faster when|VG| ≥
40M . When |VG| = 80M , all other methods failed (we termi-
nated GRAIL after it took two orders of magnitude longer time
than ours). PWAH8 could only handle5M vertices, while PathTree
failed even with5M vertices (thus not shown in Figure 5). More-
over, ScaPathTree and ScaGRAIL also cannot scale well, since
SCARAB failed to construct the backbone for such large datasets.



0 5 10 20 40 80
0

200

400

600

800

1000

In
de

xi
ng

 ti
m

e 
(in

 s
ec

)

 

 

TF−label
ScaPathTree
GRAIL
ScaGRAIL
PWAH8

0 5 10 20 40 80
0

500

1000

1500

2000

2500

3000

In
de

x 
si

ze
 (i

n 
M

B)

 

 

TF−label
ScaPathTree
GRAIL
ScaGRAIL
PWAH8

0 5 10 20 40 80
10

2

10
3

10
4

10
5

10
6

10
7

Q
ue

ry
 ti

m
e 

(in
 m

se
c)

 

 

TF−label
ScaPathTree
GRAIL
ScaGRAIL
PWAH8

Figure 5: Performance on varying number of vertices: from5M to 80M (M = 106)

10 20 30 40 50
10

0

10
1

10
2

10
3

10
4

In
de

xi
ng

 ti
m

e 
(in

 s
ec

)

 

 

TF−label
GRAIL
ScaGRAIL
PWAH8

10 20 30 40 50
10

1

10
2

10
3

10
4

10
5

In
de

x 
si

ze
 (i

n 
M

B)

 

 

TF−label
GRAIL
ScaGRAIL
PWAH8

10 20 30 40 50
10

2

10
3

10
4

10
5

10
6

10
7

Q
ue

ry
 ti

m
e 

(in
 m

se
c)

 

 

TF−label
GRAIL
ScaGRAIL
PWAH8

Figure 6: Performance on varying average degree: from10 to 50

3 7 15 31 63
10

0

10
1

10
2

10
3

10
4

In
de

xi
ng

 ti
m

e 
(in

 s
ec

)

 

 

TF−label
PathTree
ScaPathTree
GRAIL
ScaGRAIL
PWAH8

3 7 15 31 63
10

1

10
2

10
3

10
4

In
de

x 
si

ze
 (i

n 
M

B)

 

 

TF−label
PathTree
ScaPathTree
GRAIL
ScaGRAIL
PWAH8

3 7 15 31 63
10

1

10
2

10
3

10
4

10
5

10
6

Q
ue

ry
 ti

m
e 

(in
 m

se
c)

 

 

TF−label
PathTree
ScaPathTree
GRAIL
ScaGRAIL
PWAH8

Figure 7: Performance on varying topological level number:from (22 − 1) to (26 − 1)

The index size of TF-label is about twice that of GRAIL, and
is 1.5 to 3 times smaller than that of the other methods (for the
datasets they can handle).

For query processing, TF-label is again significantly faster than
all the other methods. Moreover, we also see that GRAIL is the
slowest and is over an order of magnitude slower than TF-label.
When|VG| = 40M , GRAIL is 6400 times slower than TF-label.

Overall, TF-label is shown to be much more scalable than the
existing methods with the increase in the number of vertices, i.e.,
also in the graph size. The results also show that the indexing per-
formance of TF-label scales linearly with the increase in the graph
size, but remains reasonably stable in query performance. The rea-
son that query time does not increases much when the graph size
increases is because the average label size remains stable,which
can be observed as the index size increases only linearly.

Effect of average vertex degree.Figure 6 reports the performance
results of processing the (C2) datasets, where we vary the average
vertex degree from10 to 50.

The results show that both PathTree and ScaPathTree cannot
scale to process datasets with average degree of even 10 (thus not
shown in Figure 6). PWAH8 can only process datasets with aver-
age degree up to 20, and is up to two orders of magnitude worse
than TF-label in both indexing and query performance.

TF-label is about twice faster than ScaGRAIL but is significantly
slower than GRAIL in indexing, while the index size of TF-label is
also much larger. However, for the more critical online query per-
formance, both ScaGRAIL and GRAIL are too slow. ScaGRAIL is
about two orders of magnitude slower and GRAIL is three orders

of magnitude slower than TF-label in query processing for most of
the cases.

As an index without reasonable query performance is not really
useful, we can conclude that TF-label is the only method shown
to be scalable with the increase in average vertex degree. TF-label
scales linearly when average degree increases.

Effect of number of topological levels. Figure 7 reports the per-
formance results of processing the (C3) datasets, where we vary
the number of topological levels from(22 − 1) to (26 − 1) (which
means thattf(G) ranges from 2 to 6).

For index construction, TF-label is from a few times to 60 times
faster than PathTree, ScaPathTree, and PWAH8. TF-label is faster
than ScaGRAIL for the level number up to 15, but is slower than
both ScaGRAIL and GRAIL in other cases. But in these cases Sca-
GRAIL and GRAIL are too slow in query processing. The index
size also shows a similar trend.

For query processing, TF-label significantly outperforms all the
other methods in all cases. Especially when the level numberin-
creases to 15 or more, TF-label is an order to two orders of magni-
tude faster than the other methods.

The results also show that TF-label scales roughly linearlywhen
the level number increases, while the other methods scale poorly
especially for query processing.

9. RELATED WORK
A reachability query can be answered inO(|VG| + |EG|) time

by a BFS or DFS in the input graphG, or in O(1) time by pre-



computing the transitive closure [22] inO(|VG||EG|) time. Exist-
ing methods all strive to attain high online query efficiencywith a
low offline index construction cost.

The full transitive closure is often too large and hence various la-
beling or compression schemes have been processed to reducethe
label size [1, 5, 6, 17, 19, 24, 25]. Although these methods achieve
reasonable query efficiency, most of them have a high indexing cost
and are not efficient enough for processing large graphs. As we dis-
cussed in Section 1, a backbone structure was proposed as a general
framework [18] on which existing methods such as [19] can be ap-
plied to handle larger graphs. However, we show in Section 8 that
the performance of our method is significantly better than the state-
of-the-art methods [19, 27] applied in the backbone framework.

There is another category of methods that construct vertex labels
by traversing the graph only [4, 23, 27], and hence have a relatively
low index construction cost. While these methods can efficiently
answer a subset of queries that are supported by the labels, in gen-
eral a much larger subset of queries are not covered by the index
and are very costly to process as it requires graph traversal.

There are also a number of methods [2, 3, 10, 11, 12, 20, 21]
that can be considered as improvements over the 2-hop labels[14],
which constructslabel in (v) andlabelout(v) for each vertexv and
queries are answered as in Equation (1). Unlike our method, these
methods are all very costly to construct and cannot scale to large
graphs.

Due to space limit, we cannot discuss every method in greater
details. More detailed discussions on the above existing methods
can be found in [6, 18, 27, 28].

This work is inspired by the work [16], where a hierarchical
structure is proposed for processing shortest path distance queries.
However, the application of the topological structure and the design
of topological folding are unique. In particular, our TF structure
has at mostlg `(G) levels, which is small for real graphs, while the
hierarchical structure in [16] can have many levels.

10. CONCLUSIONS
We introduced a novel and highly effective indexing scheme,

TF-label, for reachability querying in large graphs. Basedon an
extensive set of experimental studies, we showed that TF-label has
a very stable high performance in query processing, which istyp-
ically an order of magnitude faster than the best previous methods
[18, 19, 24, 27], while TF-label also enjoys competitive indexing
performance. To our knowledge TF-label is the only truly scalable
method since known scalable methods suffer from slow query re-
sponse time for graphs with large sizes, large average degrees or
large number of topological levels, while TF-label stays efficient.
The ability to handle a wide range of different graph properties also
demonstrates the suitability of TF-label for processing graphs from
various application domains.

A useful extension of the current work is to develop I/O-efficient
algorithms to index graphs that cannot fit in main memory. Meth-
ods developed in [7, 13, 26] may be applied to achieve this task.

11. REFERENCES

[1] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient
management of transitive relationships in large data and
knowledge bases. InSIGMOD Conference, pages 253–262,
1989.

[2] R. Bramandia, B. Choi, and W. K. Ng. On incremental
maintenance of 2-hop labeling of graphs. InWWW, pages
845–854, 2008.

[3] J. Cai and C. K. Poon. Path-hop: efficiently indexing large
graphs for reachability queries. InCIKM, pages 119–128,
2010.

[4] L. Chen, A. Gupta, and M. E. Kurul. Stack-based algorithms
for pattern matching on DAGs. InVLDB, pages 493–504,
2005.

[5] Y. Chen and Y. Chen. An efficient algorithm for answering
graph reachability queries. InICDE, pages 893–902, 2008.

[6] Y. Chen and Y. Chen. Decomposing DAGs into spanning
trees: A new way to compress transitive closures. InICDE,
pages 1007–1018, 2011.

[7] J. Cheng, Y. Ke, S. Chu, and C. Cheng. Efficient processing
of distance queries in large graphs: a vertex cover approach.
In SIGMOD Conference, pages 457–468, 2012.

[8] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding
maximal cliques in massive networks by h*-graph. In
SIGMOD Conference, pages 447–458, 2010.

[9] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding
maximal cliques in massive networks.ACM Trans. Database
Syst., 36(4):21, 2011.

[10] J. Cheng, Z. Shang, H. Cheng, H. Wang, and J. X. Yu.
K-reach: Who is in your small world.PVLDB,
5(11):1292–1303, 2012.

[11] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast
computation of reachability labeling for large graphs. In
EDBT, pages 961–979, 2006.

[12] J. Cheng, J. X. Yu, X. Lin, H. Wang, and P. S. Yu. Fast
computing reachability labelings for large graphs with high
compression rate. InEDBT, pages 193–204, 2008.

[13] S. Chu and J. Cheng. Triangle listing in massive networks.
TKDD, 6(4):17, 2012.

[14] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels. InSODA,
pages 937–946, 2002.

[15] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to algorithms. MIT press, 2001.

[16] A. W.-C. Fu, H. Wu, J. Cheng, and R. C.-W. Wong. Is-label:
an independent-set based labeling scheme for point-to-point
distance querying.PVLDB.

[17] H. V. Jagadish. A compression technique to materialize
transitive closure.ACM Trans. Database Syst.,
15(4):558–598, 1990.

[18] R. Jin, N. Ruan, S. Dey, and J. X. Yu. Scarab: scaling
reachability computation on large graphs. InSIGMOD
Conference, pages 169–180, 2012.

[19] R. Jin, N. Ruan, Y. Xiang, and H. Wang. Path-tree: An
efficient reachability indexing scheme for large directed
graphs.ACM Trans. Database Syst., 36(1):7, 2011.

[20] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a
high-compression indexing scheme for reachability query.In
SIGMOD Conference, pages 813–826, 2009.

[21] R. Schenkel, A. Theobald, and G. Weikum. Hopi: An
efficient connection index for complex xml document
collections. InEDBT, pages 237–255, 2004.

[22] K. Simon. An improved algorithm for transitive closureon
acyclic digraphs.Theor. Comput. Sci., 58(1-3):325–346,
1988.

[23] S. Trißl and U. Leser. Fast and practical indexing and
querying of very large graphs. InSIGMOD Conference,
pages 845–856, 2007.

[24] S. J. van Schaik and O. de Moor. A memory efficient



reachability data structure through bit vector compression. In
SIGMOD Conference, pages 913–924, 2011.

[25] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu. Dual
labeling: Answering graph reachability queries in constant
time. In ICDE, page 75, 2006.

[26] J. Wang and J. Cheng. Truss decomposition in massive
networks.PVLDB, 5(9):812–823, 2012.

[27] H. Yildirim, V. Chaoji, and M. J. Zaki. Grail: Scalable
reachability index for large graphs.PVLDB, 3(1):276–284,
2010.

[28] J. X. Yu and J. Cheng. Graph reachability queries: A survey.
In Managing and Mining Graph Data, pages 181–215. 2010.


