
Privacy-Preserving Classification for Data Streams

Yabo Xu, Ke Wang
School of Computing Science

Simon Fraser University

{yxu,wangk}@cs.sfu.ca

Ada Wai-Chee Fu
Department of Computer Science

The Chinese University of Hong Kong

adafu@cse.cuhk.edu.hk

Rong She, Jian Pei
School of Computing Science

Simon Fraser University

{rshe, jpei}@cs.sfu.ca

ABSTRACT
In a wide range of applications, multiple data streams need to be
examined together in order to discover trends or patterns existing
across several data streams. One common practice is to redirect
all data streams into a central place for joint analysis. This
“centralized” practice is challenged by the fact that data streams
often are private in that they come from different owners. In this
paper, we focus on the problem of building a classifier in this
context and assume that classification evolves as the current
window of streams slides forward. This problem faces two major
challenges. First, the many-to-many join relationship of streams
will blow up the already fast arrival rate of data streams. Second,
the privacy requirement implies that data exchange among owners
should be minimal. These considerations rule out all classification
methods that require producing the join in the current window.
We show that Naïve Bayesian Classification (NBC) presents a
unique opportunity to address this problem. Our main
contribution is to adopt NBC to solve the classification problem
for private data streams.

1. INTRODUCTION
With today’s information explosion, data not only are stored in
large amount but also grow rapidly over time. Data streams are
such examples, including internet traffic streams, stock trading
streams, and telephone call streams. Data streams are
characterized as being unbounded, continuously arriving at a high
rate, and being scanned once [2]. To benefit from the information
and knowledge contained in data streams, often several related
data streams need to be examined together to discover trends or
patterns that exist across different data streams. For example,
stock streams and news streams are related, traffic report streams
and car-accident streams are related, sensor readings of different
types are related. In this paper, we focus on building classification
models from such data. Our insight is that classification patterns

often are jointly determined by the co-occurrence of certain
conditions in several related streams. We illustrate this point by a
simplified example.

1.1 Motivating Example
One application involving data streams is to monitor financial or
trading transactions for suspicious behaviors [38]. In stock
markets, “favorable trading” refers to stock transactions that are
favorable to the engaging party, i.e., selling before a stock
plunges or buying before a stock goes up. In order to build
classification models to identify “favorable trading”, the stock
trading stream that records all trading transactions must be
examined. However, stock transactions are not isolated or
independent events; they are related to other data streams, e.g.,
phone calls between dealers and managers/staffs of public
companies. Thus it is necessary to consider related data streams
together. For example, a classification algorithm may need to look
at the following related data:

Trading stream: T (τ, Dealer, Type, Stock, Class)
Phone call stream: P (τ, Caller, Callee)
Company table: C (Company, Stock)
Person table: S (Name, Org)

where τ is the timestamp, “Type” is either “sell” or “buy”,
“Class” (“yes”/“no”) refers to the class label of being favorable
trading or not. To compute the training set, a SQL query can be
used to extract information from the above data as follows:

 SELECT *
 FROM P, S, T, C
 WHERE S.Name=P.Caller AND P.Callee=T.Dealer
 AND P.τ<T.τ AND T.Stock=C.Stock

BBBRay

CCCDennis

AAAAdams

OrgName

S
AlbertRay15:31
AlbertDennis14:19
SelinaAdams12:01

PeterDennis15:36

JackAdams9:30

CalleeCallerτ

P

YesCBuyAlbert15:57
NoCSellPeter16:42

No
Yes
Yes

Class

BSellAlbert15:40
A
A

Stock

SellSelina12:30
SellJack9:38

TypeDealerτ

T

CCCB

BBBC

AAAA

CompanyStock

C

BBBCBuyAlbertAlbertCCCDennisNo

BBBCSellPeterPeterCCCDennisNo

CCCBSellAlbertAlbertBBBRayYes

CCCBSellAlbertAlbertCCCDennisNo

Albert

Selina
Jack

Callee

Albert

Selina
Jack

Dealer

Buy

Sell
Sell

Type

C

A
A

Stock

BBB

AAA
AAA

Company

AAAAdamsYes
AAAAdamsYes

BBB

Org

Yes

Class

Ray

Caller

Table 1. Related streams / tables Table 2. The join stream

Essentially, this query performs a join on the related data and
each joined tuple represents a connection between a phone call
and the trading ensued from this call. The join result is then used
to train the classifier.

Table 1 shows a snapshot of data. The join relationship is
indicated by the arrows connecting the join attributes. Note that
the join between P and T is “many-to-many”. For example,
“Albert” was called twice and traded twice, generating four tuples
in the join stream in Table 2 (The timestamps for each join record
are ignored because of the space.), the rule “Org=Company →
Class=Yes” holds in 3 out of 4 tuples that have “Org=Company”,
i.e., with 75% confidence. This suggests that after getting a call,
the trading on the caller’s company stock tends to be more
favorable.

This example illustrates that classification of certain behaviors
(i.e., favorable trading) depends on information contained in
several correlated streams and examining such streams together
likely produces more accurate classifiers than examining any
single input stream alone. The join is a common operation to
combine several streams into a single stream and the training data
for classification is defined by this “join stream”. Moreover,
classification rules evolve as data streams evolve. New favorable
trading rules may emerge as a reaction to evade from being
identified by existing rules. In order to capture this change, the
classifier needs to adapt quickly to the changed data distribution.
A solution to this problem faces two major challenges.

 Privacy preservation. In the above example, since trade and
phone call streams involves trading secrets and individual’s
privacy, apparently neither the trading company nor the phone
service company is willing to disclose their local sensitive data.
The common approach of redirecting all streams into a central
place immediately violates this privacy constraint. In the
literature, privacy-preserving data mining and stream data
mining have been studied separately. The traditional privacy-
preserving data mining techniques focus on static data and are
not applicable to data streams with unbounded data size and

continuous arrival of new data. On the other hand, most prior
work on stream data mining assumes either a single stream or
several streams but no privacy issue, and focuses on the
processing speed of stream data. More details in Section 2.

 Blow-up of the join stream. As input streams arrive in a fast
pace, the classifier must evolve quickly when new structures
emerge and old ones are out-of-date. However, the join of
multiple input streams is an expensive operation, in fact, much
slower than the arrival rate of input streams. Furthermore, the
“many-to-many” join relationship, as shown in Table 1, could
generate the result join stream that is much larger than input
streams. Any method that explicitly generates the join stream
will suffer from thid blow-up of data arrival rates and is unlikely
to be able to keep pace with the incoming source streams.

1.2 Contributions and Paper Outline
We consider several private data streams owned by different sites.
One data stream, called target stream, contains class labels. The
current window of the training data is defined by the join of input
streams in their current window. Such joins are called sliding-
window join [2] and the join result defines a new stream called
“join stream”. The specification of window can be either tuple-
based or time-based [2]. As the window of input streams slides
forward, so does the window of the join stream and the classifier
must be updated to adapt to the change of window. In practice,
only some portion of the data is labeled whereas the remaining is
not. For each window, the unlabeled portion will be classified by
the classifier built in the previous window, and at the same time,
the labeled portion will be used to train the classifier in the
current window [31].

Due to the privacy requirement and blow-up of join, however, the
join stream cannot be generated explicitly. Hence, the problem we
study is to build and update the classifier based on the never-
generated join stream, given several private input streams. The
construction and update of the classifier must not reveal private
information to other sites. This problem is referred to as the

secure join stream classification (Secure-JSC) hereinafter.
Existing classification methods [19][4][31] cannot be applied to
the Secure-JSC problem because they deal with a single stream
and requires the join stream to be explicitly given.

Our insight is that the independence assumption of Naïve
Bayesian Classifier (NBC) [12] provides a unique opportunity to
address the requirements for Secure-JSC: for a given class label,
variables are assumed to be independent of each other. Research
shows that NBC is reliable even when this assumption is violated
[11][17][16]. The reason for this reliability is that the most likely
class label predicted by NBC is typically correct though the
estimated probability may be distorted by the independence
assumption. In other words, the top ranked class label often is
correct though the estimated probability for ranking class labels
was distorted. This reliability has been echoed by the popularity
and success of NBC in both research works and practical
applications. For most data stream applications, some degree of
inaccuracy is tolerable, especially so because the data arrive very
fast and there is only the time to scan the data once.

To adopt NBC to Scure-JSC problem, however, we must compute
the information required by NBC on the join stream without
generating the join and exchanging private information across
sites. Our insight is that this information can be obtained by
computing some “blow-up summary” from examining each input
stream and exchanging this summary with other sites. The “blow-
up summary” can be computed by examining each input tuple in
the current window twice, independent of the number of tuples it
joins in other streams. The benefit of this approach is twofold:
eliminate the need of collecting private data streams in a central
place and avoid the expensive join. Though we consider NBC, the
idea of “blow-up summary” is applicable to other classification
algorithms that require similar statistics such as decision trees.

The rest of this paper is organized as follows. In Section 2, we
review related works. In Section 3, we define the problem and
discuss core concepts of NBC. In Section 4, we present our
algorithm. We evaluate our method in Section 5. Section 6
concludes the paper.

2. RELATED WORKS
Privacy preserving data mining was first introduced in [25] and
[26]. These works opened up a rapidly growing area and various
privacy preservation techniques have emerged since then. Most
works on privacy preserving data mining assume static data. On
the other hand, there is a large body of works on stream data
management and mining. But this body of works does not deal
with privacy issues. The novelty of our work lies in addressing
privacy preservation, data streams and the training data defined
by a general join of several streams. Below, we focus on related
works which address one ore more of these aspects.

In data stream management [2], sliding-window join is proposed
to answer queries involving the join of multiple data streams, such
as the join size, sum [1] [9], join-distinct [14]. Their focus was on
how to compute these statistics of the join under resource
constraints and techniques such as sampling [6] or load-shedding
[5] [18] are used to reduce the cost of join. These works assume
either a single stream or multiple streams but no privacy issue. In
the Secure-JSC problem, as we explained in the previous section,

it is prohibited to first compute the join of multiple streams and
then build the classifier. Thus these techniques cannot be applied.

Most stream mining algorithms consider a single stream and
simple statistics such as average and standard deviation.
Classification on data streams was considered in
[10][13][19][4][31]. Other mining problems that involve multiple
streams are clustering [15][3], correlation analysis [20], sequential
patterns [7]. None of these works consider the privacy issue.
Neither do they involve a general join among streams; thus, they
do not deal with the blow-up of data arrival rates caused by a
many-to-many join.

[22] presents a secure construction of decision tree classifiers
from vertically partitioned data, where the join is given by the
one-to-one relationship implied by the common key identifier for
all partitions. This is not applicable to the general many-to-many
join relationship. Recently, [21] proposed a secure construction
for decision tree classifiers over distributed tables with the general
many-to-many join relationship. Both works consider static data,
not stream data.

There are only a few studies that cover both data streams and
privacy preservation. [36][37] focus on the problem of private
search over data streams. Their goal is to protect the privacy of
the query over data stream, not the data stream itself. A more
related work is [23]. It preserves the privacy of data streams by
adding randomized noises. No join relationship is involved among
streams. This approach cannot be applied to the Secure-JSC
problem since the data obfuscation does not preserve the join
relationship among streams. The condensation approach in [33]
could be applied to data streams because of its support for
incremental update. Since anonymized records are randomly
generated in a way to preserve aggregated statistics, it is not clear
that this method could preserve the join relationship if applied to
multiple data streams. All these works do not consider the
classification problem.

3. PROBLEM STATEMENT
3.1 Secure Join Stream Classification
Consider n data streams S1, …, Sn, distributed among n sites.
Secure Join stream classification refers to the problem where a
classifier needs to be built such that (1) the training instances are
defined by a sliding-window join over all data streams; (2) no site
learns private information about other data streams. The sliding-
window join over S1, …, Sn is specified by a join condition, a
window specification and window update specification [2][32].

In this paper, we consider a join condition in the form of a
conjunction of equality predicates Si.A=Sj.B (i≠j), where each of
Si.A and Sj.B, called join attributes, represents one or more
attributes from Si and Sj. Since Si.A and Sj.B are allowed to
contain more than one attribute, we need to consider at most one
predicate Si.A=Sj.B between each stream pair Si and Sj. In the join
graph, there is an edge between Si and Sj if there is a predicate
Si.A=Sj.B in the join condition. We consider join conditions for
which the join graph is connected and contains no cycle. Many
joins in practice are in fact acyclic, such as chain joins and star
joins over the star/snowflake schemas [34].

The window and update specification can be time-based or tuple-
based. Our method only depends on the set of tuples in the current

window, not on how the window is specified and updated. The
term “window” refers to the collection of current windows of all
input streams. One of S1,…,Sn, called target stream, contains the
class column. The task is to build a classifier each time the
window updates. This means that the classifier must be rebuilt
whenever the window on any input stream slides forward. The
speed of fastest-sliding window determines the rate of classifier
updates.

In the current window, the training set is the set of tuples defined
by the sliding-window join. Importantly, the training set is not
explicitly given, rather, is specified by the input streams and the
sliding-window join. Some tuples in the input streams do not
contribute any tuple in the join. Such tuples are dangling. We do
not assume that dangling tuples are removed beforehand; in fact,
the removal of dangling tuples is not straightforward due to the
privacy requirement.

Privacy Model. All sites are assumed to be honest, curious, but
not malicious [35]. Intuitively, this means that a site may collect
intermediate information received from other sites, but will follow
the specified computation as expected. Our privacy model can be
described by three types of attributes in each window:

 Non-private class column: the class column can be revealed to
all sites. This assumption was made previously in [22]. When
all sites collaborate to build a classifier, we assume these sites
are willing to share the information on class labels

 Semi-private join attributes: for a join predicate Si.A=Sj.B, the
join attributes Si.A and Sj.B, are semi-private in that the sites
of Si and Sj are willing to share their join values that they both
have, i.e., Si.A∩Sj.B, but not any other join values, i.e.,
(Si.A∪Sj.B)-(Si.A∩Sj.B). This model was adopted in the
literature for secure join and intersection in [24] .

 Private non-join attributes: the values of all non-join attributes
must not be revealed to any other sites.

In short, any join values known to the joining sites are not private,
but everything else is. We shall use this privacy model to define
our notion of privacy-preserving.

3.2 Naïve Bayesian Classifiers
Consider a single table T (X1,…, Xn, Class). “Class” denotes the
class column whose domain is a collection of class labels {C1,…,
Cm}. Xi is a categorical variable. To classify a tuple x=(x1 ,…,
xn), the Naïve Bayesian Classifier (NBC) assigns x to the class Ci
that maximizes the conditional class probability P(Ci|x) based on
the following maximum a posteriori (MAP) hypothesis:

)()|(maxarg)|(maxarg ii
ClassC

i
ClassC

CPCxPxCP
ii ∈∈

=

where P(Ci) is the class probability and P(x|Ci) is the conditional
probability of x given the class label Ci. Under the independence
assumption that variables X1, …, Xn are independent given the
class label, NBC estimates P(x|Ci) by

∏
=

=
nj

iji CxPCxP
..1

)|()|(.

Once P(xj|Ci) and P(Ci) are collected from the training data, NBC
is able to assign a class label to a new tuple x. NBC requires the
variables Xi to be categorical (having a small number of distinct

values). Continuous attributes can be first discretized (such as
equi-width or equi-depth binning) into a small number of intervals
before applying NBC.
To compute P(xj|Ci) and P(Ci), we only need to compute the class
count matrix of the form (xk, <N1,…, Nm>) for each distinct value
xk of Xj, where Nj (1≤j≤m) is the number of tuples that has the
value xk and the class label Cj. This data structure has a size
proportional to the number of distinct values in Xj.
The above discussion assumes a single table T. For Secure-JSC, T
will be the join result of the input streams S1, …, Sn in the current
window. Generating T would violate the privacy constraint. The
challenge is to compute P(xj|Ci) and P(Ci) on the join T without
generating T. In the next section, we present such a method.

4. OUR APPROACH
We assume that the current window of each input stream can fit in
the local memory. The join relationship among streams forms an
acyclic join graph, which is a rooted tree. Any stream may be
regarded as the root. As our method involves propagation of
information along the edges of the tree, we call this tree
propagation tree.
Let us consider the site for an input stream Si. Instead of
generating the join stream, the site maintains an entry of (Cls,
Count) for each tuple t in the current window of Si. Cls is a class
vector in the form of <N1,…, Nm> where m is the number of
classes and Ni records the number of occurrences of t associated
with the class label Ci in the never-generated join stream. Count is
the number of occurrences of t in the join stream. Intuitively, the
entry (Cls, Count) for t stores all information about t in the current
window of the join stream. Thus, instead of keeping every join
tuple involving t, we keep t only once and store its number of
occurrences and class labels in those occurrences. The size of this
data structure is proportional to the window size of Si.
Importantly, having Cls for each tuple t in the current window, the
site of Si is able to compute P(xj|Ci) and P(Ci) for the all values xj
in the current window. The challenge is computing Cls without
performing the join.
To compute the class vectors Cls, we propagate the “blow-up
effect” of join. The propagation proceeds in two phases. In the
phase of bottom-up propagation, Cls and Count are propagated
from the leaf nodes to the root. The propagation along an edge
blows up Cls and Count according to the join condition on the
edge. The detail will be presented shortly. On reaching the root,
the Cls for the root reflects the join of all input streams. Next, in
the phase of top-down propagation, we propagate Cls from the
root to all leaf nodes. When reaching all leaf nodes, Cls in each
stream have reflected the join effect of all streams. The algorithm
is distributed in that each node (site) in the tree performs the
propagation as described; there is no central place to collect all
data. This approach circumvents the computation of the sliding-
window join, thus addresses both the privacy and efficiency
requirements.
Now we explain the propagation at each site in details. First, we
extend arithmetic operations to class vectors Cls: given an
operator “○” and two Cls’s V1=<a1,…,am> and V2= <b1,…,bm>,
V1○V2= <a1○b1,…,am○bm>. For example, <4,3>/<2,3>=<2,1>.

1
1
1

Count

C1

C2

C1

Class

<1,0>
<0,1>
<1,0>
Cls

a3
b2
c1

J1τ

1

1

1
Count

e

d

e
J2

<0,0>

<0,0>

<0,0>
Cls

c3

b2

a1
J1τ

Stream S1

Stream S3

1
1
1

Count

<0,0>
<0,0>
<0,0>
Cls

d3
d2
e1

J2τ

Stream S2

1
1
1

Count

C1

C2

C1

Class

<1,0>
<0,1>
<1,0>
Cls

a3
b2
c1

J1τ

1
2
1

Count

e
d
e

J2

<1,0>
<0,2>
<1,0>
Cls

c3
b2
a1

J1τ

Stream S1

Stream S3

1
1
1

Count

<0,0>
<0,0>
<0,0>

Cls

d3
d2
e1

J2τ

Stream S2

c
b
a

J1

<1,0>
<0,1>
<1,0>
ClsAgg

Summary
from S1 to S3

d
e

J2

2
1

CountAgg

Summary
from S2 to S3

Figure 1. Example with 3 streams at initialization Figure 2. After bottom-up propagations

4.1 Initialization
Initially, for each tuple in the target stream, its Cls, <N1, …, Nm>,
is determined as follows: Ni=1 if the class label is Ci or otherwise
Nj=0. Count is initialized to 1. For any tuple in any other stream,
its Cls is initialized to all zeros <0,…,0> and Count is 1. This
initialization does not require a separate scan of streams and can
be combined with the bottom-up propagation discussed in the
following subsection.

Example 1. Consider an example with 3 streams with initial Cls
and Count shown in Figure 1. The join relationships are specified
by the arrows: S1 and S3 join on J1, and S2 and S3 join on J2. S1 is
the target stream containing two classes. S3 is the root of the
propagation tree. The root can be arbitrarily selected. We will
show later that choosing the input stream with largest window
size as the root can optimize the cost of scan of input streams.

4.2 Bottom-Up Propagation
This is the phase where the information of Cls and Count are
propagated from leaf nodes to the root in a bottom-up order.
Consider a parent node SP and a child node SC with the join
predicate SP.J1= SC.J2. The propagation from a child to the parent
is based on the following observation.

Observation 1: Given a tuple t in SP, if t joins with k tuples in SC,
t will occur k times in the join between SP and SC. These
occurrences can be represented by blowing up Cls and Count of t
using the aggregated Cls and Count of the k joining tuples in SC.
And if SP has n child nodes (n>1), the Cls and Count of t in SP
will be blown up by all children to reflect the join with all
children streams.

To explain Observation 1 precisely, we define the blow-up
summary from SC to SP as the set {(v, ClsAgg, CountAgg)}. v is a
distinct join value in SC, ClsAgg=∑Cls and CountAgg=∑Count,
where ∑ is over all tuples in Sc containing the value v. Since the
target stream can be anywhere in the tree, there are two cases in
the bottom-up propagation from children to a parent node SP:

- If the target stream is not in SP’s subtree, we blow up only
Count at SP since ClsAgg is always zero for all child nodes of
Sp (recall Cls is initialized to all-zero for a non-target
stream);

- If the target stream is in SP’s subtree, exactly one of the child
of SP has non-zero ClsAgg and we blow up both Cls and
Count at SP.

The following lemma gives the computation for blow-up
following the above observation and discussion .

Lemma 1. Assume that a parent node SP has n child nodes. For
each tuple t in SP with the join values v1,…,vn, where vi is the join
value between SP and the ith child, let (vi, ClsAggi, CountAggi)
denote the blow-up summary from ith child. Then

.)(.
..1
∏
=

=
nj

jCountAggCountt

If some ClsAggi (1≤i≤n) is non-zero,

∏
≠=

=
ijnj

ji CountAggClsAggClst
,..1

)(*)(.

Based on this lemma, to compute Count and Cls at SP, each child
node SC propagates its blow-up summary to the parent SP. After
receiving blow-up summaries from all child noes, SP scans its
tuples once and updates Count and Cls of each tuple t as in
Lemma 1. In addition, SP creates the blow-up summary from SP to
its own parent (if any) in the same scan.

Example 2. The bottom-up propagation for Example 1 is shown
in Figure 2. S1 and S2 are scanned (locally) to produce blow-up
summaries to propagate to S3. On receiving the summaries, S3
blows up Cls and Count of its tuples. For example, consider the
tuple t in S3 as gray scaled in Figure 2 (with J1=b, J2=d). t has two
corresponding summary entries: (b,<0,1>,1) from S1 and
(d,<0,0>,2) from S2. t.Count=1*2=2, t.Cls=<0,1>*2=<0,2>.
These results indicate that t occurs in the join twice, both having
the class label C2, which is exactly the same information as in the
join stream.

4.3 Top-Down Propagation
At the end of bottom-up propagation, Cls in the root stream
reflects the join of all streams. However, Cls in other streams has
not reflected the joins performed at their ancestors. Thus we need
to propagate in the top-down fashion to push the correct join
information to all non-root streams. The propagation is based on
the following observation.

Observation 2: For a parent node SP and a child node SC, if a
tuple t in SC joins with some tuple in SP that has the join value v,
so do all tuples in SC that have this join value v. We can view all
such tuples as an “equivalence class” on the join value v in SC,
denoted as SC[v]. Similarly, SP[v] contains all tuples in SP that
have the join value v. Cls of the SC[v] tuples must be rescaled to
reflect all joins not reflected so far at SC. The rescaling must
satisfy the following properties: (1) the relative share of any tuple
in SC[v] remains unchanged because every tuple in SC[v] will join
every tuple in SP[v], (2) the aggregated ∑Cls in SC[v] after
rescaling is the same as the aggregated ∑Cls in SP[v].

To perform the top-down propagation, we define the rescaling
summary from SP to SC as the set {(v, ClsAgg)}, where v is a join
value in SP and ClsAgg is the aggregated class vector of all SP[v]
tuples.

Lemma 2. Let t be a tuple in SC[v] and let (v, ClsAgg) be a
rescaling summary entry from SP. t.Cls is rescaled as follows:

 t.Cls= ClsAgg * (t.Count / SC[v].CountAgg)

where SC[v].CountAgg is the aggregated ∑Count over all SC[v]
tuples. ■

The ratio t.Count/SC[v].CountAgg represents t’s share in SC[v].
Based on this lemma, to compute Cls at SC, the parent node SP
propagates its rescaling summary to SC. On receiving the
rescaling summary from SP, Cls in SC are updated as in Lemma 2.
In the same scan, the rescaling summary from SC to its own
children (if any) is computed.

Example 3. The top-down propagation is shown in Figure 3. At
the root S3, the rescaling summaries to S1 and S2 are generated
while scanning S3 in the bottom-up propagation. On receiving
these summaries, S1 and S2 rescale their Cls. For example, for the
tuple t in S1 as gray scaled in Figure 3, t.Cls=<0,1> is rescaled to
<0,2>*(1/1)=<0,2>, where (b,<0,2>) is the summary entry
corresponding to b, and (1/1) is the share of t in its own
equivalence class for J1=b. The result captures exactly the same
information about t as in the join stream: t occurs twice having the
class label C2.

1
2
1

Count

C1

C2

C1

Class

<1,0>
<0,2>
<1,0>
Cls

a3
b2
c1

J1τ

1
2
1

Count

e
d
e

J2

<1,0>
<0,2>
<1,0>
Cls

c3
b2
a1

J1τ

Stream S1

Stream S3

1
1
2

Count

<0,1>
<0,1>
<2,0>

Cls

d3
d2
e1

J2τ

Stream S2

c
b
a

J1

<1,0>
<0,2>
<1,0>
ClsAgg

Summary
from S3 to S1

d
e

J2

<0,2>
<2,0>

ClsAgg

Summary
from S3 to S2

Figure 3. After top-down propagations

4.4 Using NBC
We now consider classifying a new instance t=<t1,…, tn>, where tj
is the sub-record from Sj. At each site j for Sj, let tj=<x1,…xm>.
The site j computes P(tj|Ci)= ∏P(xk|Ci) for k=1,…,m, and sends
P(tj|Ci) to a coordinator, which could be any of the participating
sites or a third party. After receiving this information from all
sites, the coordinator computes P(t|Ci)=∏P(tj|Ci)×P(Ci) for
j=1,…,n. The class label Ci that yields the maximum P(t|Ci) is
assigned to t. P(Ci) is available to every participating site. No
private information, as per our privacy model, is revealed by
sending P(tj|Ci) to the coordinator because P(tj|Ci) is just a
numerical value. If an attribute value xi in a new instance t is not
found in the training data, this value is simply ignored in the
posterior computation.

4.5 Algorithm Analysis
Below, we analyze the algorithm wrt privacy and scalability.

Privacy. In the bottom-up and top-down propagation, only
summaries are passed between parent/child pairs. For non-join
attributes, no site transmits their values in any form to other sites.
For the join attributes, consider a parent node SP and a child node
SC with the join predicate SP.J1= SC.J2. The blow-up summary
from SC to SP contains entries of the form (v, ClsAgg, CountAgg),
where v is a join value in SC.J2 and ClsAgg/CountAgg contains the
class/count information. Since ClsAgg and CountAgg are the
aggregate-level information and the class column is non-private,
ClsAgg/CountAgg does not pose a problem. SP.J1 and SC.J2 are
semi-private, thus v can be exchanged between SP and SC if v∈
SP.J1∩ SC.J2. This can be ensured by first performing the secure
intersection [24] to get SP.J1∩SC.J2. Then the blow-up summary
from SC to SP needs to contain only entries for the join values in
the intersection. As for the rescaling summary from SP to SC, no
secure intersection is needed because all dangling tuples are
removed at the end of bottom-up propagation.

Privacy Claim. (1) No private attribute values are transmitted out
of its owner site. (2) Semi-private attribute values are transmitted
between two joining sites only if they are shared by both sites.■

Scalability. In the bottom-up and top-down propagation, one
summary is passed between each parent/child pair and each
stream (window) is scanned once. At any time, only the
summaries for the edges being examined are kept in memory. The
size of a summary is proportional to the number of distinct join
values, not the number of join tuples. A summary lookup
operation takes a constant time in an array or hash table
implementation. The whole propagation is linear in the window
size, in fact, scans each input tuple in the current window twice,
once at the bottom-up propagation phase and once at the top-
down propagation process. Thus, the computation at each window
is independent of the join size. This property is important because
the join size can be arbitrarily large compared with the window
size, due to the many-to-many join relationships. An additional
cost is the secure intersection, which is performed during the
bottom-up propagation as discussed above. This cost is log linear
in the number of distinct join values [24], not the number of
tuples in the window.

Scalability Claim. For each window, the cost of rebuilding NBC
is proportional to the window size, not the join size. More
precisely, each tuple in the window is scanned twice (in memory).

The two scans of the root stream, one in the bottom-up
propagation phase and one in the top-down propagation process,
can be combined into one. In this case, choosing the input stream
of the largest window size (i.e., the most number of tuples) as the
root will minimize the cost of stream scans.

5. EMPIRICAL STUDIES
Our approach aims at two goals, namely, privacy preservation and
fast processing of join stream classification. The privacy goal is
delivered by limiting the information exchanged among sites, as
claimed in Section 4. Therefore, in this section we focus on the
performance goal. We would like to answer two questions: (1)
whether the formulation of Secure-JSC defines a better training
space compared with a single stream alone; (2) whether our
algorithm scales up to handle high-speed data streams.
We denote our algorithm as NB_Join, as it builds a NBC classifier
whose training set is defined on the join of multiple streams. We
compared it with following alternatives:

- NB_Target: NBC based on the target stream alone. In this case,
all non-target streams are ignored.

- DT_Join: the decision tree classifier (C4.5) on the join stream.
To build the decision tree, the join stream is first computed by
actually joining the input streams. Note that his approach does not
meet the privacy requirement.

- DT_Target: the decision tree classifier on the target stream
alone.

For each window, we train the classifier using the first 80% of
stream tuples within this window and evaluate the classifier using
the remaining 20% of stream tuples in the same window. The
testing data are generated by the join of the testing samples from
all streams.

We measure performance by “time per input tuple”, i.e., time
spent on each window divided by the number of input tuples in
the window. The “input tuples” refers to the tuples in the input
streams, not the join stream. This measure gives an idea about the
data arrival rate that an algorithm is able to handle. For DT_Join,
because it has to generate the join stream before building the
classifier, we measure the join time only and ignore the classifier
construction time since the join time dominates. Most of sliding-
window join algorithms in literature are not suitable for
generating the join stream for DT_Join because they focus on fast
computing special aggregates [9][14], or producing approximate
join results [18] under resource constraints; not the exact join
result. We implemented the nested loop join algorithm. This
choice should not have a major effect because all tuples in the
current window are in memory. All programs were coded in C++
and run on a PC with 2GHz CPU, 512M memory and Windows
XP.

5.1 Real-life Datasets
For experiments on real-life dataset, we obtained UK road
accident data from the UK data archive1. It contains information
about accidents, vehicles and casualties, in order to monitor road
safety and determine policies to reduce the road accident casualty
toll. There are three tables: “Accident”, “Vehicle” and

1 http://www.data-archive.ac.uk/

“Casualty”. The characteristics of year-2001 data are shown in
Figure 4 where arrows indicate join relationships: each accident
involves one or more vehicles; each vehicle has zero or more
casualties. Each table can be regarded as a stream that is
timestamped by “date of accident”. On average, about 600
“Accident” tuples, 700 “Vehicle” tuples and 850 “Casualty”
tuples are added every day. The join stream is specified by the
equalities between all common attributes among the three input
streams. “Casualty” is the target stream with two casualty classes
--- class 1: “fatal/serious” (13% of all tuples) and class 2: “slight”
(87% of tuples).

(313309 tuples)
(size: 14.3MB)

VEH_ID
CS3_9 (class)
CAS_ID
Casualty

ACC_ID
VEH_ID
Vehicle

ACC_ID
Accident

(274109 tuples)
(size: 19.6MB) (250619 tuples)

(size: 20.6MB)

Figure 4. UK road accident data (2001)

5.1.1 Classification Accuracy
Figure 5 shows the accuracy of all classifiers being compared. For
all methods, the window size is the same and ranges from 10 to 50
days with no window overlapping.

0.6

0.7

0.8

0.9

1

10 20 30 40 50
Window size (days)

A
ve

ra
ge

 a
cc

ur
ac

y

NB_Join NB_Target
DT_Join DT_Target

Figure 5. Classifier accuracy

It is apparent that classifiers built on multiple streams are much
more accurate. This result confirms that examining correlated
streams is advantageous compared with building the classifier on
a single stream. In fact, the accuracy obtained by examining the
target stream alone is only about 80%, even lower than that
obtained by a naïve classifier which simply classifies every tuple
as belonging to class 2, since 87% of tuples belong to this class.

On the other hand, the results also show that, with the same
training set, naïve Bayesian classifier has a performance
comparable to that of the decision tree. Keep in mind that our
method NB_Join runs directly on the input streams, while the
decision tree is built on the join stream. The latter does not meet

the privacy requirement and has a high join cost. We will examine
the efficiency of these two methods in the next set of experiments.

5.1.2 Time per input tuple
Figure 6 compares the time per input tuple. For example, at the
window size of 20 days, the join takes about 9.83 seconds
whereas NB_Join takes only about 0.3 seconds. Therefore, the
join time per input tuple is 9.83*106/43,900=224 microseconds,
where 43,900 is the total number of tuples that arrived in the 20-
day window. In contrast, NB_Join takes only 0.3*106/43,900=6.8
microseconds per input tuple. This means that any method that
requires computing the join will be at least 33 times slower than
NB_Join. As the window size increases, the join time increases
quickly due to the increased join cardinality in a larger window;
whereas the time per input tuple for NB_Join is almost constant.
In other words, our approach is linear in the window size,
independent of the join stream size. This property makes our
approach particularly suitable for multiple correlated streams.

Therefore, though both NB_Join and DT_Join classifiers exhibit a
similar classification accuracy, NB_Join is much more efficient
than DT_Join.

1

10

100

1000

10 20 30 40 50
Window size (days)

Ti
m

e
pe

r t
up

le
 (m

se
c.

)

NB_Join Join Time

Figure 6. Time per input tuple

5.2 Synthetic Datasets
To further verify our claims, we also conducted experiments on
synthetic datasets with various data characteristics. Similar to the
experiments on real-life datasets, we want to examine whether the
correlation of multiple streams yields benefits for classification
under different data characteristics. We also want to evaluate if
NB_Join can deal with streams with high data arrival rates. As we
are not aware of existing data generators to evaluate classification
spanning correlated streams, we designed our own data generator.

5.2.1 The Data Generator
We consider the chain join of k streams S1, …, Sk, where S1 is the
target stream. An adjacent pair Si and Si+1 have one join predicate
and a non-adjacent pair have no join predicate. All streams have
the same number of tuples denoted |S|. All join attributes are
categorical and have the same domain size D. In addition, all
streams have N ranked attributes and N categorical attributes
(excluding the join attributes and the class attribute). Categorical
values are drawn randomly from a domain of size 20. All ranked
attributes have the ranked domain {1,…,10}.

Since our goal is to verify that the classifier built on the join
stream is more accurate when there are correlations among
streams, the dataset must contain certain “structures” for the class
label rather than random tuples. We construct the dataset in which
the class label in a join tuple is determined by whether at least q
percentage of the ranked attributes have a “high” value. A ranked
value is “high” if it belongs to the top half of its ranked domain.
Since the ranked attributes are distributed among multiple input
streams, to ensure the desired property of the class label, the input
streams S1,…,Sk are constructed as follows.

- Join values. Each stream Si consists of D groups: from 1st to
Dth group. All tuples in the jth (1≤j≤D) group of Si join with
all tuples in the jth group of Si+1, but not any other tuples.
The jth join group refers to the set of join tuples produced by
the jth groups. The size Zj of the jth group is the same for all
streams S1,…,Sk, and follows Poisson distribution with the
mean λ=|S|/D. The jth join group has the size Zj

k, with λk

being the mean. The blow-up ratio of the join is defined as
λk/λ=λk-1, i.e., the ratio between the mean of group size on
the join stream and that on input streams.

- Ranked values. We generate ranked attributes such that all
join tuples in the jth join group have the same class label. In
particular, we ensure that all join tuples in the same group
have “high” values in the same number of ranked attributes,
say hj. To this end, we distribute the number hj among
S1,…,Sk randomly, say hj1,…,hjk, such that hj =hj1+…+hjk,
and all tuples in the jth group for Si are “high” in hji ranked
attributes. hj follows uniform distribution in the range
[0,k*N], where k*N is the total number of ranked attributes.

- Class labels. If hj≥q*k*N, for some percentage parameter q,
we assign the “Yes” class label to every tuple in the jth
group of S1, otherwise, assign the “No” class label.

Finally, to simulate the “concept drifting” in data streams, we
change the parameter q every time after generating W tuples. In
particular, for every W tuples we randomly determine a q value in
the range [0.25, 0.75) following the uniform distribution. W is
called the concept drifting interval. Usually W is larger than the
window size because not every window leads to a change in
classification. A dataset generated as above can be characterized
by the parameters (N, |S|, D, λ, W), where λ=|S|/D is the mean of
group size and determines the blow-up ratio of join.

5.2.2 Accuracy
We generated three streams S1, S2 and S3 with the parameter
setting N=10, |S|=1,000,000, D=200,000, λ=5, W=100,000. Figure
7 shows the accuracy vs the window size with 50% window
overlapping. DT_Join and NB_Join are more accurate than their
counterparts on the single stream, while both having similar
accuracies.
Figure 8 shows another experiment, where we fixed the window
size w at 20,000 and decreased W from 100,000 to 20,000. Since
the previous experiments have confirmed that classifiers built on
the join stream have a better accuracy, in this experiment we only
show the accuracy of NB_Join and DT_Join. As expected, the
accuracy drops slowly as W decreases, since the structure for the
class label changes more frequently.

0.7

0.8

0.9

1.0

0 5 10 15 20 25 30

Window size ('000 tuples)

A
ve

ra
ge

 a
cc

ur
ac

y
NB_Join NB_Target
DT_Join DT_Target

Figure 7. Classifier accuracy vs window size

0. 7

0. 8

0. 9

1

100 80 60 40 20W ('000 tuples)

A
ve

ra
ge

 a
cc

ur
ac

y

NB_Joi n DT_Joi n

Figure 8. Classifier accuracy vs concept drifting interval

5.2.3 Time per input tuple
Figure 9 shows the time per tuple on the same dataset as in Figure
7. The join time is much larger than the time of NB_Join. As the
window size increases, the join time increases due to the blow-up
effect of join, while NB_Join spends almost constant time per
tuple for any window size.
Figure 10 shows time per tuple vs. blow-up ratio of join. The
parameters are fixed as N=10, |S|=1,000,000, D=200,000,
W=100,000. For the join of three streams, the blow-up ratio is λ2.
By varying λ from 2 to 7, the blow-up ratio varies from 4 to 49.
The window size is fixed at 20,000. Again, NB_Join shows a
much better performance and is flat with respect to the blow-up of
join. This is because it scans the window exactly twice,
independent of the blow-up ratio of the join. On the other hand,
the join takes more time per tuple with a larger blow-up ratio
because much more tuples are generated.
Figure 11 shows time per tuple vs. number of streams. All
parameters are still the same as in Figure 9. The window size is
fixed at 20,000 tuples. We vary the number of steams from 1 to 5.
The blow-up ratio for k-stream join is determined by 5(k-1). The
comparison of the results is similar to Figure 10.

1

10

100

1000

10000

5 10 15 20 25

Window size ('000 tuples)

Ti
m

e
pe

r t
up

le
(m

ic
ro

se
co

nd
s)

NB_Join Join Time

Figure 9. Time per input tuple vs. window size

1

10

100

1000

10000

0 20 40 60
Blowup

Ti
m

e
pe

r t
up

le
(m

ic
ro

se
co

nd
s)

NB_Join Join Time

Figure 10. Time per input tuple vs. blow-up ratio

1
10
100
1000
10000

0 1 2 3 4 5
Number of streams

Ti
m

e
pe

r t
up

le
(m

ic
ro

se
co

nd
s)

NB_Join Join Time

Figure 11. Time per input tuple vs. number of streams

5.3 Discussion
On both real life and synthetic datasets, our empirical studies
showed that when the features for classification are contained in
several related streams, the proposed join stream classification has
significant accuracy advantage over the conventional method of
examining only the target stream.

The main challenge is how such classification can be performed
in pace with the high-speed input streams, given that the join
stream has an even higher data arrival rate than that of the input
streams. To this end, our experiments showed that our proposed
algorithm has a cost linear in the size of input streams,
independent of the join size. This feature makes our algorithm
superior to other alternative methods.

It is worthy of noting that the classifier must be rebuilt each time
the window on any input stream slides forward. This is reasonable
when there is no overlap or only small overlaps between windows.
However, when windows are significantly overlapped, this
strategy tends to repeat the work on the overlapped data. In this
case, a more efficient strategy may be incrementally updating the
NBC by working only on the difference due to the window sliding.
We did not pursue in this direction further because even
overlapped tuples still need to be joined with new tuples in other
streams, which means that the scan of overlapped tuples cannot be
avoided. Since our algorithm scans the current window only twice,
the benefit of being incremental is limited, especially considering
the overhead added.

6. CONCLUSIONS
Motivated by real life applications, we considered the
classification problem where the training data are coming from
several related private data streams. Joining all streams violates
the privacy of stream owners and suffers from the blow-up of the
join. We presented a solution based on Naïve Bayesian Classifiers.
The main idea is rapidly obtaining the essential join statistics
without actually computing the join. With this technique, we can
build exactly the same Naïve Bayesian Classifier as using the join
stream without exchanging private information. The processing
cost is linear in the size of input streams and independent of the
join size. Empirical studies supported our claim that examining
several related streams indeed benefits the quality of
classification. Having a much lower processing time per input
tuple, the proposed method is able to handle much higher data
arrival rate and deal with the general many-to-many join
relationships of data streams.

7. REFERENCES
[1] Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario

Szegedy. Tracking Join and Self-Join Sizes in Limited
Storage. In ACM PODS, 1999.

[2] B.Babcock, S. Babu, M. Datar, R. Motwani, J. Widom.
Model and issues in data stream systems. In ACM PODS,
Madison, Wisconsin, 2002.

[3] J. Beringer and E. Hullermeier. Online clustering of parallel
data streams. In press for Data & Knowledge Engineering,
2005.

[4] Y. D. Cai, D. Clutter, G. Pape, J. Han, M. Welge and L.
Auvil. MAIDS: Mining alarming incidents from data streams.
In Proc. SIGMOD, demonstration paper, 2004.

[5] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik.
Monitoring streams - a new class of data management
applications. In Proc. VLDB, 2002.

[6] S. Chaudhuri, R. Motwani, and V. R. Narasayya. On random
sampling over joins. In Proc. SIGMOD, 1999.

[7] G. Chen, X. Wu, X. Zhu. Sequential pattern mining in
multiple streams, In Proc. ICDM, 2005.

[8] A. Das, J. Gehrke and M.Riedewald. Approximate join
processing over data streams. In Proc. SIGMOD, Madison,
Wisconsin, 2003.

[9] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi.
Processing complex aggregate queries over data streams. In
Proc. SIGMOD, Madison, Wisconsin, 2002.

[10] P.Domingos and G. Hulten. Mining high-speed data streams.
In Proc. SIGKDD, 2000.

[11] Pedro Domingos and Michael Pazzani. On the optimality of
the simple Bayesian classifier under zero-one loss. Machine
Learning, 29:103-130, 1997.

[12] R. O. Duda and P. E. Hart. Pattern classification and scene
analysis. New York: John Wiley & Sons, 1973.

[13] J. Gama, R. Racha, P.Medas. Accurate decision trees for
mining high-speed data streams. In Proc. SIGKDD, 2003.

[14] S. Ganguly, M. Garofalakis, A. Kumar and R. Rastogj. Join-
distinct aggregate estimation over update streams. In Proc.
ACM PODS, Baltimore, Maryland, 2005.

[15] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. In FOCS, 2000.

[16] D. J. Hand and K. Yu, Idiot's Bayes - not so stupid after all?
International Statistical Review. 69(3), 385-399, 2001.

[17] Irina Rish. An empirical study of the naive Bayes classifier.
IJCAI 2001 Workshop on Empirical Methods in Artificial
Intelligence, 2001.

[18] U. Srivastava, J. Widom. Memory-limited execution of
windowed stream joins. In Proc. VLDB, 2004.

[19] H. Wang, W. Fan, P. Yu and J. Han. Mining concept-drifting
data streams using ensemble classifiers. In Proc. SIGKDD,
2003.

[20] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of
thousands of data streams in real time. In Proc. VLDB, 2002.

[21] K. Wang, Y. Xu, R. She, P. Yu. Classification Spanning
Private Databases. AAAI, 2006.

[22] W. Du and Z. Zhan. Building decision tree classifier on
private data. ICDM Workshop on Privacy, Security and Data
Mining, 2002

[23] F. Li, J. Sun, S. Papadimitriou, G. Mihala and I. Stanoi.
Hiding in the Crowd: Privacy Preservation on Evolving
Streams through Correlation Tracking. In Proc. ICDE, 2007.

[24] R. Agrawal, A. Evfimievski and R. Srikant. Information
sharing across private databases. In Proc. SIGMOD, 2003.

[25] R. Agrawal, and R. Srikant. Privacy-preserving data mining.
In Proc. SIGMOD 2000.

[26] Y. Lindell AND B. PINKAS, B. 2000. Privacy preserving
data mining. In Proc. CRYPTO 2000.

[27] L. Sweeney. k-Anonymity: A Model for Protecting Privacy,
International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5), 2002.

[34] M. Levene and G. Loizou. Why is the snowflake schema a
good data warehouse design? Information Systems 28(3),
2003.

[28] J. Vaidya and C. W. Clifton. Privacy preserving association
rule mining in vertically partitioned data. In SIGKDD, 2002.

[35] O. Goldreich. Secure multi-party computation. Working
Draft, Version 1.3, June 2001.

[29] K. Chen and L. Liu. Privacy preserving data classification
with rotation perturbation. In ICDM, 2005.

[36] J. Bethencourt, D. Song, and B. Waters. Constructions and
Practical Applications for Private Stream Searching. In IEEE
Symposium on Security and Privacy, 2006. [30] A. Machanavajjhala, J. Gehrke, D. Kifer, and M.

Venkitasubramaniam. l-Diversity: Privacy beyond k-
anonymity. ICDE 2006.

[37] R. Ostrovsky, W. Skeith, Private Searching on Streaming
Data. In CRYPTO, 2005.

[31] C. Aggarwal, J. Han, J. Wang, and P. Yu. A Framework for
On-Demand Classification of Evolving Data Streams. IEEE
TKDE, Vol. 18, No. 5, May 2006, PP:577-589

[38] Bank data sifted in secret by US to block terror. The New
York Times, June 23, 2006.

 [32] L. Golab and M. Tamer Ozsu. Processing sliding window
multi-joins in continuous queries over data streams. In Proc.
VLDB, 2003

[33] C. Agarwal and P. Yu. A condensation Approach to Privacy
Preserving Data Mining. In Proc. EDBT, 2004.

	1. INTRODUCTION
	1.1 Motivating Example
	1.2 Contributions and Paper Outline

	2. RELATED WORKS
	3. PROBLEM STATEMENT
	3.1 Secure Join Stream Classification
	3.2 Naïve Bayesian Classifiers

	4. OUR APPROACH
	1.1
	4.1 Initialization
	4.2 Bottom-Up Propagation
	4.3 Top-Down Propagation
	4.4 Using NBC
	4.5 Algorithm Analysis

	5. EMPIRICAL STUDIES
	5.1 Real-life Datasets
	5.1.1 Classification Accuracy
	5.1.2 Time per input tuple

	5.2 Synthetic Datasets
	5.2.1 The Data Generator
	5.2.2 Accuracy
	5.2.3 Time per input tuple

	5.3 Discussion

	6. CONCLUSIONS
	7. REFERENCES

