
An Optimal (d− 1)-Fault-Tolerant All-to-All Broadcasting Scheme for
d-Dimensional Hypercubes

Siu-Cheung Chau∗

Dept. of Physics and Computing, Wilfrid Laurier University,
Waterloo, Ontario, Canada, N2L 3C5

e-mail: schau@wlu.ca

Ada Wai-Chee Fu
Dept. of Computer Science and Engineering,

Chinese University of Hong Kong, Shatin, Hong Kong
e-mail: adafucse.cuhk.edu.hk

Abstract

All-to-all broadcasting (Gossiping) is the process of in-
formation dissemination in a communication network. Each
member in the network has a message to transmit to all
other members of the network. We proposed ak-fault-
tolerant scheme for a faultyd-dimensional hypercube with
n = 2d nodes where0 ≤ k < d. The new scheme requires
n(n− 1) fewer message transmissions and(n− 1)Fτ less
time compared to previously proposed fault-tolerant all-to-
all broadcasting schemes.

Keywords: All-to-all Broadcasting, Gossiping, Fault-
tolerant, Hypercube.

1 Introduction
All-to-all broadcasting is the process of information dis-

semination in a communication network. Each node in the
network has a message to transmit to all other nodes of the
network. Ak-fault-tolerant all-to-all broadcasting process
is one which sends the messages out with enough redun-
dancy so that the broadcasting can be completed even ifk
nodes has failed.

Two different models of communications, shouting and
whispering[5] are considered. In the shouting model, a
node can communicate simultaneously with all the adjacent
nodes. That is, each node has all-port capability. In the
whispering model, a node can only communicate with one
adjacent node at any given time. Each node has one-port
capability.

We assume that the communications are based on a mes-

∗This research was supported by a research grant from the Na-
tional Sciences and Engineering Research Council of Canada

sage passing procedure where each communication channel
is full-duplex and are sent in the store and forward mode.
We only consider permanent node and link faults. In gen-
eral, a node does not have any knowledge of the location
of these faults. Furthermore, a node or a link is faulty if it
cannot transmit any messages. It cannot corrupt messages.

In this paper, we will concentrate on fault-tolerant all-
to-all broadcasting in multi-computer networks connected
as hypercubes. Ad-dimensional hypercube is a network
with n = 2d nodes. The hypercube network is already
commercially available and is being used for a variety of
applications. Many researchers have investigated the all-to-
all broadcasting (gossiping) problem. For a survey of gos-
siping papers, please refer to Hedetniemi and Liestman’s
paper[7].

For hypercubes, Bagchi et al.[1] conjectured that2d
steps are required to complete all-to-all broadcasting in ad-
dimensional hypercube. Krumme[9] proved that their con-
jecture is incorrect by proposing a fast all-to-all broadcast-
ing algorithm for ad-dimensional hypercube that requires
only1.88d steps. Since then, a lot of papers like Scott’s[13],
Petrini’s[10], and Johnsson’s[8] were published about all-
to-all broadcasting in hypercubes. However, very few of
them deal with all-to-all broadcasting when some nodes or
links may have already failed.

Fraigniaud[5] proposed a asymptotically optimal
k-fault-tolerant all-to-all broadcasting scheme ford-
dimensional hypercubes where0 ≤ k < d. His scheme is
based on Johnsson and Ho’s[8] arc-disjoint spanning tree.
Let the time to send out a message beT = β + Fτ [8].
β is the start up time. τ is the time to send out one
bit. F is the length of the message. If all the nodes
start his algorithm simultaneously, his algorithm requires



2dβ + (k + 1)(n − 1)Fτ time for the whispering model
and (d + 1)β + (n − 1)Fτ for the shouting model.
He also showed that for the whispering model, at least
(k + 1)(n − 1)Fτ propagation time and(d + k + 1)β
starts up time is required for ak-fault-tolerant all-to-all
broadcasting in ad-dimensional hypercube. For the
shouting model, at least(k + 1)(n − 1)Fτ/d propagation
time and(d + 1)β start up time ifk = d− 1 or dβ start up
time if k < d− 1 are required.

In this paper, we proposed a new all-to-all broadcasting
scheme ford-dimensional hypercubes that can tolerate up
to (d− 1) node faults for both the whispering and shouting
models. For the whispering model, the new scheme is faster
and requires fewer message transmissions than Fraigniaud’s
scheme. The rest of the paper is organized as follows. In
Section 2, we give the algorithm for a(d− 1)-fault-tolerant
one-to-all broadcasting ind-dimensional hypercubes. In
Section 3, we present ourk-fault-tolerant all-to-all broad-
casting scheme. In Section 4, we compare the new scheme
with previously proposed scheme. Section 5 contains the
summary.

2 An optimal (d− 1)-fault-tolerant one-to-all
broadcasting scheme

A d-dimensional hypercube is a network withn = 2d

nodes. Each node can be coded by a binary sequence of
lengthd. Two nodes are connected if the binary sequences
differ in exactly one position. Each nodev = x1x2...xd is
connected tod nodes. We call the link that connectsv =
x1x2...xd to the nodeu = y1y2...yd, the link of dimension
i if xi 6= yi andxj = yj for j ∈ 1..d andj 6= i.

First, we assume that communication is carried out in
the whispering model. The algorithm has two phases, the
broadcast phase and the extended broadcast phase. The
broadcast phase consists ofd time units. In the first time
unit of the broadcast phase, the originatoro sends the broad-
cast message to an adjacent node througho1, the link of
dimension 1. In the2nd time unit, the originator and the
node that got the message in time unit 1, send the message
through the links of dimension 2. In theith time unit, the
originator and all the nodes that already have the message
send the message through the links of dimensioni. The first
phase requiresd time units. After the first phase, every node
will receive the message if the hypercube is non-faulty.

The second phase also consists ofd time units. In the
first time unit, every node sends a message through the links
of dimension 1. In the second time unit, every node sends
a message through the links of dimension 2. In theith time
unit, every node sends a message through the links of di-
mensioni. After the second phase, every node will have
receivedd copies of the message if the hypercube is non-
faulty.

It is obvious that every node in a non-faulty hypercube

will receive the message after phase one of the new scheme.
We will show that every node getsd node disjoint calling
paths after both phases of the broadcast.

Consider a 4-dimensional hypercube with 16 nodes.
Without loss of generality, let us assume that node 0(0000)
is the originator. In time unit 1 of phase one, 0 sends to
8(1000). In time unit 2, 0 sends to 4, and 8 sends to 12. In
time unit 3, 0 sends to 2, 4 sends to 6, 8 sends to 10, and 12
sends to 14. In the last time unit of phase one, 0 sends to
1, 2 sends to 3, 4 sends to 5, 6 sends to 7, 8 sends to 9, 10
sends to 11, 12 sends to 13, and 14 sends to 15.

For node 14, it gets a calling path from 0 to 8, 8 to 12,
and 12 to 14 in the first phase. In the first time unit of phase
two, node 14 gets another calling path from 0 to 4, 4 to 6,
and 6 to 14. The calls from 0 to 4 and 4 to 6 are made in the
first phase. The call from 6 to 14 is made in the first time
unit of phase two. In the second time unit, another calling
path is obtained from 0 to 2 in the first phase, 2 to 10 in
the first call in the second phase, and from 10 to 14 in the
second call of the second phase. The final calling path of
node 14 is from 0 to 1 in the first phase, 1 to 9 in the first
call of the second phase, 9 to 13 in the second call of the
second phase, 13 to 15 in the third call of the second phase,
and 15 to 14 in the fourth call of the second phase. The
calling paths for node 14 are:

1. 0(0000)→ 8(1000)→ 12(1100)→ 14(1110).

2. 0(0000)→ 4(0100)→ 6(0110)→ 14(1110)1.

3. 0(0000)→ 2(0010)→ 10(1010)1 → 14(1110)2.

4. 0(0000)→ 1(0001)→ 9(1001)1 → 13(1101)2 →
15(1111)3 → 14(1110)4.

The calls with ani indicates they are calls made in the in the
ith time units of the second phase. The four calling paths
are node disjoint.

Theorem 1 Every node in the hypercube will haved node
disjoint calling paths from the originator after the two
phases of the broadcast.

Proof: Without loss of generality, letu = 00..0 be the
originator. Thed-dimensional hypercube is made up of
two (d − 1)-dimensional hypercubes. The first(d − 1)-
dimensional hypercube consists of all the nodes with a zero
in their leftmost bit. The second(d−1)-dimensional hyper-
cube consists all the nodes with a one in their leftmost bit.
In time unit 1 of phase one, the originator that resides in one
of the (d − 1)-dimensional hypercubes calls a node in the
other(d − 1)-dimensional hypercube. Subsequent calls of
phase one are made within the two(d− 1)-dimensional hy-
percubes. Thus, each node in the second hypercube has one
calling path originated from 00..0 to 10..0 and the calling
path also consists of calls within its own sub-cube. We call



this group of nodesM1. Similarly, the(d− 1)-dimensional
hypercube that the originator is in, is also made up of two
(d−2)-dimensional hypercubes. In time unit 2 of phase one,
the originator calls a node in the other(d− 2)-dimensional
hypercube. Each node in the other(d− 2)-dimensional hy-
percube has one calling path originated from 00..0 to 010..0
and the calling path also consists of calls within its own sub-
cube. We call this group of nodesM2. Hence, afterd time
units, the nodes are divided intoMi groups wherei = 1..d
and the originatoro. The groupMi is a(d− i)-dimensional
hypercube.

Consider a nodev in Mi. In phase two, the1st calling
path ofv is from the originator to the node 1000..00 inM1,
followed by broadcasting withinM1, and a call betweenv
and a node inM1 through the link in the1st dimension,
v1 in time unit 1 of phase two. The2nd calling path of
v is from the originator to the node 0100..00 inM2, fol-
lowed by broadcasting withinM2, and a call betweenv and
a node inM2 through the link in the2nd dimension,v2 in
time unit 2. Similarly, The(i − 1)th calling path ofv is
from the originator to the node with a 1 in the(i− 1)th po-
sition 00..010..00 inMi−1, followed by broadcasting within
Mi−1, and a call betweenv and a node inMi−1 through the
link in the (i− 1)th dimension,vi−1 in time unit(i− 1) of
phase 2. None of the links betweenv1 andvi−1 are used in
phase one of the broadcast. All the(i− 1) calling paths for
v are disjoint.

If i = d, the nodev will have (d − 1) edge and node
disjoint calling path after(d−1) time units. Thedth calling
path ofv is obtained from a call from the originator tov in
phase one. Hence,v getsd disjoint calling paths after both
phases ifi = d.

If i 6= d, theith calling path ofv is from the originator to
a node inMj , followed by broadcasting withinMj , where
i < j ≤ d, and a call betweenv and a node inMj in
time uniti. All the nodes inMi get one more edge disjoint
calling path in time uniti except nodem wherem is the
node that received the call from the originator in time unit
i of phase one. Nodem does not get another node disjoint
calling path for it is called by the originator again in time
unit i.

Similar to the originald-dimensional hypercube,Mi can
be divided intod − i groups,Mi,i+1 to Mi,d and the node
m. The groupMi,j is a(d−j)-dimensional hypercube. The
ith calling path of nodes inMi,j is from the originator to a
node inMj , followed by broadcasting withinMj , and calls
betweenMj andMi,j .

For the nodem, it will get an additionald − i edge dis-
joint calling paths fromMi,j to m in time unit j where
i + 1 ≤ j ≤ d, through the link in dimensionj, mj . Al-
though the linkmj has already been used in phase one of
the broadcast, it is used to send messages fromm to nodes
in Mi,j . In phase two, we are using it in the other direc-

tion. Hence, nodem will have d node disjoint paths from
the originator after both phases.

For the nodev, let v be inMi,k. As described above,v
will get its (i + 1)th to i + k− 1 node disjoint calling paths
from calls betweenv and a node inMi,j wherei+1 ≤ j <
k in time units(i + 1)th to i + k − 1.

In time unit i + k, againMi,k can be divided intod −
i−k groups,Mi,k,k+1 to Mi,k,d and a single nodem′. This
process is repeated untilv becomes a node inMi,k,..,d or v
becomes the single node after a division. In both cases, the
nodev will have (d − 1) node disjoint calling paths after
d time units of phase two. Adding the calling path ofv
obtained in the first phase, the nodev hasd node disjoint
calling paths after both phases.4

In phase one, each node may receive the message at most
once. Hence, at mostn − 1 messages are sent. In each
time unit in phase two, every node has to send a message
to an adjacent node. Hence,n messages are sent. The total
number of messages is(n−1)+nd. However, if we are a bit
more careful in the extended broadcast, we can reduce the
number of messages sent. This can be accomplished by not
sending from a nodev to a nodeu if nodev has already sent
a message to nodeu in phase one.n− 1 messages are used
in phase one. The total number can then be reduced byn−1.
Similarly, an additionaln − 1 messages can be reduced by
not sending in phase two through the links where nodes got
their messages in phase one. The total number of messages
required for a faulty hypercube is at most((n− 1) + nd)−
2(n−1) = (nd−n+1). If some nodes or links have already
failed in the hypercube, the number of messages sent is even
less.

If the hypercube is non-faulty, the messages sent through
links of dimensiond in phase two are not necessary. These
messages are sent fromn/2 nodes that received the mes-
sage and fromn/2 nodes that sent out the message in time
unit d of phase one through links of dimensiond. Hence,
these nodes knew that the nodes that are connected to them
through links of dimensiond already got the message. It
is not necessary for these nodes to send the message out in
time unitd of phase two. Hence, only2d − 1 time unit is
required if the hypercube is non-faulty.

Fraigniaud[5] proved that for the whispering model, at
least (d + k + 1) time units are required to achievek-
fault-tolerant broadcast in ad-dimensional hypercube for
1 ≤ k ≤ d − 1. The new scheme requires2d time units to
achieve(d− 1)-fault-tolerant broadcast in ad-dimensional
hypercube. Thus, it is optimal in terms of the number of
time units required for the whispering model. Furthermore,
for a non-faultyd-dimensional hypercube, only2d− 1 time
units are sufficient for the last time unit in phase two can be
omitted entirely.

For the shouting model, after a node has received the
message for the broadcast phase, it can immediately start



sending out messages for the broadcast phase and the ex-
tended broadcast phase. The broadcast phase requiresd
time units and one more unit is required for nodes that re-
ceived the message in thedth time unit to send their mes-
sages for the extended broadcast phase. Hence,(d+1) time
units are required which is optimal for short messages.

(d + 1) time units are sufficient because a nodev which
receives the message in time uniti in the broadcast phase
must have received messages from the extended broadcast
phase through its links of dimension 1 to(i − 1) before
time unit (i + 1). Sincev receives the message in time
unit i, the Hamming distance betweenv and the originator
is equal toi. Bit (i + 1) to bit d of the originator andv
are the same. Consider a nodeu that sends a message to
v in the extended broadcast phase through one of the links
of dimension1 to (i− 1). The Hamming distance between
bit 1 to bit i of u andv must be equal to 1. Bit(i + 1)
to bit d of u andv are the same. The Hamming distance
betweenu and the originator is at most(i − 1). u must
have started its extended broadcast before time unit(i +
1). Hence,v must have received all the messages in the
extended broadcasting from links of dimension 1 to(i− 1)
before it sends out its messages for the extended broadcast
through links of dimension 1 to(i− 1). Furthermore, using
the same argument as in the whispering model,d time units
are sufficient for non-faulty hypercubes.

The new(d− 1)-fault-tolerant broadcasting scheme can
be modified easily to become ak-fault-tolerant broadcasting
scheme wherek < d−1. Instead of requiringd time units in
the extended broadcast phase,k+1 time units are sufficient.
The algorithm proceeds the same way as the(d − 1)-fault-
tolerant broadcasting scheme from time unit 1 tok +1. It is
obvious that each node can receivek node disjoint calling
paths in the extended phase.

3 A (d−1)-fault-tolerant all-to-all broadcast-
ing scheme ford-dimensional hypercubes

The newk-fault-tolerant all-to-all broadcasting scheme
is based on thek-fault-tolerant broadcasting scheme de-
scribed in the last section. If each node initiates thek-
fault-tolerant broadcasting scheme, ak-fault-tolerant all-to-
all broadcasting scheme is achieved.

Assume that each node has enough memory to storen
messages in an arrayM . Each node also has a two dimen-
sional arrayL of integer withd rows andn/2 columns. The
arrayL is used to store which node’s message is received
through a particular link during the first and third phase of
the scheme.

Thek-fault-tolerant all-to-all broadcasting scheme con-
sists of four phases. The first two phases are the same as
the two phases in thek-fault-tolerant broadcasting scheme.
The initiator broadcasts its message and informs every node
that it wants to start a all-to-all broadcasting. This is done

by broadcasting a message with the id of the initiator and
an integerl. The integerl is used to indicate an all-to-all
broadcasting has been initiated and which phase the all-to-
all broadcasting is in. In the first phase of the scheme, after
a nodeu receives a message with id equalsv through the
link ui, it storesv in row i of the arrayL. After the first two
phases, every node knows that an all-to-all broadcasting has
been initiated.

The third and fourth phases of the new all-to-all broad-
casting scheme again are the same as the two phases in the
fault-tolerant broadcasting scheme. Every node except the
initiator starts a fault-tolerant broadcasting. Althoughn− 1
nodes begin to broadcast simultaneously, the restriction that
a node can only communicate with an adjacent node at any
given time unit for the whispering model is not violated.
This is possible because each node sends out its message
or relays other nodes messages through links of the same
dimension in any given time unit. Similar to the first two
phases, messages are sent out with the id of the node that
originates the message and an integerl. Moreover, after a
nodeu receives a message in the third phase with id equals
v through the linkui, it storesv in row i of the arrayL. Af-
ter the third and fourth phases, thek-fault-tolerant all-to-all
broadcasting is completed.

A description of the four phases of the fault-tolerant all-
to-all broadcasting scheme is given below. Letmi be the
message originated from nodei, Lj is the set containing all
the nodes stored in thejth row of the arrayL, o is the initia-
tor of the all-to-all broadcasting,M is the set of messages
received by a node,IDall is the set of id in which a node
has received a message, andIDm is the set of id received
in a message.

A k-fault-tolerant all-to-all broadcasting algorithm

For the initiatoro
Begin

For time unit 1 tod do (* In phase one *)
begin

send(mo, IDm = o, l = 4d− 2, oi);
storeo in Li;

end;
For time unit(d + 1) to 2d + 1 (* In phase two *)

do nothing;
Gossip(3, 2);
Gossip(4, 1);

End;

For a nodev
Begin

receive(Message,IDm, l, vj);
store Message inM ;
storeIDm in IDall;



storeIDm in Lj ;

If l > 4d then (* received message in phase one *)
begin

Gossip(1,j);
Gossip(2, 1);

end
else Gossip(2,j); (* received message in phase two *)

Gossip(3, 1);
Gossip(4, 1);

End;

The all-to-all broadcasting algorithm is equivalent to
running the fault-tolerant broadcasting scheme twice. The
first two phases are the same as the two phases of the
fault-tolerant broadcasting scheme. The last two phases
are equivalent to havingn nodes running the fault-tolerant
broadcast scheme at the same time. At most(nd − n + 1)
messages are required for a node to broadcast a message us-
ing the fault-tolerant broadcasting scheme. Hence, at most
n(nd − n + 1) messages are required for the fault-tolerant
all-to-all broadcasting scheme.

Assume that each message is of sizeF . Letβ be the start
up time andτ be the time to transmit one bit. For the whis-
pering model, the time requirement for the first two phases
is the same as the fault-tolerant broadcasting scheme. The
first two phases require2d(β + Fτ) time units. For the last
two phases, the number is higher because the message sent
in a given time unit can contain messages from up ton/2
nodes. In the first time unit of phase three, each message is
of sizeF . In the second time unit, each message sent is of
size2F . In theith time unit, the size of a message is2i−1F .
The total messages sent in all the time units in phase three
is equal to(20 + 21 + ... + 2i + ... + 2d−1)F = (n− 1)F .

Gossip(i, j) for a nodev
begin

if i = 3 then
begin

storemv in M ;
storev in IDall;

end;

For time unitw = (i− 1)d + j to i ∗ d do
begin

k = w modd;
l = l − 1;
if i = 1 or i = 3 then
begin

Message =M ;
IDm = IDall;

storeIDm in Lk;
end

else
begin

Message =M \ms wheres ∈ Lk;
IDm = IDall \ Lk;

end;

send(Message,IDm, l, vk);

If a message is received
begin

receive(Message,IDm, l, vk);
store Message inM ;
if i is odd then

storeIDm in Lk;
end

end;
end;

(n − 1)F . The total propagation time is at mostd(n −
1)Fτ . However, using the same argument as in the fault-
tolerant broadcasting scheme, the propagation time can be
reduced by2(n − 1)Fτ . This is done by not sending mes-
sages that have already been sent in phase three through the
same link. This reduces the propagation time by(n−1)Fτ .
In the algorithm, this is accomplished by storing theid of
the messages sent through link of dimensioni in Li. Before
a message is being sent in phase four, the messages that
have already been sent are removed using the information
stored inL.

Similarly, a further(n − 1)Fτ is reduced by not send-
ing messages through a link where a node receives those
messages. In the algorithm, this is accomplished by storing
the id of the messages received through link of dimension
i in Li. Again messages that have already been received
through the link of dimensioni are removed before a node
sends through the same link. The total propagation time for
phase four becomes(n − 1)(d − 2)Fτ . Hence, the total
time required for the entire fault-tolerant all-to-all broad-
casting scheme is4dβ + 2dFτ + (n − 1)(d − 1)Fτ . Fur-
thermore, for non-faulty hypercubes, the time required is
(4d−1)β+2dFτ +(n−1)(d−1)Fτ because the last time
unit of phase four can be omitted entirely.

For the shouting model, a similar algorithm can be de-
rived. The start up time can be reduced by(2d−2)β because
only (d + 1)β are required for each of the two phases. The
total time required becomes(2d+2)β+(d+1)Fτ +2(n−
1)Fτ for faulty hypercubes. If the hypercube is non-faulty,
the time required is(2dβ + dFτ + (n− 1)Fτ).



4 Comparison
In Fraigniaud’s paper[5], he assumes that all the nodes

start his fault-tolerant all-to-all broadcasting algorithm si-
multaneously. If we make the same assumption, phase one
and phase two of the new fault-tolerant all-to-all broad-
casting scheme can be removed. Each node starts a fault-
tolerant broadcast in phase three. For the whispering model,
the total time required for the new scheme is2dβ + (n −
1)(d− 1)Fτ for faulty hypercubes that is(n− 1)Fτ faster
than Fraigniaud’s scheme. Furthermore, the new scheme
requiresn(n − 1)d − n(n − 1)(d − 1) = n(n − 1) fewer
message transmissions than Fraigniaud’s scheme. If the hy-
percubes is non-faulty, the new scheme requires even less
time. However, for the shouting model, the new scheme
requires(n− 1)Fτ more time than Fraigniaud’s scheme.

5 Summary
A k-fault-tolerant all-to-all broadcasting scheme is pro-

posed for a faultyd-dimensional hypercube where0 ≤
k < d. The new scheme requires(n − 1)Fτ less time
and n(n − 1) fewer message transmissions compared to
previously proposed fault-tolerant all-to-all broadcasting
schemes.

References
[1] Bagchi, A., S.L. Hakimi, J. Mitchem, and E. Schme-

ichel, Parallel Algorithms for Gossiping by Mail,In-
formation Processing Letters, volume 34, 1990, pages
197-202.

[2] Bruck, J, Optimal Broadcasting in Faulty Hypercubes
via Edge-Disjoint Embedding,Networks.

[3] Carlsson, S., Y. Igarashi, K. Kanai, A. Lingas, K.
Miura, and O. Peterson, Information Disseminating
Schemes for Fault Tolerance in Hypercubes,IEICE
Trans. Fund., volume E75, 1992, pages 255-260.

[4] Chlebus, B., K. Diks, and A. Pelc Optimal Broad-
casting in Faulty Hypercubes,In Digests of Papers of
theh21st International Symposium on Fault-Tolerant
Computing, The Computer Society, IEEE, June 1991,
pages 266-273.

[5] Fraigniaud, P, Asymptotically Optimal Broadcasting
and Gossiping in Faulty Hypercube Multicomputers,
IEEE Transaction on Computers, 41(11), November
1992, pages 1410-1419.

[6] Gargano, L., Tighter Time Bounds on Fault Toler-
ant Broadcasting and GossipingNetworks, volume 22,
1992, pages 469-486.

[7] Hedetniemi, S.M., S.T. Hedetniemi, and A.L. Liest-
man, A Survey of Gossiping and Broadcasting in
Communication Networks,Networks, 1988, 18, pages
319-349.

[8] Johnsson, S., C.-T. Ho, Optimal Broadcasting and
Personalized Communication in Hypercubes,IEEE
Transaction on Computers, 38(9), September 1989,
pages 1249-1268.

[9] Krumme D.W., Fast Gossiping for the hypercube,
SIAM Journal on Computing, 21(2), April 1992, pages
365-380.

[10] Petrini, F., Total Exchange on Wormholek-Ary n-
Cubes with Adaptive Routing,Proc. of the first
Merged IEEE international Parallel Processing Symp.
and Sypm. of Parallel and Distributed Processing,
pages 267-271, March 1998.

[11] Peercy, M., and P. Banerjee, Distributed Algortihm for
Shostest-Path, Deadlock-Free Routing and Broadcast-
ing in Arbitrarily Faulty Hypercubes,In Digests of Pa-
pers of the 20th International Symposium on Fault-
Tolerant Computing, The Computer Society, IEEE,
June 1990, pages 218-225.

[12] Ramanathan, P., and K. G. Shin, Reliable Broadcast
in Hypercube Multicomputers,IEEE Transactions on
Computers, Dec 1988, 37(12), pages 1654-1657.

[13] Scott, D.S., Efficient All-to-All Communication Pat-
terns in Hypercubes and Meshes Topologies,Proc.
Sixth Conference Distributed Memory Concurrent
Computers, pages 398-403, 1991.


