Optimal Algorithms for Finding User Access
Sessions from Very Large Web Logs

Zhixiang Chen!, Ada Wai-Chee Fu?, and Frank Chi-Hung Tong®

! Department of Computer Science, University of Texas-Pan American,
Edinburg TX 78539 USA. chen@cs.panam.edu
2 Department of Computer Science, Chinese University of Hong Kong,
Shatin, N.T., Hong Kong. adafu@cse.cuhk.edu.hk
8 Department of Computer Science and Information Systems,
the University of Hong Kong, Pokfulam Road, Hong Kong. ftong@eti.hku.hk

Abstract. Although efficient identification of user access sessions from
very large web logs is an unavoidable data preparation task for the suc-
cess of higher level web log mining, little attention has been paid to
algorithmic study of this problem. In this paper we consider two types
of user access sessions, interval sessions and gap sessions. We design two
efficient algorithms for finding respectively those two types of sessions
with the help of new data structures. We present both theoretical and
empirical analysis of the algorithms and prove that both algorithms have
optimal time complexity.

1 Introduction

Web log mining has been receiving extensive attention recently (e.g., [1,3-5,13])
because of its significant theoretical challenges and great application and com-
mercial potentials. The goal of web log mining is to discover user access behaviors
and interests that are buried in vast web logs that are being accumulated every
day, every minute and every second. The discovered knowledge of user access
behaviors and interests will certainly help the construction and maintenance of
real-time intelligent web servers that are able to dynamically tailor their designs
to satisfy users’ needs [7,10,11]. The discovered knowledge will also help the
administrative personnel to predict the trends of the users’ needs so that they
can adjust their products to attract more users (and customers) now and in the
future [3].

The definition of session or visit is the group of activities performed by a
user from the moment she enters a server site to the moment she leaves the site
[12]. A user access session determines the set of all the web pages a user accessed
from the beginning of the session to the end. This kind of understanding is similar
to the “market basket” concept in data mining and knowledge discovery [5], the
set of all items in the market basket a customer buys at a retail store. As such,
the existing data mining techniques, such as the popular association rule mining,
may be applied to web log mining [13]. Some researchers [6] have suggested that
user access sessions are too coarse grained for mining tasks such as discovery of

association rules so that it is necessary to refine single user access sessions into
smaller transactions. But such refining process is also based on identification of
user access sessions. The difficulty of finding users and user access sessions from
web logs have been addressed in [6,4,8,9]. Researchers have proposed cut-off
thresholds to approximate the start and the end of a session (e.g., [6]). One may
also propose a 30-minutes gap limit between any two pages accessed by the user.
If the gap limit is exceeded, then a session boundary should be inserted between
the two pages [2, 10, 11].

There is little algorithmic study of efficient identification of user access ses-
sions in literature. Web logs are typically large, from hundreds of mega bytes
to tens of giga bytes of user access records. The logs are usually stored in hard
disks. Certainly, after eliminating irrelevant records from the raw web log, sort-
ing algorithms can be applied to group the same user’s access records together.
After that a one-pass sequential reading process can be used to cut each group
of the same user’s access records into sessions according to some threshold. This
sorting approach may be efficient for smaller web logs, but it is not practically
efficient for finding sessions from very large web logs, say, logs with hundreds of
mega bytes or tens of giga bytes of records. When real-time applications based
on dynamic discovery of the users’ hidden access patterns is concerned, faster
algorithms that have the ability to find user access sessions in several seconds or
several minutes is highly preferred. Without such faster algorithms, any higher
level mining tasks would be slowed down.

This paper is organized as follows. In section 2, we give formal definitions of
a-interval sessions and (-gap sessions. In section 3, we design data structures
and two session finding algorithms. We given theoretical and empirical analysis
about the two algorithms in sections 4 and 5, and conclude the paper in section
6.

2 Web Logs and User Access Sessions

The web log for any given web server is a sequential file with one user access
record per line. Each user access record consists of the following fields: (1) User’s
IP address or host name, (2) access time, (3) request method (e.g., “GET”,
“POST”), (4) URL of the page accessed, (5) Protocol (e.g., HTTP/1.0), (6)
return code, and (7) number of bytes transmitted. Other fields may also be
included when the server is specially configured. One should note that user access
records in a web log are ordered according to record access time with the oldest
access record placed on the top and the newest at the bottom.

Given any user access record 7, let ¢(r) be the number of seconds starting at
01/Jan/1900:00:00:00 and ending at the time when r was performed. Let £ be a
web log and a and § two positive values. We propose the following two ways to
define user access sessions. Recent studies show that the two ways lead to high
accuracy in web usage analysis [2].

a-interval sessions: the duration of a session may not exceed a threshold
of a. Given any user u, let r1,...,r, be the ordered list of u’s access records

in £. The a-interval sessions for u is a list of subsets s1 = {ri;4+1,...,7i; },82 =
{Tis 1y - sTisty-vy 8k = {Pip_y+1,---,7i } such that for 1 < j < k we have

0< t(rij) - t(rij—1+1) <a t(r’ij+1) - t(r’ij—1+1) > a,

where r;, 41 =71 and ry, = 7.
f-gap sessions: the time between any two consecutively assessed pages may

not exceed a threshold of 8. Given any user w, let r1,...,r, be the ordered
list of uw’s access records in L. The S-gap sessions for w is a list of subsets
S1 = {Tig41s--->Tis }s82 = {Pigt1s-->Tin}r- -y Sk = {Tip_141---,7i, } such that

for 1 <j <k and for i;, +1 <[< ¢; we have

0 S t(rH—l) - t(lrl) S /87 t(rij+1) - t(rij) > /83

where r;,11 =71 and 7, =1,

3 Data Structures and Algorithms

Our algorithms maintain a data structure as follows. We define a URL node
structure to store the URL and the access time of a user access record and a
pointer to point to the next URL node. We define a user node to store the
following information for a user: the user ID that is usually the hostname or IP
address in the access record; the start time that is the time of the first access
record entered into the user node; the current time that is the time of last access
record entered into the user node; the URL node pointer that points to the linked
list of URL nodes; the counter to record the total number of URL nodes added;
and two user node pointers to respectively point to the previous user node and
the next. Finally, we define a structure with two members, one pointing to the
beginning of the two-way linked list of user nodes and the other storing the total
number of relevant records that have been processed so far.

The interval session finding algorithm, called ISessionizer, is given in Figure
1. Definitions of the functions used in the algorithm should be inferred from
their names. E.g., purgeNodes(outfile, S, t(r)) searches every user node n
in the linked list S.head. If it finds that t(r) — n.startTime > a, then it outputs
the session consisting of the URLs in n.listPtr to outfile, and then deletes the
URL linked list n.listPtr and the user node n via memory deallocation.

The gap session finding algorithm, called GSessionizer, is shown in Figure
2. Function purge2Nodes(outfile, S, t(r)) checks, for every user node in S.head,
whether the “time gap” between the current record and the last record of the
user node is beyond the threshold £ or not. If so, it purges the user node in a
similar manner as algorithm ISessionizer does.

4 Theoretical Analysis

We present two theorems for algorithm ISessionizer only and the proofs are
omitted due to space limit but will be included in the full version of the paper.

Similar theorems can be obtained for algorithm GSessionizer. Several notations
are introduced: 77 = the time to read one record from the web log £. T> = the
time to check whether a record is relevant or not. T3 = the time to write the
URL and the access time of a relevant record from RAM to an output file. and

T, = the time to search once the user linked list S.head and the URL linked list
at each user node.

Algorithm ISessionizer (Interval Sessionizer):
input:
infile: input web log file
outfile: output user access session file
a > 0: threshold for defining interval sessions
v > 0: threshold for removing old user nodes
begin
1. open infile and outfile
2. createHeadNode(S); S.head = null; S.counter=0
3. while (infile is not empty)
4. readRecord(infile, r)
5. if (isRecordRelevant(r))
6. n = findRecord(S, r)
7. if (n is null)
8. addRecord(S,)
9. else if (t(r) — n.startTime <)
10. n.currentTime = t(r)
11. addURL(n.urlListPtr, r)
12. else
13. writeSessionAndReset(outfile, n, r)
14. S.counter = S.counter + 1
15. if (S.counter >)
16. purgeNodes(outfile, S, t(r)); S.counter=1
17. cleanList(outfile,S);
18. close infile and outfile
end

Figure 1: Algorithm ISessionizer

Algorithm GSessionizer (Gap Sessionizer):
input:
infile: input web log file
outfile: output user access sesston file
B > 0: threshold for defining gap sessions
v > 0: threshold for removing old user nodes
This algoprithm is the same as algorithm ISessionier except that
Lines 9 and 16 are replaced respectively by
9. else if (t(r) — n.currentTime <)
16. purge2Nodes(outfile, S, t(r)); S.counter=1

Figure 2: Algorithm GSessionizer

Theorem 1. Given a > 0, let S denote the set of all the a-interval sessions in
L. Then, algorithm ISessionizer finds exactly the set S.

Theorem 2. Assume that the web log L have N wuser access records with M
relevant ones. Then, the time complexity of algorithm ISessionizer with a -
threshold for purging user nodes is at most (Ty + To)N + TsM + Ty (1 + %))M

18000 18000
baseline time ——

16000 16000

14000 - 14000

12000 - 12000

10000 -

Computing Time (sec.)
Computing Time (sec)

100 150 200 250 300 350 200 50 500 100 150 200 250 300 350 400 as0 500
Web Log Size (Mega Bytes) Web Log Size (Mega Bytes)

(a)Baseline Performance (b) ISessionizer vs. SBAI

Fig. 1. Performances of Algorithm ISessionizer vs. SBAI vs. Baseline Time

5 Empirical Analysis

We report empirical performance analysis of algorithms ISessionizer and GSes-
sionizer. We use five web logs with respectively 100, 200, 300, 400, and 500 mega
bytes of user access records that were collected from the web server of the De-
partment of Computer Science, the University of Texas - Pan American. The
computing environment is a Dell OptiPlex GX1 PC with a 300 MHz processor,
512 mega bytes of RAM and 8 Giga bytes of hard disk. The baseline time is the
time needed for reading a Web log once sequentially from disk to RAM, testing
whether each record is pertinent or not, and writing each pertinent record back
to disk. The sorting based algorithm, denoted by SBAI for finding a-interval
sessions is the one that sorts the web log to group the same user’s access records
together and then reads the sorted log sequentially once from disk to RAM to
divide the relevant access records in each group into a-interval sessions. The
sorting based algorithm, denoted by SBAG, for finding [-gap sessions works
similarly as algorithm SBAI, but it divides the relevant access records in each
group into [-sessions. We choose 8 = a = 30 minutes and v = 500. The same
isRecordRelevant() function was used for the four algorithms and the baseline
time testing. Performance comparisons are illustrated in Figures 3 and 4.

6 Conclusions

We have settled the problem of efficient identification of interval sessions and
gap sessions from very large Web logs. However, we feel that more robust session
definitions may be needed because of the vast diversity of the web users and wide
applications of cashing and proxy servers, and that machine learning may help
the design of new algorithms.

References

1. B. Berendt and M. Spiliopoulou. Analysis of navigation behavior in web sites in-
tegrating multiple information systems. The VLDB Journal, 9:56-75, 2000.

18000 T T T T T T T 18000
ine time

16000 - 16000

14000 -

12000 -

Computing Time (sec.)

10.

11.

12.

13.

10000

12000

Computing Time (sec)

100 150 200 250 300 350 00 50 500 100 150 200 250 300 350 400 450 500

Web Log Size (Mega Bytes) Web Log Size (Vega Bytes)

(a)Baseline Performance (b) GSessionizer vs. SBAG
Fig. 2. Performances of Algorithm GSessionizer vs. SBAG vs. Baseline Time

. Bettina Berendt, Bamshad Mobasher, Myra Spiliopoulou, and Jim Wiltshire. Mea-

suring the accuracy of sessionizers for web usage analysis. Proceedings of the Work-
shop on Web Mining at the First SIAM International Conference on Data Mining,
pages 7-14, April 2001.

. Alex G. Buchner and Maurice D. Mulvenna. Discovering internet marketing in-

telligence through online analytical web usage mining. ACM SIGMOD RECORD,
pages 54-61, Dec. 1998.

. L. Catledge and J. Pitkow. Characterizing browsing behaviors on the world wide

web. Computer Networks and ISDN Systems, 27, 1995.

M.S. Chen, J.S. Park, and P.S. Yu. Efficient data mining for path traversal patterns.
IEEE Transactions on Knowledge and Data Engineering, 10:2:209-221, 1998.
Robert Cooley, Bamshad Mobasher, and Jaidep Srivastava. Data preparation for
mining world wide web browsing patterns. Journal of Knowledge and Information
Systems, 1:1, 1999.

M. Perkowitz and O. Etzioni. Adaptive web pages: Automatically synthesizing web
pages. Proceedings of AAAI/TAAI’98, pages 727-732, 1998.

J. Pitkow. In search of reliable usage data on the WWW. Proceedings of the Sizth
World Wide Web Conference. pages 451-463, Santa Clara, CA, 1997.

P. Pirolli, J. Pitkow, and R. Rao. Silk from sow’s ear: Extracting usable structures
from the Web. Proceedings of the 1996 Conference on Human Factors in Computing
Systems (CHI’96). Vancouver, British Columbia, Canada, 1996.

Myra Spiliopoulou and Lukas C. Faulstich. Wum: A tool for web utilization
analysis. Proceedings of EDBT Workshop WebDB’98, LNCS1590, pages 184-203.
Springer Verlag, 1999.

Myra Spiliopoulou, Carsten Pohle, and Lukas C. Faulstich. Improving the effec-
tiveness of a web site with web usage mining. KDD’99 Workshop on Web Usage
Analysis and User Profiling WEBKDD’99, Aug, 1999.

W3C. World wide web committee web usage characterization activity. W3C
Working Draft: Web Characterization Terminology and Definitions Sheet, pages
www.w3.0rg/1999/05/WCA-terms/, 1999.

Osmar Zaiane, Man Xin, and Jiawei Han. Discovering web access patterns and
trends by applying olap and data mining technology on web logs. Advances in
Digital Libraries, pages 19-29, April, 1998.

