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Estimate of Exponential Convergence Rate and
Exponential Stability for Neural Networks
Zhang Yi, P. A. Heng, and Ada W. C. Fu

Abstract—Estimate of exponential convergence rate and ex- memory. In most of the applications of neural networks there
ponential stability are studied for a class of neural networks s a shared requirement of raising the networks convergence
which includes the Hopfield neural networks and the cellular speed in order to cut down the time of neural computing. Since

neural networks. Both local and global exponential convergence th tial t Id b d to det -
is discussed. Theorems for estimate of exponential convergence € eXponential convergence rate cotl € LUSEC 10 aetermine

rate are established and the bounds on the rate of convergence arethe speed of neural computation, it is interesting to study
given. The domains of attraction in the case of local exponential the estimate of exponential convergence rate and exponential
convergence are obtained. Simple conditions are presented for stability of neural networks. Some results on the exponential
checking exponential stability of the neural networks. stability of neural networks could be found in [1], [8], and
Index Terms—Convergence rate, neural networks, stability. [10]. In this paper we shall study the estimation of exponential
convergence rate and the exponential stability of (1). Both
. INTRODUCTION local and global exponential convergence will be discussed.
E shall consider in this paper the neural networkBhis paper is organized as follows. Global exponential conver-
described by the following nonlinear differential equagence analysis will be given in Section Il. Local exponential
tion: convergence analysis will be given in Section Ill. Examples

) n in Section IV will be employed to illustrate the theory.
deilt) _ T, I
el iwz‘(t)Jr; 3595 (1) + L,
= [I. GLOBAL EXPONENTIAL CONVERGENCEANALYSIS
t>20, (i=1--,n) 1) o
- . ) If neural networks are employed to solve some optimization
where (zy,---,2,)" € R", d;>0, and [;(i = 1,---,n) c{xoblems by using the related energy functions, it is desired
are constants;)nxn is a constant matrix and is referrecyy gesign a neural network with less equilibria. In fact, if a
to as the interconnection matrix, angl: B — R(i = peyral network has a unique global convergence equilibrium,

1,---,n) represent the neuron input putput.acJtrivations anflwill be the global minimum point of the related energy
are locally Lipschitz continuous functions witP™g;(s) > fynction. Since the global stability of a neural network implies

0(i = 1,---,n) for all s € R. The symbolD* denotes the {hat the neural network has a unique equilibrium and all
Dini derivative. For any continuous functioft ® — R the gg|utions of the network converge to the equilibrium, global
Dini derivative of f(t) is defined as stability analysis is interesting in the application of solving
N Jt+h)— f(t) optimization problems. For the Hopfield neural networks some
D7 f(t)= lim sup’——"—"—=. " i o

R0t h elegant conditions of global asymptotic stability were reported

It is easy to see that iff(#) is locally Lipschitz then in [3]. These conditions are weaker than many existing global
| DT f(t)| < +o0. asymptotic stability conditions of Hopfield neural networks

Neural networks as (1) have been proposed in [5]. Tid they are easy to check in practice. In [5], the global
existence and uniqueness about equilibrium points and @gymptotic stability conditions in [3] were generalized to
global asymptotic stability of (1) were studied in [5] andhe more general neural networks of (1). Some unnecessary
[6]. From the mathematical point of view, this kind of neura¢onditions of [5] were omitted in [6]. In the present section, we
networks includes the Hopfield neural networks [9] and tighall establish the estimate of global exponential convergence
cellular neural networks [2]. In fact if the neural activationsate of (1). The bounds on the rate of global exponential
satisfy0 < Dtg;(s) < k;(i = 1,---,n) then (1) describes the convergence will be given. Moreover, we shall show that
Hopfield neural networks. If;(s) = (]s + 1| + |s — 1|)/2, similar conditions for global asymptotic stability in [5], [6]

(i =1,---,n) then (1) describes the cellular neural networksmply global exponential stability. It should be noticed that

So far, the continuous models of neural networks such sigice the neural network of (1) is described bgnlinear
Hopfield neural networks and cellular neural networks hawdinary differential equation, the global asymptotic stability
got many successful applications, for example, in the apptioes not imply global exponential stability automatically.
cation of solving some optimization problems and associatiJéiere are many nonlinear differential systems that are globally

asymptotically stable but not globally exponentially stable.
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Next, we prove an inequality for the neuron input output Theorem 1:If there existsr € (0, min; <;<»(d;)) such that
activations that will be used to study the global exponentigde matrix

convergence of (1).
Lemma 1: We have

/ " i(s) — i) ds

2}% [gi(v) —gi()]? (i=1,---,n)

for all w, v € R.
Proof: Define continuous functions

B = [ ) = 0] ds - 5 i) — (0

%

>

(i=1,---,n).
Then it follows that
Ya:(u
D* i) = [(w) - e ][ 1 - 222,

Since0 < Dtg;(s) < k; for all s € R, we have

>0, u>wv
D+EZ(U,){ <0, u<w
=0, u=w.

This shows that: = v is the minimum point of the function
E;(u) and so it follows for any € R that E;(u) > E;(v) =

0. Hence
| ) - o s

> o= lgi(w) —g()]* (=1, ,n)

2k;

The proof is completed.
Noting that0 < D%g;(s) < k; implies that

9i(&) — 9i(&2)
& —&

0< <k

for each&y, & € R, & # &, the following Lemma about
the existence and uniqueness of equilibrium points is adopted

from [5] and [6].
Lemma 2: If there exist constants; >0 (: = 1,---
such that the matrix

_ T 161 + (2l ] J jl} , 6Z — {
ki ’ 2 nxn ’

is negative definite, then the neural network of (1) has a unigque

equilibrium point.

We say that an equilibriurary, - - -, z7)T of (1) is globally
exponentially stable if there is &> 0 and somelM > 1 such

that
D lwi(t) — 2f] < M|2(0) — 2"l
=1

for all ¢ > 0, where

* [ . ok
J(0) = &l = max (Jos (0) — ).

1, i=j
0, i#j

[ di—o, | Ty+Ty [, i=y

is negative semidefinite, then (1) has an unique equilibrium
point(z%,---,z%)T and the solutioriz, (¢), - - -, x,(¢))* start-

1N

ing from any point(x1(0), - - -, z,(0))T € R™ satisfies

2
. — ¥l < ok —d;t
j2:(t) - 21| < [|2(0) xnle 30— 2

=1

s, %jzk,,e—ww]
r=1

forallt >0, (i =1,---,n).
Proof: Since the matrixl, is negative semidefinite im-
plies that the matrix

_dig L+ T
ki v 2 nxn

is negative definite, then by Lemma 2, (1) has a unique
equilibrium point(z%,---,z*)*. Define a function

n

z; (t)
> /  [9i(®) — gi(=])] db )

i=1 i

V(t) =

for all ¢ > 0. Obviously, V(¢) > 0. Computing the time
derivative of V (¢) it follows that

WO - -3 o) silaDlast) — a7)

an

«
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for all ¢ > 0. SinceT, is semidefinite, then and so

j2:(t) — 27| < Jwi(0) — af|e™"" + ]|2(0) — o7

2k; zn: v
r=1

PO < 72 (i (0) = D] r) = )

no i) ~
<0y / L) - gt o g
i=1 Y% / e—dg(i—?)e—(o/Q)s ds
=—oV(t) (3) 0
and soV (t) < V(0)e~7* for all t > 0. It follows from (2) that < |l=(0) — || ledit + 2d<2— 5 > 1T
03 j=1
" z;(0) "
LOEDY / [9:(6) — (7)) df e 3 k,e—w/z)t]
i=1 7% ’ !
n r=1
< Z l9i(2:(0)) = gi(7)] [2:(0) — 7] for all t > 0. This completes the proof.

Zzl In the proof of Theorem 1, we introduced a differentiable
< Z ki[:(0) — ]2 function V(¢) of (2) to study the exponential convergence of
= ! (1). Obviously, sinceD*g;(s) (¢ = 1,---,n) may take zeroes

n it results that/ (¢) is not a Lyapunov function. This is different
< ||=(0) —a:*||22ki from the Lyapunov function introduced in [3]. In [3], only

sigmoid (bounded and strictly increasing) activations of neural

networks were considered. To cover the case of unbounded
and by Lemma 1 activations and/or those with infinite intervals with zero slope,

[5], [6] used Lyapunov functions of the Lur'e—Postnikov type

S ) . to study global stability of (1). The Lyapunov functions of
Vi) 2 /T [9:(6) — gi(27)] 46 the Lure—Postnikov type was also used in [4] for studying
1”' the global absolute stability of neural networks. However, it
> — [gi(z:(t)) — gs(zD)]?, (i=1,---,n) seems that the methods of [3]-[6] are difficult to be developed
2k .
to study the exponential convergence of (1). Indeed, Lemma
for all t > 0, then we have 1 plays an essential role_in the proof of Theorem 1.
Theorem 2:If the matrix
|gi(2i(1)) — gi(7)] _dig L+ T s.=4L =
U2 0 i
< [l(0) — 27| , : -
is negative definite, then the neural network of (1) has an
. unique equilibrium and this equilibrium is globally exponen-
(=1, (4) tially stable.
Proof: Since the matrix
for all £ > 0.
From (1) it follows that _dig T+ T
ki 2 nxn
dt is negative definite, there must existe (0, minj<;<,(d;))
n such that the matrix

Z iil95(z;(8) — g;(27)]
- [-
for all ¢+ > 0, then by (4) we have

di—o '_’_Tij+Tji
2 nXn

is negative semidefinite. The result now follows from Theorem

Dtzi(t) — 2f] 1 and the proof is completed.
n To make the above theorems more flexible, we may modify
< —difwi(t) = 2|+ Y [Tsllg;(e(8) — g;(=5)|  the function (2) as
j=1
Lq (t)
< —dii(t) — a7| + [|2(0) — 27 Za,/ «7)] db

—(a/2)t
: Z ITij | 2k > e 772 where; >0 (i = 1,---,n) are some constants. Then we
i=1 r=1 have the following results.
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Theorem 3:If there exist constants; >0 (i = 1,---,n) Theorem 5:Let (x7,---, x%) be equilibrium of (1) in the
and 0 < o < min; <;<,(a;d;) such that the matrix close set
_ocidi—aéu aiTijJrajTji} s 4L 1= D={(xy, -, x)||lzi—2}|<a  (i=1,---,n)}
‘ & 9 TN, i£g . _
i nXxn 7 wherea >0 is a constant. Suppose that there exist constants
is negative semidefinite, then (1) has an unique equilibriufia>0 (¢ = 1,---,n) such that
point (x"l"...’ n) and OSD+gi($i)Ski (iIl,"',TL)
|2i(t) = 7| < ||(0) — 2] for any (x1,---,z,)7. If there existo € (0,min;<;<,(d;))
. 2 max(%) such that the matrix
—d;t ﬂ . .
¢ +2dZ max ,,—rfz_:| il T _di_a(y. T+ Ty 5 — 1, 1=y
1< o kz 1J 2 nxnv 1J 07 L;éj

apkpe™ (772 maxicran (ar))/t is negative semidefinite, then the soluti@n (¢), - - -, z,(¢))7
O‘J r=1 starting from any pointz;(0), - - -, z,(0))¥ € @, where
fOI’a”tZO, (L:1”n) Q:{(xlv"'vx) |.Z‘Z—]}Z|< 7(I~:17"'7n)}CD
Theorem 4:If there exist constanty;, >0 (¢ = 1,---,n) B
such that and
i iy + oLy =7
— s J;au} ! ‘5”:{(1)7 vy 2
i nxn ) . 8= 11;1%}2 1+ 5 —
is negative definite, then (1) has a unique equilibrium and this
equilibrium is globally exponentially stable. stays inD and satisfies
[ll. LocAL EXPONENTIAL CONVERGENCE ANALYSIS |zi(t) — zF| < ||z(0) — z*|| | e~ %t + y 2 Z T35
. . . v 2d; — ‘
It is well known that in the application of a neural network ' j=1

to associative memory, the neural network should have more
equilibrium than one. Since the global convergence implies
that the neural network has a unique equilibrium, the results
of last section are not useful in the application of associative

2k; > kpem /2
r=1

memory. In this section we shall develop some qualitatifer all ¢ > 0, (i = 1,---,n).
results on the estimate of local exponential convergence rate Proof: We  first ~ prove  that the  solution
and local exponential stability. Bounds on convergence ra(tél(t)w'wxn(t))T starting ~ from  any  point
together with the domain of attraction will be given. By local#1(0), -+, z,(0))" of @ stays in D for all t+ > 0
exponential convergence, it allows the neural network of (81d never across the boundary @!. Otherwise, since
to store more local exponential stable equilibrium than one(#1(0), - -, 2,(0))* € @, there must exist; >0 and somei
An equilibrium (z%,---,z%)" of (1) is said to be locally such tha‘l%(tl) zf| = candlz;(t)—zf| < a(j=1,---,n)
exponentially stable if there is &> 0 and for anye > 0 there for all ¢ € [0,#].
is a6 > 0 such thatz; (0) — x| < 6(i = 1,---,n) implies that ~ Define a function
|z;(t) — 2f| < ee™™(i=1,---,n) for all t > 0. no pw(t)
Lemma3:Let D C R™ be a convex subset and V(t) = / [9:(0) — gi(z)] dO
(z%,---,x%)T € D be a fixed point. If there exist constants i=1 7%
ki>0(i = 1,---,n) such that for ¢ € [0,#,]. Obviously, V(¢) > 0.

Similar to the calculation of (3), it is not difficult to see
that (dV (t)/dt) < —oV(¢) for all ¢t € [0,¢1] and soV(¢t) <
for each(z1,---,x,)" € D, then V(0)e=“* for all ¢ € [0,¢;]. Then we have

7 z; (1)
| ) el / ORI

0< DVgi(w;) < k; (i=1,---,n)

1 172 -
2 o lgi(zi) — gi(7)] (¢=1,---,n) < [|2(0) — ¥

2/{}7‘, Z k‘jG_(o/Q)t
j=1
for all (zy,---,2,)T € D. (i=1,---,n) 5)
The proof of Lemma 3 is similar to that of Lemma 1, the
details are omitted. for all ¢ € [0,¢].
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It follows from Lemma 3 and (5) that Proof: Let k; = DYgi(z}) +¢ (¢ = 1,---,n), then
0 < Dtgi(xf)<k; (i = 1,---,n). By the continuity of

lgi(zi(t)) — gs(z])] D%gi(s) (1t = 1,---,n), there must exist a constant> 0
" such that0 < Dtgi(x;) < ki, (¢ = 1,---,n) for all
< 2 (0) — || | 2K Y ke (/D (z1,---,2,)" € D, where
= D=A{(z1, - an) |lzi —2f| S, (i =1,---,n)}
(i=1, (6)
Moreover, since the matrix
for all ¢ € [0,¢1]. Then from (1) and (6) we have [ di& Ty + Ty
— & 4+ =
k" 2 }
D*|zi(t) - o}
n is negative definite, there exists a smak (0, min; <;<,(d;))
< —dilzi(t) — 27|+ Y [Tijllgs(z;(1) — g;(z})]  such that the matrix
Jj=1 d. — T 4+ T, g =7
L Tcr: |:_ ! 0611+ U—’_ JZ:| ) 6112{(]; L J
< —dilai(t) — 27| + 2(0) = *| Y [Tyl bi C e I
i=1 is negative semidefinite. The result now follows from Theorem
n 1 and the proof is completed.
2k; > kpem /2 Corollary: SupposeDtg;(s) (i = 1,---,n) are continuous
=1 for all s € R with Dtg;(«?)>0 (: = 1,---,n) and
(x%,---,25)T is equilibrium of (1). If the matrix
for all ¢ 0,t], and so
6[71]7 B d; 6+EJ+T]Z 5o 1, i=3j
n D+gl(x:) Y 2 nxn’ v 0’ i 7£ J
2
) o ¥ —d;t L. ) . .. o .
jzi(t1) — 27| < [|2(0) — 27| | e - 2, — o Z Tl s negative definite, then the equilibriutx},---,z)7 is
=t exponentially stable.
n /) Proof: Since the matrix
.. . ,—(0/2)t1
2ka_:lk,,e b Tt
D+g;(xF) * 2 xn

<«

is negative definite it implies that there is a sma#t 0 such

This vyields a contradiction and it shows thathat the matrix

(x1(t),---, 2. (t))T stays inD and never cross the boundary d; T + T

of D for all ¢t > 0. {—DJF : i+ — J}

. T gz(l‘z) +e 2 X
Since (z1(t),---,z,(t))" € D for all t > 0, then by nxn

Lemma 3, is negative definite, then Theorem 6 is applied. The proof is

completed.

z; (t)
/ [0:(8) — gi(a)] d8

IV. EXAMPLES

1 * . . H H _di .
> 7 [gi (2 (£)) — gi(a?)? (i=1,-,n) 7) Example 1: We are going to design a two-dimensional

cellular neural network in the form as follows:

da:l (t)

for all £ > 0. Using (7) and py a slight modificatic_)n of the =/ — _p () + T fla1 (D) + Thaf (2(t)) + [
proof of Theorem 1 the remains of the proof of this theorem J dtt
could be derived easily and the details are omitted. dw2(t) = —22(t) + To1 f(z1(2)) + Toof(x2)) + L2 (8)

Theorem 5 says that the solutions starting from the open set dt
@ will exponentially converge to the equilibrium 3. Hence, so that the neural network has a unique equilibrium and this

() is a domain of attraction of the equilibrium. equilibrium is globally exponentially stable with exponential
Theorem 6: Suppose thatD*g;(s) (¢ = 1,---,n) are convergence rate at least WhereZ;;(i = 1,5 = 1,2) and
continuous for alls € R. Let (z7,---, ;)" be equilibrium of 7;(i = 1,2) are constants andi(s) = 3[|s + 1| — |s — 1]].
(1). If there is a smalk > 0 such that the matrix Obviously, we haved < D*f(x) < 1. By Theorem 1, it
is sufficient to takes = % and choose suitable constants
_ di 5+ 1ij +sz} 5 = { L, i=j  Ty(i,j = 1,2) such that the matrix
Dtgi(af)+e ¥ 2 wxn 0, i#J 2 Tio+ 12
_|p ot T
is negative definite, then the equilibriux?,---,2%)T is Toys = Tio+To 2

exponentially stable. 9 3 14 Too
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is negative semidefinite. For example, takifig = é, Ti> = the solution (z1(t),z2(t)) of (9) starting from this point
5, Ty = ¢, Try = —3, then the matrixIy,; is negative satisfies
semidefinite. It follows from Theorem 1 that (8) has a unique
equilibrium(z?*, z3) and for any pointz;(0), z2(0)) € R? the |z1(t) — In 4| < max(|z1(0) — In4|, |z1(0) — In4])
solution (x4 (t), z2(t)) of (8) starting from this point satisfies < ., 631n 4 _(0/2)t>
e () — 25| < [l(0) — 2| (e + 2~/ 30 +17In4
< 3||2(0) — 2*||e~ /¥ |z2(t) — In 4| < max(|z1(0) — ln4|, |z1(0) — ln4|)
[wa(t) — 3] < la(0) — 27| (et + 2 1) . ( + 681—“4@—<o/2>t)
- B 30+ 171n 4
< 5llw(0) — a*fle” /)
for all ¢ > 0. This completes the design. for all £ > 0.
Example 2: Consider the following Hopfield neural net- Similarly, to the equilibrium €In 4, —In 4) € D», for any
work point (x1(0),22(0)) € @2, where
da:l = 3 + 1711149(:1: )
g P 1 VP 30 +171n4
Q2 = {($1,$2)T |z +Ind| < e
% — gyt 1711;49(371) (9) | 30+ 851n4

where g(s) = tanh(s). Obviously, Dt g(s) = 1 — g(s)? is ‘nd(3-2v2)(3+2v2), (=1, 2)} c Dy

continuous. It is easy to see that (9) has three equilibrium

points (0, 0), (In 4, In 4), and(In 4, —In 4). By the Corollary the solution (w1 (t),z2(t)) of (9) starting from this point
of Theorem 6, it is not difficult to check that the equilibria (Ingatisfies

4,1In 4) and E&In 4, —In 4) are locally exponentially stable.

Next, we will use the Theorem 5 to calculate an exponential l21(#) + Ind| < max(|z1(0) + lnd|, |+1(0) + ln 4])

convergence rate and a domain of attraction. 68104
Let . <e—t 4 —ne—<o/2>t)

304 17In4
Dy = {(21,22)7 ||z — In4| < In4(3 — 2v/2)

. |z2(t) + In 4| < max(|z1(0) + ln4|, |z1(0) + n 4]|)
(342v2),(i=1,2)} _ 68lnd  _
ety 2 (/2
and 30+17In4
Dy = {(x1, 22)%||z; + In 4| §1n4(3—2\/§) i
. all ¢ > 0.
Obviously, (In 4, In 4)¢ D, and In 4, —In 4) € D,. Since V. CONCLUSIONS
dg(s)/ds < 1/2 for all |s| <In\/3+2v/2, we have We have studied in this paper a class of neural network
dg(zy) 1 dglxs) 1 that includes the Hopfield neural networks and cellular neural
Tdr < 2" T dry < 5 networks. Results for the estimate of exponential convergence

L ) rate and exponential stability are established both in local
for all (x1,z2) € Dy of (z1,22) € Dy. Letk = 3, according ang global situations. These results may be used to design
to the Theorem 5 we should choose a constat(0, 1) such  peyral networks with desirable exponential convergence rate.

that the matrix Through out this paper we require that the Dini derivative of
—2(1 - o) 171n4 the neuron input output activations to be bounded. If we drop
T, = 171n 4 15 this condition, the analysis for the exponential stability may
- —2(1-o0) become more difficult under the conditions of the connection
, ) . 15 ) ) matrix that we given in this paper. Some of these results could
is negative semidefinite. It is easy to see thatif= 1 — 4 found in [11] and [12].
(171n4/30), then
_ 17In4 {_1 1} REFERENCES
7 15 I -1 [1] A. Bouzerdoum and T. R. Pattison, “Neural network for quadratic

. . . _ optimization with bound constraintsfEEE Trans. Neural Networks
is negative semidefinite. It follows from Theorem 5 that for o). 4, pp. 293-303, 1993.
any (331(())’332(0)) € @1, where [2] L. O. Chua and L. Yang, “Cellular neural networks: TheoryEEE
Trans. Circuits Syst.vol. 35, pp. 1257-1272, 1988.
< 304+ 171In4 [3] M. Forti, “On global asymptotic stability of a class of nonlinear systems
on ol A arising in neural networks theory)J. Differential Equationsvol. 113,
30 +851n4 no. 1, pp. 246-164, 1994.
[4] M. Forti, S. Manetti, and M. Marini, “Necessary and sufficient condi-
‘n4(3-2v2)(3+2v2),(i =1,2) } cD; tions for absolute stability of neural networkdEEE Trans. Circuits
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Q.= {(a:l,a:4)T||a:i —In4|
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