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Estimate of Exponential Convergence Rate and
Exponential Stability for Neural Networks

Zhang Yi, P. A. Heng, and Ada W. C. Fu

Abstract—Estimate of exponential convergence rate and ex-
ponential stability are studied for a class of neural networks
which includes the Hopfield neural networks and the cellular
neural networks. Both local and global exponential convergence
is discussed. Theorems for estimate of exponential convergence
rate are established and the bounds on the rate of convergence are
given. The domains of attraction in the case of local exponential
convergence are obtained. Simple conditions are presented for
checking exponential stability of the neural networks.

Index Terms—Convergence rate, neural networks, stability.

I. INTRODUCTION

W E shall consider in this paper the neural networks
described by the following nonlinear differential equa-

tion:

(1)

where and
are constants, is a constant matrix and is referred
to as the interconnection matrix, and:

represent the neuron input output activations and
are locally Lipschitz continuous functions with

for all The symbol denotes the
Dini derivative. For any continuous function: the
Dini derivative of is defined as

It is easy to see that if is locally Lipschitz then

Neural networks as (1) have been proposed in [5]. The
existence and uniqueness about equilibrium points and the
global asymptotic stability of (1) were studied in [5] and
[6]. From the mathematical point of view, this kind of neural
networks includes the Hopfield neural networks [9] and the
cellular neural networks [2]. In fact if the neural activations
satisfy then (1) describes the
Hopfield neural networks. If

then (1) describes the cellular neural networks.
So far, the continuous models of neural networks such as

Hopfield neural networks and cellular neural networks have
got many successful applications, for example, in the appli-
cation of solving some optimization problems and associative
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memory. In most of the applications of neural networks there
is a shared requirement of raising the networks convergence
speed in order to cut down the time of neural computing. Since
the exponential convergence rate could be used to determine
the speed of neural computation, it is interesting to study
the estimate of exponential convergence rate and exponential
stability of neural networks. Some results on the exponential
stability of neural networks could be found in [1], [8], and
[10]. In this paper we shall study the estimation of exponential
convergence rate and the exponential stability of (1). Both
local and global exponential convergence will be discussed.
This paper is organized as follows. Global exponential conver-
gence analysis will be given in Section II. Local exponential
convergence analysis will be given in Section III. Examples
in Section IV will be employed to illustrate the theory.

II. GLOBAL EXPONENTIAL CONVERGENCEANALYSIS

If neural networks are employed to solve some optimization
problems by using the related energy functions, it is desired
to design a neural network with less equilibria. In fact, if a
neural network has a unique global convergence equilibrium,
it will be the global minimum point of the related energy
function. Since the global stability of a neural network implies
that the neural network has a unique equilibrium and all
solutions of the network converge to the equilibrium, global
stability analysis is interesting in the application of solving
optimization problems. For the Hopfield neural networks some
elegant conditions of global asymptotic stability were reported
in [3]. These conditions are weaker than many existing global
asymptotic stability conditions of Hopfield neural networks
and they are easy to check in practice. In [5], the global
asymptotic stability conditions in [3] were generalized to
the more general neural networks of (1). Some unnecessary
conditions of [5] were omitted in [6]. In the present section, we
shall establish the estimate of global exponential convergence
rate of (1). The bounds on the rate of global exponential
convergence will be given. Moreover, we shall show that
similar conditions for global asymptotic stability in [5], [6]
imply global exponential stability. It should be noticed that
since the neural network of (1) is described bynonlinear
ordinary differential equation, the global asymptotic stability
does not imply global exponential stability automatically.
There are many nonlinear differential systems that are globally
asymptotically stable but not globally exponentially stable.

Throughout this section we assume that there exist some
constants such that

for all
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Next, we prove an inequality for the neuron input output
activations that will be used to study the global exponential
convergence of (1).

Lemma 1: We have

for all ,
Proof: Define continuous functions

Then it follows that

Since for all , we have

This shows that is the minimum point of the function
and so it follows for any that

Hence

The proof is completed.
Noting that implies that

for each , , , the following Lemma about
the existence and uniqueness of equilibrium points is adopted
from [5] and [6].

Lemma 2: If there exist constants
such that the matrix

is negative definite, then the neural network of (1) has a unique
equilibrium point.

We say that an equilibrium of (1) is globally
exponentially stable if there is a and some such
that

for all where

Theorem 1: If there exists such that
the matrix

is negative semidefinite, then (1) has an unique equilibrium
point and the solution start-
ing from any point satisfies

for all ,
Proof: Since the matrix is negative semidefinite im-

plies that the matrix

is negative definite, then by Lemma 2, (1) has a unique
equilibrium point Define a function

(2)

for all Obviously, Computing the time
derivative of it follows that
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for all Since is semidefinite, then

(3)

and so for all It follows from (2) that

and by Lemma 1

for all then we have

(4)

for all
From (1) it follows that

for all , then by (4) we have

and so

for all This completes the proof.
In the proof of Theorem 1, we introduced a differentiable

function of (2) to study the exponential convergence of
(1). Obviously, since may take zeroes
it results that is not a Lyapunov function. This is different
from the Lyapunov function introduced in [3]. In [3], only
sigmoid (bounded and strictly increasing) activations of neural
networks were considered. To cover the case of unbounded
activations and/or those with infinite intervals with zero slope,
[5], [6] used Lyapunov functions of the Lur’e–Postnikov type
to study global stability of (1). The Lyapunov functions of
the Lur’e–Postnikov type was also used in [4] for studying
the global absolute stability of neural networks. However, it
seems that the methods of [3]–[6] are difficult to be developed
to study the exponential convergence of (1). Indeed, Lemma
1 plays an essential role in the proof of Theorem 1.

Theorem 2: If the matrix

is negative definite, then the neural network of (1) has an
unique equilibrium and this equilibrium is globally exponen-
tially stable.

Proof: Since the matrix

is negative definite, there must exist
such that the matrix

is negative semidefinite. The result now follows from Theorem
1 and the proof is completed.

To make the above theorems more flexible, we may modify
the function (2) as

where are some constants. Then we
have the following results.
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Theorem 3: If there exist constants
and such that the matrix

is negative semidefinite, then (1) has an unique equilibrium
point and

for all ,
Theorem 4: If there exist constant

such that

is negative definite, then (1) has a unique equilibrium and this
equilibrium is globally exponentially stable.

III. L OCAL EXPONENTIAL CONVERGENCEANALYSIS

It is well known that in the application of a neural network
to associative memory, the neural network should have more
equilibrium than one. Since the global convergence implies
that the neural network has a unique equilibrium, the results
of last section are not useful in the application of associative
memory. In this section we shall develop some qualitative
results on the estimate of local exponential convergence rate
and local exponential stability. Bounds on convergence rate
together with the domain of attraction will be given. By local
exponential convergence, it allows the neural network of (1)
to store more local exponential stable equilibrium than one.

An equilibrium of (1) is said to be locally
exponentially stable if there is a and for any there
is a such that implies that

for all
Lemma 3: Let be a convex subset and

be a fixed point. If there exist constants
such that

for each then

for all
The proof of Lemma 3 is similar to that of Lemma 1, the

details are omitted.

Theorem 5: Let be equilibrium of (1) in the
close set

where is a constant. Suppose that there exist constants
such that

for any If there exist
such that the matrix

is negative semidefinite, then the solution
starting from any point where

and

stays in and satisfies

for all
Proof: We first prove that the solution

starting from any point
of stays in for all

and never across the boundary of Otherwise, since
there must exist and some

such that and
for all

Define a function

for Obviously,
Similar to the calculation of (3), it is not difficult to see

that for all and so
for all Then we have

(5)

for all
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It follows from Lemma 3 and (5) that

(6)

for all Then from (1) and (6) we have

for all and so

This yields a contradiction and it shows that
stays in and never cross the boundary

of for all
Since for all then by

Lemma 3,

(7)

for all Using (7) and by a slight modification of the
proof of Theorem 1 the remains of the proof of this theorem
could be derived easily and the details are omitted.

Theorem 5 says that the solutions starting from the open set
will exponentially converge to the equilibrium in Hence,
is a domain of attraction of the equilibrium.
Theorem 6: Suppose that are

continuous for all Let be equilibrium of
(1). If there is a small such that the matrix

is negative definite, then the equilibrium is
exponentially stable.

Proof: Let then
By the continuity of

there must exist a constant
such that for all

where

Moreover, since the matrix

is negative definite, there exists a small
such that the matrix

is negative semidefinite. The result now follows from Theorem
1 and the proof is completed.

Corollary: Suppose are continuous
for all with and

is equilibrium of (1). If the matrix

is negative definite, then the equilibrium is
exponentially stable.

Proof: Since the matrix

is negative definite it implies that there is a small such
that the matrix

is negative definite, then Theorem 6 is applied. The proof is
completed.

IV. EXAMPLES

Example 1: We are going to design a two-dimensional
cellular neural network in the form as follows:

(8)

so that the neural network has a unique equilibrium and this
equilibrium is globally exponentially stable with exponential
convergence rate at least Where and

are constants and
Obviously, we have By Theorem 1, it
is sufficient to take and choose suitable constants

such that the matrix
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is negative semidefinite. For example, taking
then the matrix is negative

semidefinite. It follows from Theorem 1 that (8) has a unique
equilibrium and for any point the
solution of (8) starting from this point satisfies

for all This completes the design.
Example 2: Consider the following Hopfield neural net-

work

(9)

where Obviously, is
continuous. It is easy to see that (9) has three equilibrium
points (0, 0), (ln 4, ln 4), and (ln 4, ln 4). By the Corollary
of Theorem 6, it is not difficult to check that the equilibria (ln
4, ln 4) and ( ln 4, ln 4) are locally exponentially stable.
Next, we will use the Theorem 5 to calculate an exponential
convergence rate and a domain of attraction.

Let

and

Obviously, (ln 4, ln 4) and ( ln 4, ln 4) Since
for all we have

for all or Let according
to the Theorem 5 we should choose a constant such
that the matrix

is negative semidefinite. It is easy to see that if
, then

is negative semidefinite. It follows from Theorem 5 that for
any where

the solution of (9) starting from this point
satisfies

for all
Similarly, to the equilibrium ( ln 4, ln 4) , for any

point where

the solution of (9) starting from this point
satisfies

all

V. CONCLUSIONS

We have studied in this paper a class of neural network
that includes the Hopfield neural networks and cellular neural
networks. Results for the estimate of exponential convergence
rate and exponential stability are established both in local
and global situations. These results may be used to design
neural networks with desirable exponential convergence rate.
Through out this paper we require that the Dini derivative of
the neuron input output activations to be bounded. If we drop
this condition, the analysis for the exponential stability may
become more difficult under the conditions of the connection
matrix that we given in this paper. Some of these results could
be found in [11] and [12].
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