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ABSTRACT
Data publishing generates much concern over the protection
of individual privacy. Recent studies consider cases where the
adversary may possess different kinds of knowledge about the
data. In this paper, we show that knowledge of the mecha-
nism or algorithm of anonymization for data publication can
also lead to extra information that assists the adversary and
jeopardizes individual privacy. In particular, all known mech-
anisms try to minimize information loss and such an attempt
provides a loophole for attacks. We call such an attack a min-
imality attack. In this paper, we introduce a model called
m-confidentiality which deals with minimality attacks, and
propose a feasible solution. Our experiments show that min-
imality attacks are practical concerns on real datasets and
that our algorithm can prevent such attacks with very little
overhead and information loss.

1. INTRODUCTION
Although data mining is potentially useful, many data hold-

ers are reluctant to provide their data for data mining due
to the fear of violating individual privacy. In recent years,
study has been made to ensure that sensitive information
of individuals cannot be identified easily [16, 17, 10, 14, 9].
One well-studied approach is the k-anonymity model which
in turn led to other models such as confidence bounding [19],
l-diversity [12], (α, k)-anonymity [22], t-closeness [11], (k, e)-
anonymity [27] and (c, k)-safety [13].

Generally, the existing models assume that the data in the
form of a table T contains (1) a quasi-identifer (QID) as
a set of attributes (e.g., Date of birth, Zipcode and Sex)
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which can be used to identify an individual, and (2) sensitive
attributes which may contain some sensitive values (e.g. HIV
of attribute Disease) of individuals. Often, it is also assumed
that each tuple in T corresponds to an individual and no two
tuples refer to the same individual. All tuples with the same
QID value form an equivalence class (QID-EC for short). The
table T is said to satisfy k-anonymity if the size of every
equivalence class is greater than or equal to k.

Moreover, in a simplified setting of l-diversity model [12], a
QID-EC is said to be l-diverse or satisfy l-diversity if the pro-
portion of each sensitive value is at most 1/l. A table satisfies
l-diversity (or it is l-diverse) if all QID-EC’s in it are l-diverse.
In the following discussion, when we refer to l-diversity, we
refer to this simplified setting. We shall discuss the complex
l-diversity model in Section 5, where we show that our results
can be extended to other anonymization models.

In this paper, we study the case where the adversary has
some additional knowledge about the mechanism involved in
the anonymization, and thus can launch an attack based on
this knowledge. We focus on the protection of the relation-
ship between the quasi-identifier and a single sensitive at-
tribute.

1.1 Minimality Attack
In Table 1(a), assume that the QID values of q1 and q2

can be generalized to Q and assume only one sensitive at-
tribute “disease”, in which HIV is a sensitive value. For ex-
ample, q1 may be {Nov 1930, Z3972, M}, q2 may be {Dec
1930, Z3972, M} and Q is {Nov/Dec 1930, Z3972, M}. (Note
that q1 and q2 may also be generalized values.) A tuple as-
sociated with HIV is said to be a sensitive tuple. For each
equivalence class, at most half of the tuples are sensitive.
Hence, the table satisfies 2-diversity.

As observed in [10], the existing anonymization approaches
for data publishing follow an implicit principle: “For any
anonymization mechanism, it is desirable to define some no-
tion of minimality. Intuitively, a k-anonymization should not
generalize, suppress, or distort the data more than it is nec-
essary to achieve k-anonymity.” Based on this minimality
principle, Table 1(a) will not be generalized.1 In fact the
above notion of minimality is too strong since almost all
known anonymization problems for data publishing are NP-
hard, many existing algorithms are heuristical and only attain
local minima. We shall later give a more relaxed notion of
the minimality principle in order to cover both the optimal

1This is the case for each of the anonymization algorithms in
[12, 19, 22].



QID Disease
q1 HIV
q1 non-sensitive
q2 HIV
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive

QID Disease
q1 HIV
q1 HIV
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive

QID
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Q

Q

Q

Q

Q

Q

QID
Q

Q

Q

Q

q2
q2
q2

(a) good table (b) bad table (c) global (d) local

Table 1: 2-diversity: global and local recoding

Name QID
Andre q1
Kim q1

Jeremy q2
Victoria q2
Ellen q2
Sally q2
Ben q2

QID
q1
q1
q2
q2
q2
q2
q2

Name QID
Andre q1
Kim q1

Jeremy q2
Victoria q2
Ellen q2
Sally q2
Ben q2
Tim q4

Joseph q4

QID
q1
q1
q2
q2
q2
q2
q2
q4
q4

(a) individual QID (b) multiset (c) individual QID (d) multiset

Table 2: T e: external table available to the adversary

as well as the heuristical algorithms. For now, we assume
that mimimality principle means that a QID-EC will not be
generalized unnecessarily.

Next, consider a slightly different table, Table 1(b). Here,
the set of tuples for q1 violates 2-diversity because the pro-
portion of the sensitive tuples is greater than 1/2. Thus,
this table will be anonymized to a generalized table by gen-
eralizing the QID values as shown in Table 1(c) by global
recoding [24, 18]. The tuples in this table contain the gener-
alized values of the QID arranged in the same tuple ordering
as the corresponding tuples in Table 1(b). This is a conven-
tion we shall use for all examples in this paper showing the
anonymization of a table. In global recoding, all occurrences
of an attribute value are recoded to the same value. If lo-
cal recoding [16, 1] is adopted, occurrences of the same value
of an attribute may be recoded to different values. Such an
anonymization is shown in Table 1(d). These anonymized
tables satisfy 2-diversity. However, do these tables protect
individual privacy sufficiently?

In most previous work (e.g., [17, 9, 10, 24]), the knowledge
of the adversary involves an external table T e such as a voter
registration list that maps QIDs to individuals. As in most
previous work, we assume that each tuple in T e maps to one
individual and no two tuples map to the same individual.
The same is also assumed in the table T to be published. Let
us first consider the case when T and T e are mapped to the
same set of individuals. Table 2(a) is an example of T e.

Assume further that the adversary knows the goal of 2-
diversity, s/he also knows whether it is a global or local
recoding, and Table 2(a) is available as the external table
T e. With the notion of minimality in anonymization, the
adversary reasons as follows: From the published Table 1(c),
there are 2 sensitive tuples in total. From T e, there are 2
tuples with QID=q1 and 5 tuples with QID=q2. Hence, the
equivalence class for q2 in the original table must already
satisfy 2-diversity, because even if both sensitive tuples have
QID=q2, the proportion of sensitive values in the class for
q2 is only 2/5. Since generalization has taken place, at least
one equivalence class in the original table T must have vi-

QID Disease
q1 HIV
q1 Lung Cancer
q2 Gallstones
q2 HIV
q2 Ulcer
q2 Alzheimer
q2 Diabetes
q4 Ulcer
q4 Alzheimer

QID Disease
q1 HIV
q1 HIV
q2 Gallstones
q2 Lung Cancer
q2 Ulcer
q2 Alzheimer
q2 Diabetes
q4 Ulcer
q4 Alzheimer
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Q

Q

Q

Q

Q

Q

Q
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Q

Q

Q

Q

q2
q2
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(a) good table (b) bad table (c) global (d) local

Table 3: 2-diversity (where all values in Disease are
sensitive): global and local recoding

olated 2-diversity, because otherwise no generalization will
take place according to minimality. The adversary concludes
that q1 has violated 2-diversity, and that is possible only if
both tuples with QID=q1 have a disease value of “HIV”. The
adversary therefore discovers that Andre and Kim are linked
to “HIV”.

In some previous work, it is assumed that the set of individ-
uals in the external table T e can be a superset of that for the
published table. Table 2(c) shows such a case, where there is
no tuple for Tim and Joseph in Table 1(a) and Table 1(b). If
it is known that q4 cannot be generalized to Q (e.g. q4={Nov
1930, Z3972, F} and Q={Jan/Feb 1990, Z3972, M}), then
the adversary can be certain that the tuples with QID=q4
are not in the original table. Thus, the extra q4 tuples in
T e do not have any effect on the above reasoning of the ad-
versary and, therefore, the same conclusion can be drawn.
We call such an attack based on the minimality principle a
minimality attack.

Observation 1. If a table T is anonymized to T ∗ which
satisfies l-diversity, it can suffer from a minimality attack.
This is true for both global and local recoding and for the
cases when the set of individuals related to T e is a superset
of that related to T .

In the above example, some values in the sensitive attribute
Disease are not sensitive. Would it help if all values in the
sensitive attributes are sensitive? In the tables in Table 3,
we assume that all values for Disease are sensitive. Table
3(a) satisfies 2-diversity but Table 3(b) does not. Suppose
anonymization of Table 3(b) results in Table 3(c) by global
recoding and Table 3(d) by local recoding. The adversary is
armed with the external table Table 2(c) and the knowledge
of the goal of 2-diversity, s/he can launch an attack by reason-
ing as follows: with 5 tuples for QID=q2 and each sensitive
value appearing at most twice, there cannot be any violation
of 2-diversity for the tuples with QID=q2. There must have
been a violation for QID=q1. For a violation to take place,
both tuples with QID=q1 must be linked to the same disease.
Since HIV is the only disease that appears twice in the table,
Andre and Kim must have contracted HIV.

Observation 2. Minimality attack is possible no matter
the sensitive attribute contains non-sensitive values or not.

The intended objective of 2-diversity is to make sure that
an adversary cannot deduce with a probability above 1/2
that an individual is linked to any sensitive value. Thus, the
published tables violate this objective.



Some previous studies [23, 27, 13] propose the bucketiza-
tion technique. However, it is easy to show that minimality
attacks still may happen. For example, the multisets in Ta-
bles 2(b) and (d) are inherently available in the methods using
the bucketization techniques. However, the above minimality
attacks to Andre would also be successful if the knowledge of
the external table Table 2(a) is replaced by that of a multiset
of the QID values as shown in Table 2(b) plus the QID value
of Andre; or if Table 2(c) is replaced by the multiset in Table
2(d) plus the QID value of Andre.

1.2 Contributions
In this paper, we introduce the problem of minimality at-

tacks in privacy preservation for data publishing. Our con-
tributions include the following.

First, to the best of our knowledge, this is the first work
to study the attack by minimality in privacy preserving data
publishing. We propose an m-confidentiality model to cap-
ture the privacy preserving requirement under the additional
adversary knowledge of the minimality of the anonymization
mechanisms.

Second, since almost all known anonymization methods for
data publishing attempt to minimize information loss, we
show in Section 5 how minimality attack can be a practical
concern in various known anonymization models.

Third, we propose a solution to generate a published data
set which satisfies m-confidentiality. Our method makes use
of the existing mechanisms for k-anonymity with additional
precaution steps. Interestingly, although it has been discov-
ered that k-anonymity is incapable of handling sensitive val-
ues in some cases, it is precisely this feature that makes it a
useful component in our method to counter attacks by min-
imality for protecting sensitive data. Since k-anonymization
does not consider the sensitive values, its result is not re-
lated to whether some tuples need to be anonymized due to
the sensitive values. Without this relationship, an attack by
minimality becomes infeasible.

Last, we have conducted a comprehensive empirical study
to show that minimality attacks are on a practical concern
on real data sets. Compared to a most competent existing al-
gorithms for k-anonymity, our method introduces very minor
computation overhead but achieves comparable information
loss.

The rest of the paper is organized as follows. In Section 2,
we review the related work. We formulate the problem in
Section 3, and characterize the nature of minimality attacks
in Section 4. We show that minimality attacks are practical
concerns in various anonymization models in Section 5. We
give a simple yet effective solution in Section 6. An empirical
study is reported in Section 7. The paper is concluded in
Section 8.

2. RELATED WORK
Since the introduction of k-anonymity, there have been a

number of enhanced models such as confidence bounding [19],
l-diversity [12], (α, k)-anonymity [22], t-closeness [11], (k, e)-
anonymity [27] and personalized privacy [24], which addition-
ally consider the privacy issue of disclosure of the relation-
ship between the quasi-identifier and the sensitive attributes.
Confidence bounding is to bound the confidence by which a
QID can be associated with a sensitive value. T is said to
satisfy (α, k)-anonymity if T is k-anonymous and the pro-

portion of each sensitive value in every equivalence class is
at most α, where α ∈ [0, 1] is a user parameter. If we set
α = 1

l
and k = 1, then the (α, k)-anonymity model becomes

the simplified model of l-diversity.
An adversary may also have some additional knowledge

about the individuals in the dataset or some knowledge about
the data involved [12, 7, 13]. [12] considers the possibility
that the adversary can exclude some sensitive values. For
example, Japanese have an extremely low incidence of heart
disease. Thus, the adversary can exclude heart disease in a
QID-EC for a Japanese individual. [7] considers that addi-
tional information may be available in terms of some statistics
on some of the attributes, such as age statistics and zip code
statistics. More recently, [13] tries to protect sensitive data
against background knowledge in the form of implications,
e.g., if an individual A has HIV then another individual B
also has HIV, and proposes a model called (c, k)-safety to
protect against such attacks. However, none of the above
work considers the knowledge of the anonymization mecha-
nism discussed in this paper. In Section 5, we shall show that
the above previous studies are vulnerable to minimality at-
tacks. Other than generalization, more general distortion can
be applied to data before publishing. The use of distortion
has been proposed in earlier work such as [15, 4].

The idea of attack by minimality has been known for some
time in cryptographic attacks where the adversary makes use
of the knowledge of the underlying cryptographic algorithm.
In particular, a timing attack [8] in a public-key encryption
system, such as RSA, DSS and SSL, is a practical and power-
ful attack that exploits the timing factor of the implemented
algorithm, with the assumption that the algorithm will not
take more time than necessary. Measuring response time for a
specific query might give away relatively large amounts of in-
formation. To defend timing attack, the same algorithm can
be implemented in such a way that every execution returns in
exactly x seconds, where x is the maximum time it ever takes
to execute the routine. In this extreme case, timing does not
give an attacker any helpful information. In 2003, Boneh and
Brumley [3] demonstrated a practical network-based timing
attack on SSL-enabled web servers which recovered a server
private key in a matter of hours. This led to the widespread
deployment and use of blinding techniques in SSL implemen-
tations.

3. PROBLEM DEFINITION
Let T be a table. We assume that one of the attributes is a

sensitive attribute where some values in this attribute should
not be linkable to any individual. A quasi-identifier (QID) is
a set of attributes of T that may serve as identifications for
some individuals.

Assumption 1. Each tuple in the table T is related to one
individual and no two tuples are related to the same individ-
ual.

We assume that each attribute has a corresponding con-
ceptual taxonomy T . A lower level domain in the taxonomy
T provides more details than a higher level domain. For
example, Figure 1 shows a generalization taxonomy of “Edu-
cation” in the “Adult” dataset [2]. Values “undergrad” and
“postgrad” can be generalized to “university”.2 Generaliza-

2Such hierarchies can also be created for numerical attributes
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academic vocational undergrad postgrad
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Figure 1: Generalization taxonomy of “Education”
in the “Adult” dataset

tion replaces lower level domain values in the taxonomy with
higher level domain values.

Some previous studies consider taxonomies only for QID
attributes while some other also consider taxonomies for the
sensitive attributes. In some earlier studies on anonymiza-
tion, the taxonomy for an attribute in the QID or the sen-
sitive attribute is a tree. However, in general, a taxonomy
may be a directed acyclic graph (DAG). For example, “day”
can be generalized to “week”, or via “month” to “year”, or
via “season” to “year”. Therefore, we extend the meaning of
a taxonomy to any partially ordered set with a partial order.
An attribute may have more than one taxonomy, where a
certain value can belong to two or more taxonomies.3

Let T be a taxonomy for an attribute in QID. We call the
leaf nodes of the taxonomy T the ground values.

In Figure 1, values “1st-4th”, “undergrad” and “vocational”
are some ground values in T . As “university” is an ancestor
of “undergrad”, we obtain “undergrad” ≺ “university”.

When a record contains the sensitive value of “lung can-
cer”, it can be generalized to either “respiratory disease” or
“cancer”. While “cancer” and “lung cancer” are sensitive,
“respiratory disease” as a category in general may not be.
Therefore, we can assume the following property.

Assumption 2. (Taxonomy property): In a taxonomy for
a sensitive attribute, the ancestor nodes of a non-sensitive
node are also non-sensitive. The ancestor of a sensitive node
may be either sensitive or non-sensitive.

In a faithful anonymization, a value can be generalized to
any ancestor. For example, “lung cancer” may be general-
ized to “cancer” or “respiratory disease”. With the above
assumption, if a node is sensitive, all ground values in its
descendants are sensitive.

With a taxonomy for the sensitive attribute, such as the
one in Figure 1, in general, the protection is not targeting on
a single ground value. In Figure 1, all the values under “ele-
mentary” may be sensitive in the sense that there should not
be linkage between an individual and the set of values {1st-
4th, 5th-6th, 7th-8th}. That is, the adversary must not be
able to deduce with confidence that an individual has educa-
tion between 1st to 8th grade. In general, a group of sensitive
values may not be under one subtree. For example, for dis-
eases, it is possible that cancer and HIV are both considered
sensitive. So, a user should not be linked to the set {HIV,
cancer} with a high probability. However, HIV and Cancer

by generalizing values to value range and to wider value
ranges. The ranges can be determined by users or a machine
learning algorithm [5].
3Note that a taxonomy may not be a lattice. For example,
consider attribute disease. “Nasal cancer” and “lung cancer”
may both be under two parents of “cancer” and “respiratory
disease”.

are not under the same category in the taxonomy. For this
more general case, we introduce the sensitive value set, which
is a set of ground values in the taxonomy for the sensitive at-
tribute. In such a taxonomy, there can be multiple sensitive
value sets.

A major technique used in the previous studies is to recode
the QID values in such a way that a set of individuals will
be matched to the same generalized QID value and, in the
set, the occurrence of values in any sensitive value set is not
frequent. Hence, the records with the same QID value (which
could be a generalized value) is of interest. In a table T , the
equality of the QID values determines an equivalence relation
on the set of tuples in T . A QID equivalence class, or simply
QID-EC, is a set of tuples in T with identical QID value. For
simplicity, we also refer to a QID-EC by the identical QID
value.

Definition 1 (Anonymization). Anonymization is a
a one-to-one mapping function f from a table T to an
anonymized table T ∗, such that f maps each tuple t in T
to a tuple f(t) = t∗ in T ∗. Let t∗.A (or f(t).A) be the value
of attribute A of tuple t∗ (or f(t)). Given a set of taxonomies
τ = {T1, ..., Tu}, an anonymization defined by f conforms to
τ iff t.A � f(t).A holds for any t and A.

For instance, Table 1(b) is anonymized to Table 1(c). The
mapping function f maps the tuples with q1 and q2 to Q.

Let Kad be the knowledge of the adversary. In most pre-
vious work [17, 9, 10, 24], in addition to the published data
set T ∗, Kad involves an external table T e such as Voter regis-
tration list that maps QIDs to individuals. In the literature,
two possible cases of T e have been considered: (1) Worst
Case: the set of individuals in the external table T e is equal
to the set of individuals in the original table T ; (2) Super-
set Case: the set of individuals in the external table T e is a
proper superset of the set of individuals in the original table
T . Assuming the worst case scenario is the safest stance and
it has been the assumption in most previous studies. We have
shown in our first two examples that, in either of the above
two cases, minimality attacks are possible.

The objective of privacy preservation is to limit the proba-
bility of the linkage from any individual to any sensitive value
set s in the sensitive attribute. We define this probability or
credibility as follows.

Definition 2 (Credibility). Let T ∗ be a published ta-
ble which is generated from T . Consider an individual o ∈ O
and a sensitive value set s in the sensitive attribute.
Credibility(o, s, Kad) is the probability that an adversary can
infer from T ∗ and background knowledge Kad that o is asso-
ciated with s.

The background knowledge particularly addressed here is
about the minimality principle as formulated below.

Definition 3 (Minimality Principle). Suppose A is
an anonymization algorithm for a privacy requirement R which
follows the minimality principle. Let table T ∗ be a table gen-
erated by A and T ∗ satisfies R. Then, for any QID-EC X
in T ∗, there is no specialization (reverse of generalization) of
the QID’s in X which results in another table T ′ which also
satisfies R.



Note that this minimality principle holds for both global
recoding and local recoding. If A is for global recoding (local
recoding), both T ∗ and T ′ are global recoding (local recod-
ing). So far we focus on the privacy requirement of l-diversity.
However, in Section 5, we shall consider cases where R is
other requirements.

Assumption 3. (Adversary knowledge Kmin
ad ) In the defi-

nition of Credibility(o, s, Kad), we consider the cases where
Kad includes T ∗, the multiset T q containing all QID occur-
rences in the table T , the QID values of a target individual in
T , a set of taxonomies τ and whether the anonymization A
conforms to the taxonomies τ , the target privacy requirement
R, and whether A follows the minimality principle. We refer
to this knowledge as Kmin

ad .

If Table 1(a) is the result generated from an anonymization
mechanism (e.g., the adapted Incognito algorithm in [12]) for
l-diversity that follows the minimality principle, suppose the
multiset in Table 2(b) is known and the QID value of individ-
ual o is known to be q1, then Credibility(o, {HIV }, Kmin

ad ) =
1/2. When the same Kmin

ad is applied to Table 1(c), then
Credibility(o, {HIV }, Kmin

ad ) = 1. Section 4 describes how
to compute the credibility.

The above minimality principle is very general and does not
demand that A minimizes the overall information loss, nor
does it depend on how the information loss is defined. Al-
most all known anonymization algorithms (including Incog-
nito based methods [10, 12, 13, 11] and top-down approaches
[6, 24, 22, 18]) try to reduce information loss of one form or
another, and they all follow the above principle.

In the examples in Section 1, the value of l (for l-diversity)
is used by the adversary. However, l is not included in Kmin

ad .
This is because, in many cases, it can be deduced from the
published table T ∗. For example, for the anonymization in
Table 1(d), the adversary can deduce that l must be 2.

Definition 4 (m-confidentiality). A table T is said
to satisfy m-confidentiality (or T is m-confidential) if, for any
individual o and any sensitive value set s, Credibility(o, s, Kad)
does not exceed 1/m.

For example, Tables 1(a) satisfies 2-confidentiality.
When a table T is anonymized to a more generalized ta-

ble T ∗, it is of interest to measure the information loss that
is incurred. There are different ways to define information
loss. Since we shall measure the effectiveness of our method
based on the method in [24], we also adopt a similar measure
of information loss. The idea is similar to the normalized
certainty penalty [26].

Definition 5 (Coverage and Base). Let T be the tax-
onomy for an attribute in QID. The coverage of a generalized
QID value v∗, denoted by coverage[v∗], is given by the num-
ber of ground values v′ in T such that v′ ≺ v∗. The base of
the taxonomy T , denoted by base(T ), is the number of ground
values in the taxonomy.

For example, in Figure 1, coverage[“university”] = 2 since
“undergrad” and “postgrad” can be generalized to “univer-
sity”, base(T ) = 9.

A weighting can be assigned for each attribute A, denoted
by weight(A), to reflect the users’ opinion on the significance
of information loss in different attributes. Let t.A denote the
value of A in tuple t.

QID Disease
q1 HIV
q1 HIV
q2 HIV
q2 non-sensitive
q3 HIV
q3 HIV
q3 non-sensitive
q3 non-sensitive
q3 non-sensitive
... ...
q3 non-sensitive

Table 4: A table which
violates 2-diversity

QID Disease
Q HIV
Q HIV
Q HIV
Q non-sensitive
Q HIV
Q HIV
Q non-sensitive
Q non-sensitive
Q non-sensitive
... ...
Q non-sensitive

Table 5: A 2-diverse ta-
ble by global recoding
of Table 4

Definition 6 (Information Loss). Let table T ∗ be an
anonymization of table T by means of a mapping function
f . Let TA be the taxonomy for attribute A which is used in
the mapping and v∗ be the nearest common ancestor of t.A
and f(t).A in TA. The information loss of a tuple t∗ in T ∗

introduced by f is given by

IL(t∗) =
X

A∈QID



coverage[v∗] − 1

base(TA) − 1
× weight(A)

ff

The information loss is given by Dist(T, T ∗) =
P

t∗∈T∗ IL(t∗)

|T∗|

If f(t).A = t.A, then f(t).A is a ground value, the nearest
common ancestor v∗=t.A, and coverage[v∗] = 1. If this is
true for all A’s in QID, then IL(t∗) is equal to 0, which
means there is no information loss. If t.A is generalized to
the root of taxonomy TA, then the nearest common ancestor
v∗ = the root of TA. Thus, coverage[v∗] = base(TA) and, if
this is the case for all A’s in QID, then IL(t∗) = 1. Note that
we have modified the definition in [24] in order to achieve the
range of [0,1] for IL(t∗) = 1 and also for Dist(T, T ∗).

Although minimizing information loss poses a loophole for
attack by minimality, one cannot completely ignore informa-
tion loss since, without such a notion, we allow for complete
distortion of the data which will also render the published
data useless.

Definition 7 (PROBLEM). Optimal m-confidentiality:
Given a table T , generate an anonymized table T ∗ from T
which satisfies m-confidentiality where the information loss
Dist(T, T ∗) is minimized.

4. CREDIBILITY: SOURCE OF ATTACK
In this section, we characterize the nature of minimality

attack. Minimality attack is successful if the adversary can
compute the credibility values and find a violation of m-
confidentiality when the privacy requirement is l-diversity.
This computation depends on a combinatorial analysis on
the possibilities given the knowledge of Kmin

ad . In particular,
the adversary attacks by excluding some possible scenarios,
tilting the probabilistic balance towards privacy disclosure.

4.1 Global Recoding
The derivation of credibility is better illustrated with the

example as shown in Table 5 which is a global recoding of
Table 4 to achieve 2-diversity. In Table 4, {HIV} is the only
sensitive value set and the goal is 2-diversity. Assume that
T and T e have matching cardinality on Q. From T e, the



Number of sensitive tuples
q1 q2 q3

Total number
of cases

(a) 2 0 3 120
(b) 2 1 2 90
(c) 2 2 1 10
(d) 1 2 2 90
(e) 0 2 3 120

Table 6: Possible combinations of number of sensitive
tuples

adversary can determine that there are two tuples in q1, two
tuples in q2 and 10 tuples in q3. Since there are 10 tuples with
a QID value of q3, and there are in total 5 sensitive tuples, q3
trivially satisfies 2-diversity. As T ∗ (Table 5) is generalized,
the adversary decides that at least one of the QID-EC’s q1
and q2 contains two sensitive tuples. With this in mind, the
adversary lists all the possible combinations of the number
of sensitive tuples among the three classes q1, q2 and q3 in
which either q1 or q2 or both contain 2 sensitive tuples as
shown in Table 6. There are only five possible combinations
as shown. We call this table as the sensitive tuple distribution
table.

In scenario (a), there are C2
2 × C2

0 × C10
3 = 120 different

possible ways to assign the sensitive values to the tuples. In
scenario (b), there are C2

2 × C2
1 × C10

2 = 90 different assign-
ments or cases. Similarly, there are 10 cases, 90 cases and
120 cases in scenarios (c), (d) and (e), respectively. The to-
tal number of cases is equal to 120+90+10+90+120 = 430.
Consider the credibility that an individual o with value q1 is
linked to HIV given Kmin

ad . There are two possible cases.
In the first case, there are two sensitive tuples in q1. The

total number of cases where there are two sensitive tuples in
q1 is equal to 120+90+10 = 220. The probability that Case
1 occurs given Kmin

ad is equal to 220/430 = 0.5116.
In the second case, there is one sensitive tuple in q1. The

total number of cases where there is one sensitive tuple in
q1 is equal to 90. The probability that Case 2 occurs given
Kmin

ad is equal to 90/430 = 0.2093.
In the following, we use Prob(E) to denote the probability

that event E occurs.
Thus, the credibility that an individual o with QID value

q1 is linked to HIV given Kmin
ad is equal to

Prob(Case 1)×Prob( q1 is linked to HIV in Case 1)

+Prob(Case 2) ×Prob( q1 is linked to HIV in Case 2)

Prob( q1 is linked to HIV in Case 1) is equal to 2/2=1.

Prob( q1 is linked to HIV in Case 2) is equal to 1/2=0.5.

Credibility(o, {HIV }, Kmin
ad ) = 0.5116 × 1 + 0.2093 × 0.5

= 0.616,

which is greater than 0.5. This result shows that the pub-
lished table violates 2-confidentiality.

General Formula
The general formula of the computation of the credibility is
based on the idea illustrated above. We have a probability
space (Ω,F , P ), where Ω is the set of all possible assignments
of the sensitive values to the tuples, F is the power set of
Ω, and P is a probability mass function from F to the real
numbers in [0,1] which gives the probability for each element
in F . Given Kmin

ad , there will be a set of assignments G

in Ω which are impossible or P (G) = 0 and if x ∈ G then
P ({x}) = 0. Without any other additional knowledge, we
assume that the probability of the remaining assignments are
equal. That is, G′ = Ω − G, P (G′) = 1 and for x ∈ G′,
P ({x}) = 1/|G′|.

Definition 8. Let Q be a QID-EC in T ∗. Tables T ∗ and
T e have matching cardinality on Q if the number of tuples
in T e with QID that can be generalized to Q is the same as
that in T ∗.

Let X be a maximal set of QID-EC’s in T which are gen-
eralized to the same QID-EC Q in the published table T ∗.
Suppose T ∗ and T e have matching cardinality on Q. Let
C1, C2, ...Cu be the QID-EC’s in X sorted in ascending order
of the size of the QID-EC’s. Let ni be the number of tuples
in class Ci. Hence, n1 ≤ n2 ≤ ... ≤ nu. Let ns be the total
number of tuples with values in sensitive value set s in the
data set.

In Table 4, there are three classes, namely q1, q2 and q3.
Thus, u = 3. C1 corresponds to q1, C2 corresponds to q2 and
C3 corresponds to q3. Also, n1 = 2, n2 = 2 and n3 = 10.

Suppose the published table is generalized in order to sat-
isfy the l-diversity requirement.

If ns ≤ bni

l
c, then Ci in the original data set must satisfy

the l-diversity requirement without any generalization. Class
Ci may violate the l-diversity requirement only if ns > bni

l
c.

Let C be the set of all classes Ci where ns > bni

l
c. Let C′ be

the set of the remaining classes. Let p be the total number of
classes in C. Since the classes are sorted, C = {C1, C2, ..., Cp}
and C′ = {Cp+1, Cp+1, ..., Cu}.

Lemma 1. If a set of classes X = {C1, ...Cu} are general-
ized to their parent class in T , the adversary can deduce that
at least one class (in the original table) violates l-diversity
among C and all classes in C′ (in the original table) do not
violate l-diversity.

Obviously, the credibility of individuals in a class in C′

is smaller than or equal to 1
l
. However, the credibility of

individuals in a class in C may be greater than 1
l
. Thus,

the adversary tries to compute Credibility(o, s, Kmin
ad ), where

o ∈ Ci, for i = 1, 2, ..., p. Suppose there are j tuples with the
sensitive value set s in Ci. Let |Ci(s)| denote the number of
occurrences of the tuples with s in Ci. The probability that o
is linked to a sensitive value set is j

ni

, where ni is the class size

of Ci. Let Prob(|Ci(s)| = j|Kmin
ad ) be the probability that

there are exactly j occurrences of tuples with s in Ci given
Kmin

ad . By considering all possible number j of occurrences
of tuples with s from 1 to ni in Ci, the general formula for
credibility is given by:

Credibility(o, s, Kmin
ad ), where o ∈ Ci, 1 ≤ i ≤ p

= Prob(o is linked to s in Ci | Kmin
ad )

=
Pni

j=1Prob(|Ci(s)| = j | Kmin
ad ) ×

j

ni

In the above formula, Prob(|Ci(s)| = j|Kmin
ad ) can be cal-

culated by considering all possible cases. Conceptually, a
table such as Table 6 will be constructed, in which some pos-
sible combinations will be excluded due to the minimality
notion in Kmin

ad .



QID Disease
q1 HIV
q1 HIV
q1 non-sensitive
q1 non-sensitive
q1 HIV
q2 non-sensitive
q2 non-sensitive
... ...
q2 non-sensitive
q2 HIV

Table 7: Another ta-
ble which violates 2-
diversity

QID Disease
q1 HIV
q1 HIV
q1 non-sensitive
q1 non-sensitive
Q HIV
Q non-sensitive
q2 non-sensitive
... ...
q2 non-sensitive
q2 HIV

Table 8: A 2-diverse ta-
ble of Table 7 by local
recoding

4.2 Local Recoding
An example is shown in Table 7 to illustrate the derivation

of the credibility with local recoding for l-diversity. For the
QID, assume that only q1 and q2 can be generalized to Q.
Assume that Table 7 and the corresponding T e have matching
cardinality on Q. The proportion of the sensitive tuples in
the set of tuples with q1 is equal to 3/5 > 1/2. Thus, the
set of tuples with q1 does not satisfy 2-diversity. Table 7 is
generalized to Table 8, which satisfies 2-diversity, while the
distortion is minimized.

Assume the adversary has knowledge of Kmin
ad . From the

external table T e, there are 5 tuples with q1 and 8 tuples
with q2. These are the only tuples with QID that can be
generalized to Q. The adversary reasons in this way. There
are four sensitive tuples in T ∗. Suppose they all appear in
the tuples containing q2, q2 still satisfies 2-diversity. The
generalization in T ∗ must be caused by the set of tuples in
q1. In T ∗, the QID-EC for Q contains one sensitive tuple
and one non-sensitive tuple. The sensitive tuple should come
from q1 because if this sensitive tuple does not come from q1,
there will have been no need for the generalization.

Consider the credibility that an individual o with QID q1
is linked to HIV given Kad. There are two cases, too.

In the first case, the tuple of o appears in the QID-EC of
q1 in T ∗. There are four tuples with value q1 in T ∗. From
T e, there are five tuples with q1. The probability that Case
1 occurs is 4/5.

In the second case, the tuple of o appears in the QID-EC
of Q in T ∗. There are totally five tuples with q1 and there
are four tuples with value q1 in T ∗. Hence, one such tuple
must have been generalized and is now in the QID-EC of Q
in T ∗. The probability of Case 2 is 1/5.

Credibility(o, {HIV }, Kmin
ad ) is equal to

= Prob(Case 1)× Prob(o is linked to HIV in Case 1 |Kmin
ad )

+Prob(Case 2)×Prob(o is linked to HIV in Case 2 |Kmin
ad )

Since 2 out of 4 tuples in the QID-EC of q1 in T ∗ contain
HIV, and the HIV tuple in the QID-EC of Q in T ∗ must be
from q1, Thus,

Prob(o is linked to HIV in Case 1 | Kmin
ad ) = 2

4
= 1

2
.

Prob(o is linked to HIV in Case 2 | Kmin
ad ) = 1.

Credibility(o, {HIV }, Kmin
ad ) = 4

5
× 1

2
+ 1

5
× 1 = 3

5
,

which is greater than 0.5. Thus, the anonymized table vio-
lates 2-confidentiality.

General Formula
Suppose there are u QID-EC’s in the original data set, namely
C1, C2, ..., Cu, which can be generalzied to the same value
CG . After the generalization, some tuples in some Ci are
generalized to CG while some are not. We define the following
symbols which will be used in the derivation of the credibility.

ni number of tuples with class Ci in T e

ni,g number of generalized tuples in T ∗ whose original
QID is Ci

ni,u number of ungeneralized tuples in T ∗ with QID =
Ci

ni,u(s) number of sensitive ungeneralized tuples in T ∗

with QID = Ci

The value of ni,u can be easily obtained by scanning the
tuples in T ∗. ni,g can be obtained by subtracting ni,u from
ni. Similarly, it is easy to find ni,u(s). For example, in Ta-
ble 8, Ci corresponds to q1 and CG corresponds to Q. Thus,
ni,u = 4, ni = 5, ni,g = 1 and ni,u(s) = 2.

In order to calculate Credibility(o, s,Kmin
ad ), where o has

QID of Ci, the adversary needs to consider two cases. The
first case is that the tuple of o is generalized to CG. The
second case is that the tuple of o is not generalized in T ∗.
Let t∗(o) be the tuple of individual o in T ∗. By considering
these two cases,

Credibility(o, s, Kmin
ad ), where o ∈ Ci

= Prob(o is linked to s in T ∗|Kmin
ad )

= Prob(t∗(o) ∈ CG in T ∗)

× Prob(o is linked to s in CG in T ∗|Kmin
ad )

+ Prob(t∗(o) ∈ Ci in T ∗)

× Prob(o is linked to s in Ci in T ∗|Kmin
ad )

=
ni,g

ni

× Prob(o is linked to s in CG in T ∗|Kmin
ad )

+
ni,u

ni

×
ni,u(s)

ni,u

The term Prob(o is linked to s in CG in T ∗|Kmin
ad ) can be com-

puted by using the formula in global-recoding, which takes
into account of the minimality of the anonymization.

For the case when a set of QID-EC’s are generalized to
more than one values, the above analysis is extended to in-
clude more possible combinations of outcomes. Details can
be found in [21]. The basic ideas remain similar.

4.3 Attack Conditions
We have seen in the above that a minimality attack is al-

ways accompanied by some exclusion of some possibilities
by the adversary because of the minimality notion. We can
characterize this attack criterion in the following.

Theorem 1. An attack by minimality is possible only if
the adversary can exclude some possible combinations of the
number of sensitive tuples among the QID-EC’s in the sensi-
tive tuple distribution table based on the knowledge of Kmin

ad .
Proof sketch. If there is no exclusion from the table, then
the credibility as computed by the formulae is exactly the
ratio of the sensitive tuples to the total number of tuples in
the generalized QID-EC.

An attack by minimality is not always successful even when
there are some excluded combination(s) in the sensitive tu-
ple distribution table based on Kmin

ad . To illustrate, consider



QID Disease
q1 Diabetics
q1 HIV
q1 Lung Cancer
q2 HIV
q2 Ulcer
q2 Alzhema
q2 Gallstones

QID Disease
q1 Diabetics
q1 HIV
q1 HIV
q2 Lung Cancer
q2 Ulcer
q2 Alzhema
q2 Gallstones

QID
Q

Q

Q

Q

Q

Q

Q

QID
Q

Q

Q

Q

q2
q2
q2

(a) good table (b) bad table (c) global (d) local

Table 9: Anonymization for (3,3)-diversity

an example where 2 QID’s q1 and q2 are generalized to Q.
There are 4 tuples of q1 and 2 tuples of q2. In total, there
are 3 occurrences of the sensitive value set s in the 6 tuples.
If 2-diversity is the goal, then we can exclude the case of 2
sensitive q1 tuple and 1 sensitive q2 tuple. After the exclu-
sion, the credibility of any linkage between any individual to
s still does not exceed 0.5.

5. GENERAL MODEL
In this section, we show that minimality attacks can be

successful on a variety of anonymization models. In Tables
9 to 11, we show good tables that satisfy the corresponding
privacy requirements in different models, bad tables that do
not, and global and local recodings of the bad tables which
follow the minimality principle and unfortunately suffer from
minimality attacks.

Recursive (c, l)-diversity: With recursive (c, l)-diversity
[12], in each QID-EC, let v be the most frequent sensitive
value, if we remove the next l − 2 most frequent sensitive
values, the frequency of v must be less than c times the total
count of the remaining values. Table 9(c) is a global recod-
ing for Table 9(b). With the knowledge of minimality in the
anonymization, the adversary deduces that the QID-EC for
q2 must satisfy (3, 3)-diversity and that the QID-EC for q1
must contain two HIV values. Thus, the intended obligation
that an individual should be linked to at least 3 different sen-
sitive values is breached. Similar arguments can be applied
to Table (d).

t-closeness: Recently, t-closeness [11] was proposed. If
table T satisfies t-closeness, the distribution P of each equiv-
alence class in T is roughly equal to the distribution Q of the
whole table T with respect to the sensitive attribute. More
specifically, the difference between the distribution of each
equivalence class in T and the distribution of the whole table
T , denoted by D[P, Q], is at most t. Let us use the definition
in [11]: D[P, Q] = 1/2

Pm

i=1 |pi − qi|. Consider Table 10(c).
For each possible sensitive value distribution P for QID-EC
q2, the adversary computes D[P, Q]. S/he finds that D[P, Q]
is always smaller than 0.2. Hence the anonymization is due
to q1. S/he concludes that both tuples with QID=q1 are
sensitive. Similar arguments can also be made to Table (d).

(k, e)-anonymity: The model of (k, e)-anonymity [27] con-
siders the anonymization of tables with numeric sensitive at-
tributes. It generates a table where each equivalence class is
of size at least k and has a range of the sensitive values at
least e. In the tables in Table 11, we show the bucketization
in terms of QID values, the individuals with the same QID
value are in the same bucket. Consider the tables in Table 11

QID Disease
q1 HIV
q1 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 HIV
q2 HIV

QID Disease
q1 HIV
q1 HIV
q2 non-sensitive
q2 non-sensitive
q2 non-sensitive
q2 HIV

QID
Q

Q

Q

Q

Q

Q

QID
Q

Q

Q

q2
q2
q2

(a) good table (b) bad table (c) global (d) local

Table 10: 0.2-closeness anonymization

QID Income
q1 30k
q1 20k
q2 30k
q2 20k
q2 40k

QID Income
q1 30k
q1 30k
q2 20k
q2 10k
q2 40k

QID
Q

Q

Q

Q

Q

QID
Q

Q

Q

q2
q2

(a) good table (b) bad table (c) global (d) local

Table 11: (k, e)-anonymity for k = 2 and e = 5k

(where Income is a sensitive numeric attribute). From Ta-
ble (c), the adversary deduces that the tuples with QID=q1
must violate (k, e)-anonymity and must be linked with two
30k incomes. We obtain a similar conclusion from Table (d)
for local recoding.

We also have examples to show the feasibility of minimality
attacks on the algorithms for (c, k)-safety in [13], Personalized
Privacy in [24], and sequential releases in [18] and [25]. In
the proposed anonymization mechanism for each of the above
cases in the respective references, the Minimality Principle in
Definition 3 holds if we set R to the objective at hand, such as
recursive (c, l)-diversity, t-closeness and (k, e)-anonymity. By
including the knowledge related to minimality attack to the
background knowledge, the adversary can derive the proba-
bilistic formulae for computing the corresponding credibility
in each case, where the idea of eliminating impossible cases
as shown in Section 4 is a key to the attack.

6. ALGORITHM
The problem of optimal m-confidentiality is a difficult prob-

lem. In most data anonymization methods, if a generalization
step does not reach the privacy goal, further generalization
can help. However, further generalizations will not solve the
problem of m-confidentiality. If we further generalize Q to ∗
in Table 1(c) or further generalize q2 to Q in Table 1(d), it
does not deter the minimality attack. The result still reveals
the linkage of q1 to HIV as before. We show below optimal
m-confidentiality is NP-hard for global recoding.

Optimal global m-confidentiality: Given a table T and a
non-negative cost e, can we generate a table T ∗ from T by
global recoding which satisfies m-confidentiality and where
the information loss of Dist(T, T ∗) is less than or equal to e?

Theorem 2. Optimal m-confidentiality under global recod-
ing is NP-hard.

Limited by space, we leave the proof in [21].
However, as the adversary relies on the minimality assump-

tion, we can tackle the problem at its source by removing the
minimality notion from the anonymization. The main idea is
that, even if some QID-EC’s in a given table T originally do
not violate l-diversity, we can still generalize the QID. Since



the anonymization does not play according to the minimality
rule, the adversary cannot launch the minimality attack di-
rectly. However, a question is: how much shall we generalize
or anonymize? It is not desirable to lose on data utility.

A naive method to generalize everything in an excessive
manner would not work well, since the information loss will
also be excessively large. From the formula for information
loss, if every QID attribute value must go at least one level up
the taxonomies, then for typical taxonomies, the information
loss will be a sizeable fraction.

Here we propose a feasible solution for the m-confidentiality
problem. Although some problems are uncovered that ques-
tions the utility of k-anonymity in protecting sensitive values,
k-anonymity has been successful in some practical applica-
tions. This indicates that when a data set is k-anonymized
for a given k, the chance of a large proportion of a sensitive
value set s in any QID-EC is very likely reduced to a safe
level. Since k-anonymity does not try to anonymize based on
the sensitive value set, it will anonymize a QID-EC even if it
satisfies l-diversity. This is the blinding effect we are target-
ing for. However, there is no guarantee of m-confidentiality
by k-anonymity alone, where m = l.

Hence, our solution is based on k-anonymity, with addi-
tional precaution steps taken to ensure m-confidentiality. Let
us call our solution Algorithm MASK (Minimality Attack
Safe K-anonymity), which involves four steps.

Algorithm 1 – MASK

1: From the given table T , generate a k-anonymous table T k

where k is a user parameter.

2: From T k, determine the set V containing all QID-EC’s which
violate l-diversity in T k, and a set L containing QID-EC’s
which satisfy l-diversity in T k. How to select L will be de-
scribed below.

3: For each QID-EC Qi in L, find the proportion pi of tuples
containing values in the sensitive value set s. The distribution
D of the pi values is determined.

4: For each QID-EC E ∈ V , randomly pick a value of pE from
the distribution D. The sensitive values in E are distorted in
such a way that the resulting proportion of the sensitive value
set s in E is equal to pE .

Step 1 anonymizes a given table to satisfy k-anonymity. Af-
ter Step 1, some QID-EC’s may not satisfy l-diversity. Steps
2 to 4 ensure that all QID-EC’s in the result are l-diverse.
In Step 2, we select a QID-EC set L from T k. The purpose
is to disguise the distortion so that the adversary cannot tell
the difference between a distorted QID-EC and many un-
distorted QID-EC’s. We set the size of L, denoted by u, to
(l − 1) × |V|. Among all the QID-EC’s in T k that satisfies
l-diversity, we pick u QID-EC’s with the highest proportions
of the sensitive value set s.

Theorem 3. Algorithm MASK generates m-confidential
data sets.

The above holds because MASK does not follow the min-
imality principle. It is easy to find an l-diverse table T ∗

generated by MASK with a QID-EC X in T ∗ so that a spe-
cialization of the QID’s in X results in another table T ′ which
also satisfies l-diversity.

The use of L for the distortion of V is to make the dis-
tribution of s proportions in V look indistinguishable from

Attribute Distinct Generalizations Height
Values

1 Age 74 5-, 10-, 20-year ranges 4
2 Work Class 7 Taxonomy Tree 3
3 Martial Status 7 Taxonomy Tree 3
4 Occupation 14 Taxonomy Tree 2
5 Race 5 Taxonomy Tree 2
6 Sex 2 Suppression 1
7 Native Country 41 Taxonomy Tree 3
8 Salary Class 2 Suppression 1
9 Education 16 Taxonomy Tree 4

Table 12: Description of Adult Data Set

that of a large QID-EC set (L). This is an extra safeguard
for the algorithm in case the adversary knows the mechanism
of anonymization. If the QID-EC’s in V simply copy the s
proportion from an l-diverse QID-EC in Tk with the greatest
s proportion, the repeated pattern may become a source of
attack. In our setting, the probability that some QID-EC
in V has the same s proportion as a QID-EC in L is 1/l.
Therefore, for l repeated occurrences of an s proportion, the
probability that any one belongs to a QID-EC in V is only
1/l(= 1/m).

Generation of Two Tables - Bucketization
Conventional anonymization methods produce a single gen-
eralized table T as shown in Table 5. Recently [23] proposed
to generate two separate tables from T with the introduction
of an attribute called GID that is shared by the two tables.
The first table TQID contains the attributes of QID and GID,
and the second table Tsen contains GID and the sensitive at-
tribute(s). The two tables are created from T ∗ by assigning
each QID-EC in T ∗ a unique GID. The advantage is that we
can keep the original values in T of the QID in TQID and
hence reduce information loss. However, the single table T
has the advantage of clarity and requiring no extra interpre-
tation on the data receiver’s part. In our experiments, we
shall try both the approach of generating a single table T
and the approach of generating two tables (also known as
bucketization) as in [23, 27, 13].

7. EMPIRICAL STUDY
A Pentium IV 2.2GHz PC with 1GM RAM was used to

conduct our experiment. The algorithm was implemented in
C/C++. In our experiment, we adopted the publicly avail-
able data set, Adult Database from the UCIrvine Machine
Learning Repository [2]. This data set (5.5MB) was also
adopted by [10, 12, 20, 6]. We used a configuration similar
to [10, 12]. The records with unknown values were first elim-
inated resulting in a data set with 45,222 tuples (5.4MB).
Nine attributes were chosen in our experiment, as shown in
Table 12. By default, we chose the first eight attributes and
the last attribute in Table 12 as the quasi-identifer and the
sensitive attribute, respectively. As discussed in the previous
sections, attribute “Education” contains a sensitive value set
containing all values representing the education levels before
“secondary” (or “9th-10th”) such as “1st-4th”, “5th-6th” and
“7th-8th”.

7.1 Analysis of the minimality attack
We are interested to know how successful the minimality

attack can be in a real data set with existing minimality-



based anonymization algorithms. We adopted the Adult data
set and the selected algorithm was the (α, k)-anonymity al-
gorithm [22]. We set α = 1/l and k = 1, so that it corre-
sponds to the simplified l-diversity. We have implemented
an algorithm based on the general formulae in Section 4 to
compute the credibility values. We found that minimality
attack successfully uncovered QID-EC’s which violates m-
confidentiality, where m = l. We use m and l exchangeably
in the following. Let us call the tuples in such QID-EC’s the
problematic tuples. Figure 2(a) shows the proportion of prob-
lematic tuples among all sensitive tuples under the variation
of m, where the total number of sensitive tuples is 1,566.
The general trend is that the proportion increases when m
increases. When m increases, there is higher chance that
problematic tuples are generalized with more generalized tu-
ples. Also, it is more likely that those generalized tuples are
easily uncovered for the minimality attack.

In Figure 2(b), when m increases, it is obvious that the
average credibility of problematic tuples decreases. When m
increases, 1/m decreases. Thus, each QID-EC contains at
most 1/m occurrences of the sensitive value set. Thus, this
lowers the credibility of the tuples in QID-ECs.

Figure 2(c) shows that the proportion of problematic tu-
ples increases with QID size. This is because, when QID size
is larger, the size of each QID-EC is smaller. It is more likely
that a QID-EC violates the privacy requirement. Thus, more
tuples are vulnerable for the minimality attack. Figure 2(d)
shows that the average credibility of problematic tuples re-
main nearly unchanged when the QID size increases. This is
because the credibility is based on m. It is noted that the av-
erage credibility in Figure 2(d) is about 0.9, which is greater
than 0.5 (=1/2).

We also examined some cases obtained in the experiment.
Suppose we adopt the QID attributes as (age, workclass, mar-
tial status) with sensitive attribute Education. The origi-
nal table contains one tuple with QID=(80, self-emp-not-inc,
married-spouse-absent) and two tuples with QID=(80, pri-
vate, married-spouse-absent).

Age Workclass Martial Status Education
80 self-emp-not-inc married-spouse-absent 7th-8th
80 private married-spouse-absent HS-grad
80 private married-spouse-absent HS-grad

Suppose m = 2. Recall that “7th-8th” is in the sensitive
value set. Since the first tuple violates 2-diversity, the Work-
class of tuple 1 and tuple 2 are generalized to “with-pay”. In
this case, it is easy to check that the credibility for an individ-
ual with QID= (80, self-emp-not-inc, married-spouse-absent)
is equal to 1.

Another uncovered case involves more tuples. The origi-
nal table contains one tuple with QID=(33, self-emp-not-inc,
married-spouse-absent) and 17 tuples with QID=(33, private,
married-spouse-absent).

Similarly, when m = 2, the first tuple violates 2-diversity.
Thus, Workclass of tuple 1 and tuple 2 are generalized to
“with-pay” in the published table. Similarly, the adversary
can deduce that the individual with QID=(33, self-emp-not-
inc, married-spouse-absent) is linked with a low education
(i.e., Education=“1st-4th”) since this credibility is equal to
1.

Consider the default QID size = 8. When m = 2, the
execution time of the computation of the credibility of each
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Figure 2: Proportion of problematic tuples and av-
erage credibility of problematic tuples against m and
QID size

QID-ECs in the original table is about 173s. When m = 10,
the execution time is 239s. It is not costly for an adversary
to launch a minimality attack.

7.2 Analysis of the proposed algorithm
We compared our proposed algorithm with a local recoding

algorithm for (α, k)-anonymity [22] ((α, k)-A). Let us refer to
our proposed algorithm MASK described in Section 6 by m-
conf . (α, k)-A does not guarantee m-confidentiality, but it is
suitable for comparison since it considers both k-anonymity
and l-diversity, where l = m. We are therefore interested
to know the overhead required in our approach in order to
achieve m-confidentiality. When we compared our algorithm
with (α, k)-anonymity, we set α = 1/m and the k value is
the same as that use in our algorithm. We evaluated the
algorithms in terms of four measurements: execution time,
relative error ratio, information loss of QID attributes and
distortion of sensitive attribute. The distortion of sensitive
attribute is calculated by the information loss formula in Def-
inition 6. We give it a different name for the ease of reference.
By default, the weighting of each attribute used in the eval-
uation of information loss is equal to 1/|QID|, where |QID|
is the QID size. For each measurement, we conducted the
experiments 100 times and took the average.

We have implemented two different versions of Algorithm
MARK: (A) one generalized table is generated and (B) two
tables are generated (see the last paragraph in Section 6). For
Case (A), we may generalize the QID attributes of the data
and distort the sensitive attribute of the data. Thus, we mea-
sured these by information loss and distortion, respectively.
For Case (B), since the resulting tables do not generalize
QID, there is no information loss for QID. The distortion
of the sensitive attribute is the same as in Case (A). Hence
in the evaluation of information loss and distortion, we only
report the results for Case (A).

For case (B) with the generation of two ungeneralized ta-
bles, TQID and Tsen, as in [23], we measure the error by



the relative error ratio in answering a aggregate query. We
adopt both the form of the aggregate query and the param-
eters of the query dimensionality qd and the expected query
selectivity s from [23]. For each evaluation in the case of two
anonymized tables, we performed 10,000 queries and then re-
ported the average relative error ratio. By default, we set
s = 0.05 and qd to be the QID size.

We conducted the experiments by varying the following
factors: (1) the QID size, (2) m, (3) k, (4) query dimen-
sionality qd (in the case of two anonyzmied tables), and (5)
selectivity s (in the case of two anonymized tables).

7.2.1 The single table approach
The results for the single table case are shown in Figure 3

and Figure 4. One important observation is that the results
are little affected by the values of k which varies from 2 to 10
to 20, this is true for the execution time, the relative error,
the information loss and the distortion. This is important
since k is a user parameter and the results indicate that the
performance is robust against different choices of the value of
k.

A second interesting observation is that the information
loss of (α, k)-A is greater than m-conf in some cases. This
seems surprising since m-conf has to fend off minimality at-
tack while (α, k)-A does not. The explanation is that in some
cases, more generalization is required in (α, k)-A to satisfy l-
diversity. However, the first step of m-conf only considers
k-anonymity and not l-diversity. Thus, the generalization in
m-conf is less compared to (α, k)-A, leading to less informa-
tion loss. For compensation, the last two steps of m-conf
ensure l-diversity and incur distortion, while (α, k)-A has no
such steps.

The execution times of the two algorithms are similar be-
cause the first step of m-conf occupies over 98% of the execu-
tion time on average and the first step is similar to (α, k)-A.

In Figure 3(a), the execution time increases with the QID
size, since greater QID size results in more QID-EC’s. When
k is larger, the execution time is smaller, this is because the
number of QID-EC’s will be smaller.

Figures 3(b) and (d) show that the average relative error
and the distortion of the algorithms increase with the QID
size. This is because the number of QID-EC’s increases and
the average size of each equivalence class decreases. For m-
conf , the probability that a QID-EC violates l-diversity (af-
ter the k-anonymization step) will be higher. Thus, there is
a higher chance for the distortion and higher average rela-
tive error. When k is larger, the average relative error of the
two algorithms increases. This is because the QID attribute
will be generalized more, giving rise to more querying errors.
If k is larger, the QID-EC size increases, the chance that a
QID-EC violates l-diversity is smaller, so the distortion will
be less.

In Figure 3(c), when the QID size increases, the informa-
tion loss of the QID attributes increases since the probability
that the tuples in the original table have different QID values
is larger. Thus, there is a higher chance for QID generaliza-
tion leading to more information loss. Similarly, when k is
larger, the information loss is larger.

7.2.2 The two tables approach

Our next set of experiments analyze the performance of
the two table approach under various conditions.
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Figure 3: Performance vs QID size (m = 2)
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Figure 4: Performance vs QID size (m = 10)

Effect of k: Figure 5 shows the experimental results when
k is varied. The trends are similar to the single table case,
and can be explained similarly.

Effect of Query Dimensionality qd: For m = 2, Fig-
ure 6(a) shows the average relative error increases when the
query dimensionality increases. As the query will match fewer
tuples, fewer tuples in an equivalence class will match the
query, resulting in more relative error. If k is larger, the
average relative error is larger because we generalize more
data with larger k. Similar trends can also be observed when
m = 10.

Effect of Selectivity s: In Figure 6(c), the average rela-
tive error decreases when s increases. This is because, if s
is larger, more tuples will be matched with a given query,
and more tuples in an equivalence class is matched with a
given query. Similarly, when k is larger, there is more gener-
alization, and the average relative error is larger. We observe
similar trends when m=10. Similarly, the average relative
error is larger when m=10.

In conclusion, we find that our algorithm creates very little
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Figure 5: Two Tables case : effect of varying m and
k
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Figure 6: Two Tables Case : effects of varying query
dimensionality and selectivity

overhead and pays a very minimal price in information loss
in the exchange for m-confidentiality.

8. CONCLUSIONS
In existing privacy preservation methods for data publish-

ing, minimality in information loss is an underlying principle.
In this paper, we show how this can be used by an adversary
to launch an attack on the published data. We call this a
minimality attack. We propose the m-confidentiality model
which deals with attack by minimality and also a solution for
this problem. For future work we are interested in determin-
ing any other kinds of attacks related to the nature of the
anonymization process.
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