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Abstract. The work in this paper is motivated by the real-world prob-
lems such as mining frequent traversal path patterns from very large
Web logs. Generalized suffix trees over a very large alphabet can be
used to solve such problems. However, traditional algorithms such as
the Weiner, Ukkonen and McCreight algorithms are not sufficient as-
surance of practicality because of large magnitudes of the alphabet and
the set of strings in those real-world problems. Two new algorithms are
designed for fast construction of generalized suffix trees over a very large
alphabet, and their performance is analyzed in comparison with the well-
known Ukkonen algorithm. It is shown that these two algorithms have
better performance, and can deal with large alphabets and large string
sets well.

1 Introduction and Problem Formulation

1.1 Introduction

Recently, suffix trees have found many applications in bio-informatics, data min-
ing and knowledge discovery. The first linear-time algorithm for constructing
suffix trees was given by Weiner in [17] in 1973. A different but more space ef-
ficient algorithm was given by McCreight in [13] in 1976. Almost twenty years
later Ukkonen gave a conceptually different linear time algorithm that allows
on-line construction of a suffix tree and is much easier to understand [16]. These
algorithms build, in their original design, a suffix tree for a single string S over a
given alphabet X. However, for any set of strings {5y, S2,...,S,} over X, those
algorithms can be easily extended to build a tree to represent all suffixes in the
set of strings in linear time. Such a tree that represents all suffixes in strings
S1,59,...,8,, is called a “generalized” suffix tree.

Typical applications of generalized suffix trees include the identification of
frequent (or longest frequent) substrings in a set of strings. One particular ex-
ample of such applications is the mining of frequent traversal path patterns of



Web users from very large Web logs [7, 5], because such patterns are frequent
(or longest frequent) substrings in the set of maximal forward references of Web
users when maximal forward references are understood as strings of URLs. Such
discovered patterns (or knowledge) can be used to predict where the Web users
are going, i.e., what they are seeking for, so that it helps the construction and
maintenance of real-time intelligent Web servers that are able to dynamically
tailor their designs to satisfy users’ needs [7]. It has significant potential to re-
duce, through prefetching and caching, Web latencies that have been perceived
by users year after year [12]. It can also help the administrative personnel to
predict the trends of the users’ needs so that they can adjust their products to
attract more users (and customers) now and in the future [2]. Other examples
include document clustering, where a short summary of a document is viewed as
a string of keywords and a generalized suffix tree is built for a set of such strings
to group documents into different clusters.

In the mining of frequent traversal path patterns, specific properties exist
for the data set. As investigated in [5], maximal forward references (MFRs)
of Web logs exhibit properties as shown in Figure 1. In summary, the following
properties hold: (1) The size of the set of strings (or maximal forward references)
is very large, ranging from megabyte magnitude to gigabyte magnitude. (2) The
size of the alphabet (or the number of unique URLS) is very large, ranging from
thousands to tens of thousands or more. (3) All strings have a length < 30
(derived from the given parameter setting of Web log sessionization). (4) More
than 90% strings have lengths less than or equal to 4, and the average length is
about 2.04.

Percentages of Accumulative MFRs
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Fig. 1. Properties of Maximal Forward References (MFRs)

1.2 Problem Formulation

Throughout this paper, we use X to denote an alphabet, and let |X| denote the
size of X. For any string s € X*, let |s| denote its size, i.e., the number of all
occurrences of letters in s. For any set of strings S, let [S| = > .5 |s|- When



S is stored as a file, we also refer |S| as the number of bytes of S. Motivated
by real world problems such as mining frequent traversal path patterns, in this
paper we study fast construction of generalized suffix trees for a set S of strings
over an alphabet X under the following conditions:

Conditions.

1. | X| is very large, ranging from thousands to tens of thousands or more.

2. |S| = 3 ,cs|sl, the size of the set of of strings, is very large, ranging from
megabyte magnitudes to gigabytes magnitudes or more.

3. For each string s € S, |s| < a, where « is a small constant.

We shall point out that depending on concrete applications, more restrictions
can be added to the third condition. For example, in the case of mining frequent
traversal path patterns, we can further require that 90% of strings in S have a
length < 4 and the average string length in S is about 2.04.

We now give several formal definitions. Unlike traditional suffix trees, in
this paper we additionally require that counting information of substrings are
recorded at internal nodes and leaves as well.

Definition 1. For any string s € X, we also denote s = s[1..n] where n = |s|.
For every i,j with 1 < i < j < n, s[i] is the i-th letter in s, and s[i..j] is the
substring from the i-th letter to the j-th letter. Note that s[i..n] is a suffiz starting
at the i-th letter.

Definition 2. A suffiz tree T for a string s[1..n] over a given alphabet ¥ is a
rooted directed tree with exactly n leaves. Each internal node other than the root
has at least two children and each edge is labeled with a nonempty substring of
s. No two edges out of a node can have edge labels starting with the same letter.
Each internal node or leaf has a counter to indicate the number of times the
concatenation of the edge labels on the path from the root to the node or leaf
occurs in the string s. The key feature of the suffix tree is that the concatenation
of the edge labels on each path from the root to one of the n leaves represents
exactly one of n suffizes of s.

Definition 3. Given a set of strings S = {s1,51,...,5m} over an alphabet X,
a suffix tree T for first string s1 can be generalized to represent all suffizes and
to record the counting information of substrings in the set of strings. The key
feature of such a tree is that the concatenation of the edge labels on each path
from the root to one of the leaves represents exactly a distinct suffizes in S, and
every suffiz in S is represented by exactly one of such concatenations. Such a
tree is called a “generalized” suffix tree. Usually, we assume that $ € S, and S
is represented as s1$s29...85,9.

In Figure 2(a), we illustrate a generalized suffix tree for “mississippi$missing$
sipping$”.

The goal of this paper is to design algorithms for fast construction of gen-
eralized suffix trees under Conditions (1) to (3). A sorting-based algorithm Sb-
SfxTree (Sorting-based Suffix Tree) and a hashing-based algorithm HbSfxTree
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Fig. 2. A Generalized Suffix Tree and Its Subtrees

(Hashing-based Suffix Tree) will be devised and their performance will be an-
alyzed comparatively. It is shown that algorithms SbSfxTree and HbSfxTree
are substantially faster than Ukkonen’s algorithm. Furthermore, these two al-
gorithms have superior space scalable performance and can be easily tuned to
parallel or distributed algorithms.

The rest of the paper is organized as follows. In Section 2, we will review
practical implementation challenges of suffix tree construction. Some properties
of suffix trees are given in Section 3. Algorithms SbSfxTree and HbSfxTree are
devised in Section 4. Performance analysis is given in Section 5. Finally, we
conclude the paper in Section 6.

2 Practical Implementation Challenges

As well discussed in Gusfield [8] (pages 116 to 119), the Weiner, McCreight, and
Ukkonen algorithms [17, 13, 16] have ignored the size of the alphabet X', and have
not considered memory paging when trees are large and hence cannot be stored
in RAM. When the size of X is too large to be ignored, those three algorithms
all require 6(|S| - | X|) space, or the linear time bound O(|S|) should be replaced
with min{O(|S| - log|S|), O(|S| - log | X|)}.

The main design issues in all the three well known algorithms [17,13,16]
are how to represent and search the branches out of the nodes of the tree. For



example, in the Ukkonen algorithm, in order to achieve linear space complexity,
array indexes are used to represent substrings labeling tree edges under the
implicit assumption that the whole string (or the set of strings) is kept in RAM
and represented as an array; and in order to achieve linear time complexity, suffix
links are used to allow quick walks from one part of the tree to another part
under the implicit assumption that the entire tree is kept in RAM. Those design
techniques are great for theoretical time/space bounds, but are inadequate for
paging if the string (or the set of strings) or the entire tree cannot be stored in
RAM. Because of those algorithms’ dependence on the availability of the entire
string (or the set of strings) and the entire tree in RAM, and because of the
tree’s lack of nice locality properties, those algorithms cannot support parallel
or distributed construction of the tree. Therefore, new techniques are needed for
implementing generalized suffix trees for very large sets of strings over a very
large alphabet.

Gusfield [8] summaries four basic alternative techniques for represent branches
in order to balance the constraints of space against the need for speed. The first
one is to use an array of size 6(|X|) at each non-leaf node to represent branches
to children nodes. The second is to use linked list to replace array in the first
technique. The third is to replace the linked list at each non-leaf node with
some balanced tree. Finally, the last is to use hashing at each non-leaf node
to facilitate branch search. However, all the above alternative techniques fail to
overcome the dependence on the availability of the entire string (or the set of
strings) and the entire tree in RAM. The first three also increase the burden of
space demand when the alphabet is very large. The challenge for the last one is
to find a hashing scheme to balance space with speed. These techniques cannot
facilitate the parallel or distributed construction of the trees.

3 Some Properties

Let 7 be a generalized suffix tree for a set of strings S over the alphabet X.
For each child node v of the root of 7, we can obtain a subtree for v by simply
removing all other children nodes and their descendants as well as their edges.
E.g., Six subtrees are shown in Fig.2(b) for the tree in Fig.2(a). For each ¢ of
such subtrees, it is obvious that the root of ¢ has exactly one edge leading to its
only child node or to its only leaf. Let ¢[1] denote the first letter in the string on
the edge out of the root. We say a string s is contained in a subtree t if s is the
concatenation of all edge-labels on a path from the root of ¢ to some leaf of t.

Lemma 1. Let W be the number of distinct letters that appear in the set of
strings S. T has exactly W many subtrees. Moreover, for any two distinct sub-
trees t' and t" of T, t'[1] # t"'[1].

Proof Sketch. Directly from Definitions 2 and 3.

We may assume without loss of generality that S contains every letter in X
(otherwise, a smaller X can be used). Lemma 1 means that 7 has exactly |X|
many subtrees, each of which starts with a letter in X.



Lemma 2. For any subtree t of T, and for any suffix s in any string of S, t
contains s if and only if s[1] = t[1].

Proof Sketch. If t contains s, then s is the concatenation of edge labels on a
path from the root of ¢ to some leaf of ¢, thus we have s[1] = ¢[1]. By Definitions
2 and 3, s is the concatenation of edge labels on a path from the root of T to
one of T’s leaves. Let t' be the subtree of 7 that has the path representing s,
then we have s[1] = ¢'[1]. If s[1] = ¢[1], then ¢[1] = #'[1], hence it follows from
Lemma 1 that ¢t = ¢/, i.e., t contains s.

Corollary 1. Lett be any subtree of T, and s be any substring in a string of S.
Then, s is the concatenation of edge labels on a path from the root of t to some
internal node (or leaf) of t, and the frequency of s is recorded at the node (or
leaf) counter, if and only if s[1] = t[1].

Proof Sketch. By Definitions 2 and 3, Lemma 2 and the fact that any substring
in a string of S is a prefix of some suffix in a string of S.

4 New Algorithms

4.1 The Strategy

Lemma 2 and Corollary 1 combined imply a new way of fast construction of
generalized suffix trees. The strategy is to organize all suffixes starting with the
same letter into a group and build a subtree for each of such groups. A more
or less related strategy has been devised in [9], but the strings considered there
are over a small alphabet and the method used to build subtrees is of quadratic
time complexity.

The task of grouping can be done by means of sorting or hashing. We shall
point out that the hashing here is substantially different from other hashing
techniques used to improve the performance of suffix tree construction [8]. We use
hashing here for the purpose of “divide-and-conquer”, while others use hashing
to speed up searching the branches out of the nodes. The task of constructing
a subtree can be done easily, say, with one phrase execution of the Ukkonen
Algorithm. Recall that the Ukkonen algorithm builds a suffix tree for a string
s[1 : n] in n phrases with the i-th phrase adding the i-th suffix s[i : n] to the
existing (but partially built) suffix tree. Let ResUkkonen(SuffizTree t, NewString
s) denote the one phrase execution of the Ukkonen Algorithm to add the only
suffix s[1 : n] to t. We additionally require that ResUkkonen records frequencies
of substrings at internal nodes and leaves, which can be done easily by tuning
the Ukkonen algorithm.

4.2 Algorithm SbSfxTree

The key idea is as follows. Read strings sequentially from an input file, and for
every string s[1 : n] output its n suffixes to a temporary file. Sort the temporary
file to group all the suffixes starting with the same letter together. Finally, build
a subtree for each group of such suffixes.



input:
infile: a set of strings
tmpfile: a set of suffizes
outfile: a set of subtrees
Begin
1 while (infile is not empty)
2 readString(infile, s[1:n])
3. for =1;1 < mnji++)
4. tmpfile.append(s[i : n])
6. sort(tmpfile); createSuffizTree(t)
7. while (tmpfile is not empty)
8 readString(tmpfile, s)

9. if (t.empty() or t[1] == s[1])
10. RstUkkonen(sft, s)
11. else if (t[1]# s[1])
12. Output(t,outfile), ResetTree(t)
13. Output(t,outfile)
end

Figure 3: Algorithm SbSfxTree

4.3 Algorithm HbSfxMiner

The key idea is to replace sorting with hashing to group all suffixes with the

same starting letter together.

input:
infile: a set of strings
f: a hashing function from letters to integers
outfile: a set of subtrees
Begin
create subtrees t1,...,t5|;
while (infile is not empty)
readString(infile, s[1:n])
for i=1;i<mji++)
RstUkkonen(t sy ,8[i:n])
for (=0;i<|X);i++)
Output(t; ,outfile)

NS O oo~

end

Figure 4: Algorithm HbSfxTree

5 Performance Analysis

Due to space limit, we only give complexity bounds for algorithm SbSfxTree and
would like to point out that similar bounds can be given to algorithm HbSfxTree.

We will also present experimental results for both algorithms



Theorem 1. Let T be a generalized suffix tree of a set of strings S over an
alphabet X' satisfying Conditions(1), (2) and (8). Assume the size of each subtree
t of T is O(|S|/|X]). Algorithm SbSfrTree builds T (via building all its subtrees)
in time O(|S| - log |S| + |S| - log | X]|) and in space O(|S|/|X]).

Proof Sketch. By Conditions (1), (2) and (3), each string s € S has at most «
suffixes. Hence, the size of the suffix file is at most «|S|, this means that sorting
to group suffixes is of O|S| - log|S]|) time complexity and of O(|S|/|X|) space
complexity when a buffer of O(|S|/|X|) size is used. It follows from the Ukkonen
algorithm that building a subtree requires O(|S|/|X|) space and O((|S|/|X]) -
log |X|) time. This means that the total space for building all the subtrees is
still O(|S|/|%]), but the total time is by Lemma 1 O((|X] - [S|/|X]) - log |X|) =
0(S| -log ).
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In theory, algorithm SbSfxTree has better space complexity, while it has al-
most the same time complexity bound as the Weiner, Ukkonen, and McCreight
algorithms. In Fig.5(a,b,c), we report experimental analysis of SbSfxTree and
HbSfxTree in comparison with the Ukkonen algorithm. The computing envi-
ronment is a Dell PWS 340 with a 1.5 GHz P4 Processor, 512 MB RAM and
18 GB memory. In those experiments, we used alphabets X;,i = 1,2,3, such
that |X;| = 10,000, | X2| = 15,000 and |X3| = 20,000. For each X;, we gen-
erated three sets of 1 million strings such that sizes of strings follow Poisson
distributions with means values of 1, 2 and 3, respectively. It is clear that al-
gorithms SbSfxTree and HbSfxTree have substantially better performance than
the Ukkonen algorithm. For the set of strings following Poisson distribution of
means value 3, the Ukkonen algorithm ran out of memory. The current version of
algorithm HbSfxTree also ran out memory, because all the subtrees were stored
in RAM. We shall point out that this can be improved through paging subtrees
in the next stage of implementation.

In [5], we has applied algorithms SbSfxTree and HbSfxTree to the mining
of frequent traversal path patterns from very large Web logs. Fig.5(d,e,f) shows
performance of SbSfxTree and HbSfxTree based mining in comparison with the
Ukkonen algorithm based mining. It is clear that SbSfxTree and HbSfxTree are
far superior to the Ukkonen algorithm. It is also shown [5] that SbSfxTree and
HbSfxTree are far superior to the apriori-like algorithms within the context of
mining frequent traversal path patterns.

Remark 1. By Lemma 2, the construction of one subtree has no dependence on
any other subtrees. This means that both algorithms SbSfxTree and HbSfxTree
can be easily revised to allow parallel or distributed construction of generalized
suffix tree.

6 Conclusions

The work in this paper is motivated by the real-world problems such as mining
frequent traversal path patterns from very large Web logs. Generalized suffix
trees over a very large alphabet can be used to solve such problems. However,
due to large magnitudes of the underlying alphabet and the set of strings, tra-
ditional algorithms such as the Weiner, Ukkonen and McCreight algorithms are
not sufficient assurance of practicality. We have designed two algorithms for fast
construction of generalized suffix trees over very alphabet. We have shown that
the two algorithms are efficient in theory and in practice, and applied them to
solve the problem of mining frequent traversal path patterns.
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