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Abstract—Individual privacy will be at risk if a published data set is not properly deidentified. k-Anonymity is a major technique to de-

identify a data set. Among a number of k-anonymization schemes, local recoding methods are promising for minimizing the distortion of

a k-anonymity view. This paper addresses two major issues in local recoding k-anonymization in attribute hierarchical taxonomies.

First, we define a proper distance metric to achieve local recoding generalization with small distortion. Second, we propose a means to

control the inconsistency of attribute domains in a generalized view by local recoding. We show experimentally that our proposed local

recoding method based on the proposed distance metric produces higher quality k-anonymity tables in three quality measures than a

global recoding anonymization method, Incognito, and a multidimensional recoding anonymization method, Multi. The proposed

inconsistency handling method is able to balance distortion and consistency of a generalized view.

Index Terms—k-anonymization, local recoding, generalization distance, inconsistency.
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1 INTRODUCTION

A vast amount of operational data and information has
been stored by different vendors and organizations.

Most of the stored data is useful only when it is shared and
analyzed with other related data. However, this kind of data
often contains some personal details and sensitive informa-
tion. The data can only be allowed to be released when
individuals are unidentifiable. K-anonymity has emerged as
an effective approach in anonymization [18], [19], [20].

1.1 K-anonymization and Various Methods

The key idea of k-anonymization is to make individuals
indistinguishable in a released table. A tuple representing
an individual within the identifiable attributes has to be
identical to at least ðk� 1Þ other tuples. The larger the value
of k is, the better the protection. One way to produce
k identical tuples within the identifiable attributes is to
generalize values within the attributes, for example,
removing day and month information in a Date-of-Birth
attribute. A general view of attribute generalization is the
aggregation of attribute values. K-anonymity has been
extensively studied in recent years [4], [7], [9], [10], [22].

Various approaches for generalization have been stu-
died, such as global recoding generalization [4], [7], [9], [18],
[19], [22], multidimensional recoding generalization [10],

and local recoding generalization [6], [15], [24]. Global
recoding generalization maps the current domain of an
attribute to a more general domain. For example, ages are
mapped from years to 10-year intervals. Multidimensional
recoding generalization (or multidimensional global recod-
ing generalization by LeFevre et al. [10]) maps a set of
values to another set of values, some or all of which are
more general than the corresponding premapping values.
For example, {male, 32, divorce} is mapped to {male, [30,40),
unknown}. Local recoding generalization modifies some
values in one or more attributes to values in more general
domains. We will illustrate the differences between multi-
dimensional recoding generalization and local recoding
generalization in the following.

A general view of k-anonymity is clustering with the
constraint of the minimum number of objects in every
cluster. Data records are mapped to data points in a high
dimensional space. When a region partitioned by attribute
values has fewer than k data points, individuals repre-
sented by data points are at risk of being identified. The
region needs to be merged with other regions by general-
izing attribute values so that the merged region contains at
least k data points.

Global, multidimensional, and local recoding general-
ization can be explained in this way. Consider the
2D example in Fig. 1a and let k ¼ 5. Attribute values
ða; b; c; dÞ and ð�; �; �Þ partition the data space into 12 regions
in Fig. 1a. Two regions, ½a; �� and ½b; ��, contain less than five
but more than zero data points. Individuals in these two
regions are likely to be identified. Therefore, they need to be
merged with other regions to make the number of data
points at least five. In the global recoding generalization
scheme, a merged region stretches over the range of other
attributes. For example, the merged rectangle in Fig. 1b
covers all values of Attribute 1 since all occurrences of � and
� in Attribute 2 have to be generalized. The merged regions
and the summary of the corresponding generalized table are
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listed in Fig. 1b. In a table view, domain ð�; �; �Þ is mapped
to domain ð�; ½�; ��Þ. The global recoding generalization
causes some unnecessary mergers, for example, regions
½c; ð�; �Þ� and ½d; ð�; �Þ�. This is the overgeneralization
problem of global recoding generalization. For the multi-
dimensional generalization scheme, any two or more
regions can be merged as long as the aggregated attribute
value such as ½�; �� makes sense. For example, regions ½a; ��
and ½a; �� merge into region ½a; ð�; �Þ�, and regions ½b; �� and
½b; �� merge into region ½b; ð�; �Þ�. Regions ½c; ��, ½c; ��, ½d; ��,
and ½d; �� keep their original areas, see Fig. 1c. In a table view,
all tuples ða; �Þ and ða; �Þ are mapped to ða; ½�; ��Þ and all
tuples ðb; �Þ and ðb; �Þ are mapped to ðb; ½�; ��Þ, but tuples
ðc; �Þ, ðc; �Þ, and ðd; �Þ remain unchanged. A local recoding
generalization method is even more flexible, see Fig. 1d. It
does not merge whole regions. A dense region can be split
into two or more overlapping regions, and some merge with
other regions. For example, region ½a; �� is split into two
overlapping regions containing three and seven data points
each. The three-data point region is merged with region ½a; ��
to form region ½a; ð�; �Þ� with five data points. Both multi-
dimensional and local recoding approaches do not over-
generalize a table. In a table view, some tuples of ða; �Þ and
ða; �Þ are mapped to ða; ½�; ��Þ, and some tuples of ðb; �Þ and
ðb; �Þ are mapped to ðb; ½�; ��Þ, but some remain unchanged
in their original forms.

1.2 Existing Problems and Our Contributions

Multidimensional and local recoding methods can improve
the quality of anonymization by reducing the amount of
generalization. A number of research works have been
conducted in this direction [1], [6], [10], [15], [24]. However,
most works focus on numerical and ordinal attributes. Two
works [1], [15] handle unordered categorical attributes, but
both employ a simplified suppression model: values either
exist or are unknown. They do not consider attribute
hierarchical structures. Work in [24] touches upon attribute

hierarchical structures, but the approach is fundamentally a
numerical one. More discussions on the work are given in
Section 2.

There is an opportunity for studying multidimensional
and local recoding k-anonymization in attribute hierarchies.
When attributes are numerical or ordinal, their distances
can be measured by the euclidean distance or other similar
metrics. However, not every attribute can be ordered.
Attribute hierarchical taxonomies provide meaningful
groups in a released table. Two immediate questions will
be: How can we measure distances of data objects in
attribute hierarchies? How can we link the metric to the
quality objective of k-anonymization? This paper will
discuss these problems.

One major drawback of multidimensional and local
recoding generalization methods is that they produce tables
with inconsistent attribute domains. For example, general-
ized values ð�; �Þ and ungeneralized values � and � coexist
in Attribute 2 in Figs. 1c and 1d. This may cause difficulty
when analyzing the table in many real-world applications.
We will initiate discussions of inconsistency problem of
local recoding generalization and study an approach to
handle inconsistent domains of a generalized table.

This paper extends our work reported in [13]. In addition
to defining a distance metric and splitting an equivalence
class to a stub and a trunk for local recoding, we add
comprehensive discussions on the inconsistency problem of
local recoding and possible solutions. We also upgrade the
experimental comparisons from comparing with a global
recoding method based on one quality metric to comparing
with both global and multidimensional recoding methods
based on four quality metrics.

2 RELATED WORK

In general, there are three categories of privacy preserving
methods in the data mining literature. The first category

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 9, SEPTEMBER 2008

Fig. 1. An illustration of different methods to achieve k-anonymity. A table has two attributes Att1 and Att2. fa; b; c; dg and f�; �; �g are the original

domains for Att1 and Att2. Top tables summarize the number of data points in separate regions of the 2D space. The bottom tables summarize

frequencies of identical tuples. (a) The original data. (b) Generalization by a global recoding approach. (c) Generalization by a multidimensional

recoding approach. (d) Generalization by a local recoding approach.



consists of perturbation methods, typified by [2], [3], and
[17]. These methods make use of randomized techniques to
perturb data and statistical techniques to reconstruct
distribution of data. The second category comprises of
cryptographic methods, such as [14], [21], and [23].
Cryptographic techniques have been used to encrypt data
so that neither party can see other parties’ data when they
share data to work out common interesting solutions. The
third category includes k-anonymity methods, such as [18]
and [20]. A k-anonymity method deidentifies a data set so
that individuals in the data set cannot be identified. Our
study belongs to this category.
K-anonymization methods are generally divided into two

groups: task-specific and nonspecific methods. For task-
specific k-anonymization, the released tables are undergoing
some specific data mining processes (e.g., building decision
tree models). The purpose of anonymization is to keep
sufficient protection of sensitive information while main-
taining the precision for data mining tasks, such as
classification accuracy. There have been a number of
proposals in this group [7], [8], [22]. In most cases, data
owners do not know the ultimate use of the released tables.
Therefore, a general anonymization goal should not be
associated with a specific data mining task but should
minimize distortions in the released table. The methods in
this category are called nonspecific k-anonymization meth-
ods (e.g., [1], [4], [9], [15], [18], [19]).

An alternative taxonomy of k-anonymization methods
includes three groups: global, multidimensional, and local
recoding methods. LeFevre et al. [10] divide multidimen-
sional recoding methods into global and local methods. In
this paper, multidimensional recoding means multidimen-
sional global recoding. Local recoding includes multidimen-
sional and single dimensional local recoding. Justifications
for our classification are provided in Section 3.

Global recoding methods generalize a table at the
domain level. Many works of k-anonymization are based
on the global recoding model, such as [4], [7], [8], [9], [18],
[19], and [22]. A typical global recoding generalization
method is Incognito [9]. Incognito produces minimal full-
domain generalizations. Incognito is the first algorithm for
the minimal full-domain generalization on large databases.
A global recoding method may overgeneralize a table. For
example, to protect a male patient in a specific region,
postcodes of thousands of records are generalized even
though there are a lot of male patients in other regions,
which can have their original postcodes.

Both multidimensional and local recoding methods
generalize a table at cell levels. They do not overgeneralize
a table and, hence, may minimize the distortion of an
anonymity view. LeFevre et al. first studied the multi-
dimensional recoding problem [10] and proposed an
efficient partition method, Multi, for multidimensional
recoding anonymization. Aggarwal et al. [1] and Meyerson
and Williams [15] analyzed the computational complexity of
local recoding methods on a simplified model: suppressing
values only. Both conclude that optimal k-anonymization,
minimizing the number of cells being suppressed, is NP-
hard. Some new local recoding works are reported in [6] and
[24]. These works mainly deal with numerical and ordinal
attributes. Although work in [24] touches on hierarchical
attributes, its quality metric for hierarchical attributes is a

direct extension of that for numerical attributes. The quality
of generalizing categorical values in [24] is determined by
the number of distinct values in a generalized category and
the total number of distinct values of the attribute but not by
hierarchical structures. Consider two attributes with the
same number of distinct values. Information losses of two
generalizations are the same if the generalized categories
include the same number of distinct values, although their
hierarchical structures are different. In contrast, the general-
ization distance in this paper is determined by hierarchical
structures.

Other typical approaches to achieve k-anonymity are
through clustering [2], [5]. These methods normally handle
numerical and ordinal attributes and are not global recoding
methods. They use different representations, such as mean
values instead of intervals as in generalization. For data sets
with numerical attributes, there are rarely identical tuples in
the quasi-identifier attribute set, defined in Section 3 (over-
lapping data points in a data space), since there are too many
distinct values in each attribute. Therefore, there is not a
point to distinguish local recoding and multidimensional
recoding. In general, most k-anonymity methods can be
interpreted as variant clustering approaches, either through
division or agglomeration. Local and multidimensional
recoding methods are differentiated by whether overlapping
clusters are allowed.

3 PROBLEM DEFINITIONS

The objective of k-anonymization is to make every tuple in
identity-related attributes of a published table identical to at
least ðk� 1Þ other tuples. Identity-related attributes are
those which potentially identify individuals in a table. For
example, the record describing a middle-aged female in the
suburb with the postcode of 4,352 is unique in Table 1, and
hence, her problem of stress may be revealed if the table is
published. To preserve her privacy, we may generalize
Gender and Postcode attribute values such that each tuple
in attribute set {Gender, Age, Postcode} has at least two
occurrences. A view after this generalization is given in
Table 1b. We provide running examples based on Table 1.

Since various countries use different postcode schemes,
in this paper, we adopt a simplified postcode scheme,
where its hierarchy {4201, 420*, 42**, 4***, *} corresponds to
{suburb, city, region, state, unknown}, respectively. A tuple
for an attribute set in a record is an ordered list of values
corresponding to the attribute set in the record.

Definition 1 (Quasi-identifier attribute set). A quasi-
identifier attribute set (QID) is a set of attributes in a table
that potentially identify individuals in the table.

For example, attribute set {Gender, Age, Postcode} in
Table 1a is a quasi-identifier. Table 1a potentially reveals
private information of patients (e.g., the problem of stress of
the middle-aged female). Normally, a quasi-identifier
attribute set is specified by domain experts.

Definition 2 (Equivalence class). An equivalence class of a
table with respect to an attribute set is the set of all tuples in
the table containing identical values for the attribute set.
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For example, tuples 1, 2, and 3 in Table 1a form an
equivalence class with respect to attribute set {Gender, Age,
Postcode}. Their corresponding values are identical.

Definition 3 (k-anonymity property). A table is k-anonymous

with respect to a quasi-identifier attribute set if the size of
every equivalence class with respect to the attribute set is k or
more.

k-Anonymity requires that every tuple occurrence for a
given quasi-identifier attribute set has a frequency of at
least k. For example, Table 1a does not satisfy the two-
anonymity property since the tuple {female, middle, 4352}
occurs once.

Definition 4 (k-anonymization). K-anonymization is a process
to modify a table to a view that satisfies the k-anonymity
property with respect to the quasi-identifier.

For example, Table 1b is a two-anonymity view of
Table 1a since the size of all equivalence classes with respect
to the quasi-identifier {Gender, Age, Postcode} is at least 2.

A table may have more than one k-anonymity view, but
some are better than others. For example, we may have
other two-anonymity views of Table 1a as in Tables 1c and
1d. Table 1b loses more detail than Tables 1c and 1d.

Therefore, another objective for k-anonymization is to
minimize distortions. We will give a definition of distortion
later in Section 4. Initially, we consider it as the number of
cells being modified.

There are three ways to achieve k-anonymity, namely
global recoding, multidimensional recoding, and local recoding.
LeFevre divided multidimensional recoding as having two
subtypes [10]: global and local methods. Though the
multidimensional global recoding contains the word global,
its generalized tables are quite different from those of the
global recoding generalization but are closer to those of the
local recoding generalization. Both multidimensional and

local recoding methods produce tables with mixed values
from different domains in a field, whereas all values are
from the same domain in a field of a globally generalized
table. To avoid confusion, we use the terminology “multi-
dimensional recoding” instead of “multidimensional global
recoding.” It is not significant to distinguish multidimen-
sional and single dimensional local recoding since it does
not lead to different approaches to generalize one value or
more values in a tuple for local recoding. We call both local
recoding.

Another name for global recoding is domain general-
ization. The generalization happens at the domain level. A
specific domain is replaced by a more general domain.
There are no mixed values from different domains in a table
generalized by global recoding. When an attribute value is
generalized, every occurrence of the value is replaced by the
new generalized value. A global recoding method may
overgeneralize a table. An example of global recoding is
given in Table 1b. Two attributes Gender and Postcode are
generalized. All gender information has been lost. It is not
necessary to generalize the Gender and the Postcode
attribute as a whole. So, we say that the global recoding
method overgeneralizes this table.

Multidimensional and local recoding methods generalize
attribute values at cell level. They generalize cell values
when necessary for k-anonymity. Values from different
domains coexist in a field of a generalized table. They do
not overgeneralize a table, and hence, they may minimize
the distortion of an anonymous view. Tables generalized by
multidimensional and local recoding methods are given in
Tables 1c and 1d. Another interpretation of multidimen-
sional and local recoding is that they map a set of values to
another set of values. The difference between multidimen-
sional recoding and local recoding generalization is that the
former does not allow an equivalence class to be mapped to
two or more equivalence classes while the latter does. For
example, three equivalence classes in Table 1a are general-
ized to two equivalence classes in Table 1c. The two
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TABLE 1
(a) A Raw Table. (b) A Two-Anonymity View by Global Recoding. (c) A Two-Anonymity by Multidimensional Recoding.

(d) A Two-Anonymity by Local Recoding



equivalence classes {female, middle, 4352} and {female, old,
4353} are generalized to one equivalence class {female, *,
435*}. No equivalence class is split, and this is a result of
multidimensional recoding. Three equivalence classes in
Table 1a are generalized to three equivalence classes in
Table 1d. The equivalence class {male, middle, 4350} is split
into two identical equivalence classes. One contains the first
two tuples, t1 and t2, and the other contains the third tuple,
t3. The equivalence class containing t3 is generalized with
the equivalence class containing t4. The equivalence class
containing t1 and t2 remains ungeneralized. Therefore,
Table 1d is a result of local recoding. A large equivalence
class may be generalized into a number of equivalence
classes in local recoding.

There are many possible ways for local recoding
generalization. Aggarwal et al. [1] and Meyerson and
Williams [15] analyze a simplified local recoding model
where values either exist or are suppressed. When the
optimization goal is to minimize cells being suppressed,
both papers conclude that optimal k-anonymization by local
recoding is NP-hard. Therefore, heuristic methods are
typically employed in local recoding generalization.

4 MEASURING THE QUALITY OF K-anonymization

In this section, we discuss metrics for measuring the quality
of k-anonymization generalization.

There are a number of quality measurements presented
in previous studies. Many metrics are utility based, for
example, model accuracy [7], [11] and query quality [10],
[24]. They are associated with some specific applications.
Two generic metrics have been used in a number of recent
works.

The Discernability metric was proposed by Bayardo and
Agrawal [4] and has been used in [10] and [24]. It is defined
in the following:

DM ¼
X

EquivClasses E

jEj2;

where jEj is the size of equivalence class E. The cost of
anonymization is determined by the size of equivalence
classes. An optimization objective is to minimize discern-
ability cost.

Normalized average equivalence class size was proposed
by LeFevre et al. [10], and has been used in [24]. It is defined
as the following.

CAVG ¼ total records

total equiv classes

� �
=ðkÞ:

The quality of k-anonymization is measured by the
average size of equivalence classes produced. An objective
is to reduce the normalized average equivalence class size.

These measurements are mathematically sound but are
not intuitive to reflect changes being made to a table. In this
paper, we use the most generic criterion, called distortion. It
measures changes caused by generalization.

A simple measurement of distortion is the modification
rate. For a k-anonymity view V of table T , the modification
rate is the fraction of cells being modified within the quasi-
identifier attribute set. For example, modification rate from

Tables 1a to 1b is 66.7 percent and modification rate from
Tables 1a to 1c is 33.3 percent.

This criterion does not consider attribute hierarchical
structures. For example, the distortion caused by the
generalization of Postcode from suburb to city is signifi-
cantly different from the distortion caused by the general-
ization of Gender from male/female to *. The former still
keeps some information of location, but the latter loses all
information of sex. The modification rate is too simple to
reflect such differences.

We first define a metric measuring the distance between
different levels in an attribute hierarchy.

Definition 5 [Weighted Hierarchical Distance (WHD)]. Let
h be the height of a domain hierarchy, and let levels
1; 2; . . . ; h� 1, h be the domain levels from the most general
to most specific, respectively. Let the weight between domain
level j and j� 1 be predefined, denoted by wj;j�1, where
2 � j � h. When a cell is generalized from level p to level q,
where p > q, the WHD of this generalization is defined as

WHDðp; qÞ ¼
Pp

j¼qþ1 wj;j�1Ph
j¼2 wj;j�1

:

Fig. 2 show two examples of attribute hierarchies, and
Fig. 3 shows the numbering method of hierarchical levels
and weights between hierarchical levels. Level 1 is always
the most general level of a hierarchy and contains one
value, unknown.

We have the following two simple but typical definitions
for weight wj;j�1 in generalization.

1. Uniform weight: wj;j�1 ¼ 1, where 2 � j � h. In this
scheme, WHD is a ratio of the steps a cell being
generalized to all possible generalization steps (the
height of a hierarchy). For example, let the Date-of-
Birth hierarchy be {day/month/year, month/year,
year, 10-year interval, child/youth/middle-age/old-
age, *}. WHD of the generalization from day/
month/year to year is WHDð6; 4Þ ¼ ð1þ 1Þ=5 ¼ 0:4.
In a Gender hierarchy, {male/female, *}, WHD from
male/female to * is WHDð2; 1Þ ¼ 1=1 ¼ 1. This
means that distortion caused by the generalization
of five cells from day/month/year to year is
equivalent to distortion caused by the generalization
of two cells from male/female to *.
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Fig. 2. Examples of domain hierarchies.



This scheme does not capture the fact that

generalizations at different levels yield different

distortions. A generalization nearer to the root of

the hierarchy distorts a value more than a general-

ization further away from the root. For example, in

the Date-of-Birth hierarchy, the distortion caused by

the generalization of a value from day/month/year

to month/year is less than the distortion caused by

the generalization from year to 10-year interval. This

example motivates us to propose another scheme.
2. Height weight: wj;j�1 ¼ 1=ðj� 1Þ�, where 2 � j � h

and � is a real number � 1 provided by the user. The
intuition is that generalization nearer the root results
in larger distortion than generalization further away
from the root. In this scheme, weights nearer the root
are larger than weights further away from the root.
For example, in the Date-of-Birth attribute, let � ¼ 1,
WHD of the generalization from day/month/year to
year is

WHDð6; 5Þ ¼ ð1=5Þ=ð1=5þ 1=4þ 1=3þ 1=2þ 1Þ
¼ 0:087:

In the Gender hierarchy {male/female, *}, WHD from

male/female to * is WHDð2; 1Þ ¼ 1=1 ¼ 1. The dis-

tortion caused by the generalization of one cell from

male/female to * in the Gender attribute is more than

the distortion caused by the generalization of 11 (i.e.,

1/0.087) cells from day/month/year to month/year

in the Date-of-Birth attribute. If a user wants to

penalize more on the generalization close to the root,

� can be set to a larger value (e.g., 2).
There are other possible schemes for various

applications. An immediate enhancement is to

assign weights by attribute. We adopt simple

schemes for better illustration in this paper. In the

following, we define distortions caused by the

generalization of tuples and tables.

Definition 6 (Distortions of generalization of tuples). Let

t ¼ fv1; v2; . . . ; vmg be a tuple and t0 ¼ fv01; v02; . . . ; v0mg be a

generalized tuple of t, where m is the number of attributes in

the quasi-identifier. Let levelðvjÞ be the domain level of vj in an

attribute hierarchy. The distortion of this generalization is

defined as

Distortionðt; t0Þ ¼
Xm
j¼1

WHD levelðvjÞ; levelðv0jÞ
� �

:

For example, let weights of WHD be defined by the
uniform weight scheme, the attribute Gender be in the
hierarchy of {male/female, *} and attribute Postcode be in
the hierarchy of {dddd, ddd*, dd**, d***, *}. Let t4 be
tuple 4 in Table 1a and t04 be tuple 4 in Table 1b. For
attribute Gender, WHD ¼ 1. For attribute Age, WHD ¼ 0.
For attribute Postcode, WHD ¼ 1=4 ¼ 0:25. Therefore,
Distortionðt4; t04Þ ¼ 1:25.

Definition 7 (Distortions of generalization of tables). Let
view D0 be generalized from table D, ti be the ith tuple in D,
and t0i be the ith tuple in D0. The distortion of this
generalization is defined as

DistortionðD;D0Þ ¼
XjDj
i¼1

Distortion ti; t
0
i

� �
;

where jDj is the number of tuples in D.

For example, from Tables 1a to 1b,

WHDðt1; t01Þ ¼ . . . ¼WHDðt6; t06Þ ¼ 1:25:

The distortion between the two tables is

DistortionðD;D0Þ ¼ 1:25� 6 ¼ 7:5:

5 GENERALIZATION DISTANCES

In this section, we map distortions to distances and discuss
properties of the mapped distances.

5.1 Distances between Tuples and Equivalence
Classes

An objective of k-anonymization is to minimize the overall
distortions between a generalized table and the original
table. We first consider how to minimize distortions when
generalizing two tuples into an equivalence class.

Definition 8 (Closest common generalization). All allowable
values of an attribute form a hierarchical value tree. Each value
is represented as a node in the tree, and a node has a number of
child nodes corresponding to its more specific values. Let t1
and t2 be two tuples. t1;2 is the closest common generalization
of t1 and t2 for all i. The value of the closest common
generalization t1;2 is

vi1;2 ¼
vi1 if vi1 ¼ vi2;
the value of the closest common ancestor otherwise;

�

where vi1, vi2, and vi1;2 are the values of the ith attribute in
tuples t1, t2, and t1;2.

For example, Fig. 3 shows a simplified hierarchical value
tree with four domain levels and 2ðl�1Þ values for each
domain level l. Node 0** is the closest common ancestor of
nodes 001 and 010 in the hierarchical value tree.
Consider another example. Let t1 ¼ fmale; young; 4351g
and t2 ¼ ffemale; young; 4352g. t1;2 ¼ f�; young; 435�g.
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Fig. 3. An example of weights and a simplified hierarchical value tree.



Now, we define the distance between two tuples.

Definition 9 (Distance between two tuples). Let t1 and t2 be

two tuples and t1;2 be their closest common generalization. The

distance between the two tuples is defined as

Distðt1; t2Þ ¼ Distortionðt1; t1;2Þ þDistortionðt2; t1;2Þ:

For example, let weights of WHD be defined by the uniform

weight scheme, attribute Gender be in the hierarchy of

{male/female, *} and attribute Postcode be in the hierarchy

of {dddd, ddd*, dd**, d***, *}. t1 ¼ fmale; young; 4351g and

t2 ¼ ffemale; young; 4352g. t1;2 ¼ f�; young; 435�g.

Distðt1; t2Þ ¼ Distortionðt1; t1;2Þ þDistortionðt2; t1;2Þ
¼ 1:25þ 1:25 ¼ 2:5:

We discuss some properties of tuple distance in the

following.

Lemma 1. Basic properties of tuple distances.

1. Distðt1; t1Þ ¼ 0 (i.e., a distance between two identical
tuples is zero);

2. Distðt1; t2Þ ¼ Distðt2; t1Þ (i.e., the tuple distance is
symmetric);

3. Distðt1; t3Þ � Distðt1; t2Þ þDistðt2; t3Þ (i.e., the tuple
distance satisfies triangle inequality).

Proof. The first two properties obviously follow Definition 9.

We prove Property 3 here.
We first consider a single attribute. To make notations

simple, we omit the superscript for the attribute. Let v1

be the value of tuple t1 for the attribute, v1;3 be the value
of the generalized tuple t1;3 for the attribute from tuple t1
and tuple t3, and so forth.

Within a hierarchical value tree, Distðt1; t3Þ is repre-
sented as the shortest path linking nodes v1 and v3 and
Distðt1; t2Þ þDistðt2; t3Þ is represented as the path linking
v1 and v3 via v2. Therefore,

Distðt1; t3Þ � Distðt1; t2Þ þDistðt2; t3Þ:

The two distances are equal only when v2 is located

within the shortest path between v1 and v3.
The overall distance is the sum of distances of all

individual attributes. This proof is true for all attributes.
Therefore, the Property 3 is proved. tu

An example of Property 3 can be found in the

hierarchical value tree in Fig. 3. The distance between 00*

and 011 is ðaþ bþ cÞ, the distance between 00* and 010 is

ðaþ bþ dÞ, and the distance between 010 and 011 is ðcþ dÞ.
Therefore, Distð00�; 011Þ < Distð00�; 010Þ þDistð010; 011Þ.
In a special case,

Distð00�; 011Þ ¼ Distð00�; 01�Þ þDistð01�; 011Þ:

Now, we discuss distance between two groups of tuples.

Definition 10 (Distance between two equivalence classes).

Let C1 be an equivalence class containing n1 identical tuples t1
and C2 be an equivalence class containing n2 identical tuples

t2. t1;2 is the closest common generalization of t1 and t2. The

distance between two equivalence classes is defined as follows:

DistðC1; C2Þ ¼ n1 �Distortionðt1; t1;2Þ
þ n2 �Distortionðt2; t1;2Þ:

Note that t1;2 is the tuple that t1 and t2 will be generalized if
the two equivalence classes C1 and C2 are generalized into

one equivalence class. The distance is equivalent to the
distortions of the generalization, and therefore, the choice of

generalization should be those equivalence classes with the
smallest distances.

We consider a property of merging equivalence classes.

Lemma 2. Associative property of generalization. Let C1,

C2, and C3 be equivalence classes containing single tuples t1,

t2, and t3, respectively, C1;2 be the equivalence class containing

two generalized tuples t1;2 of t1 and t2, and C2;3 be the

equivalence class containing two generalized tuples t2;3 of t2
and t3. We have the following equality,

DistðC1; C2Þ þDistðC1;2; C3Þ ¼ DistðC2; C3Þ þDistðC1; C2;3Þ:

Proof. We start with a single attribute and consider the
hierarchical value tree of the attribute. To make the

notations simple, we omit the superscript for the
attribute. Let v1 be the value of tuple t1 for the attribute,
v1;3 be the value of the generalized tuple t1;3 for the

attribute, and so forth.
Within this hierarchical tree, let node v1;2;3 represent

the closest common ancestor of v1, v2, and v3. Each side of
the equation is the sum of WHD from v1, v2, and v3 to
v1;2;3. We use DistðC1; C2Þ þDistðC1;2; C3Þ as an example
to show this. t1;2 is a descendant of t1;2;3 (or is the same as
t1;2;3, and in this case, the proof is even simpler).
DistðC1; C2Þ sums the WHDs from v1 and v2 to v1;2.
DistðC1;2; C3Þ sums the WHDs from v3 to v1;2;3 and twice
the WHDs from v1;2 to v1;2;3, where one is for v1 and the
other is for v2. Therefore, DistðC1; C2Þ þDistðC1;2; C3Þ
sums the WHDs from v1, v2, and v3 to v1;2;3.

The overall distance is the sum of the distances of
individual attributes. The above proof is true for all
attributes. The lemma is proved. tu

The lemma shows that the distortions do not relate to the
order of generalization but only relate to the elements in the

generalized group.

6 RACING ATTRIBUTES AND INCONSISTENCY

In local recoding generalization, a decision of generalization

is made locally to minimize distortions. However, when
there are a number of choices that cause the same amount of
distortions, they lead to different outcomes. Let us start with

an example. In Table 2a, attributes Gender and Marriage
form the quasi-identifier. The Gender attribute is in the
hierarchy of {male/female, *}, and the Marriage attribute is

in the hierarchy of {married/unmarried/divorced/wi-
dowed, *}. In Table 2a, Distðt1; t2Þ ¼ Distðt1; t3Þ. If we choose

to generalize t1 and t3 first, the resultant two-anonymity
view is in Table 2b. If we choose to generalize t1 and t2 first,
the resultant two-anonymity view is in Table 2c. Both views

have the same distortions over the original table. If users do
not have preferences, both views in Table 2 are acceptable.
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When we consider a more complicated example as in
Table 3, Table 3c is better than Table 3b. Although their
distortions are identical, we may not be able to use both
attributes Gender and Marriage in Table 3b since no reliable
statistical or data mining results can be derived from both
attributes, whereas Gender attribute in Table 3c is complete.

We call this phenomenon racing attributes. More pre-
cisely, we have the following definition.

Definition 11 (Racing attributes). If

DistðC1; C2Þ ¼ DistðC1; C3Þ ¼ min
8i;j

DistðCi; CjÞ;

we call attributes involved in the generalization of t1 and t2
and the generalization of t1 and t3 racing attributes.

When the smallest distance is between two or more

equivalence class pairs and we are going to choose one pair

to generalize, the attributes involved in generalizing the

tuples of equivalence classes are called racing attributes.
To facilitate the following discussions on racing attri-

butes, we introduce a measurement.

Definition 12 (Inconsistency). Let inconsistency of attribute i

be inconsisti ¼ ð1�maxjðpijÞÞ, where pij is the fraction of

values in domain level j of attribute i over all values in

attribute i. Let the inconsistency of a data set be inconsistD ¼
maxiðpiÞ with 1 � i � m, where m is the number of attributes

in the quasi-identifier.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 9, SEPTEMBER 2008

TABLE 2
An Example of Racing Attributes

(a) A raw table. (b) A two-anonymity view. (c) An alternative two-anonymity view.

TABLE 3
Another Example for Racing Attribute

(a) A raw table. (b) A two-anonymity view. (c) An alternative two-anonymity view. View (c) is more consistent than view (b).



Low inconsistency means that attribute values are mostly
from one domain. High inconsistency indicates that
attribute values are mixed from more than one domain.
For example, inconsistency of the Gender attribute in
Table 3b is 50 percent because four unknown values (*)
are from domain level 1 and four values of male and female
are from domain level 2. Inconsistency of the attribute
Marriage in Table 3b is also 50 percent. As a result,
inconsistency of Table 3b is 50 percent. Inconsistency of
Table 3c is 0 percent.

An anonymity table is normally used for data mining or
statistical analysis. Most data mining and statistical tools
assume that values are drawn from the same domain of an
attribute. When values are drawn from more than one
domain, values from a more general domain do not provide
the same detailed information as values from a more specific
domain. There are two ways to handle the situation without
changing data mining or statistical software tools. When the
number of values from a more general domain is not too
many, consider them as missing values and disregard them
in the analysis process. When values from a more general
domain are too many to be ignored, generalize other values
in more specific domains to the more general domain to
make the attribute consistent. In the latter solution, low
distortion is sacrificed for high consistency.

We discuss three approaches for handling racing
attributes and controlling inconsistency.

The first approach is to randomly select racing attributes
to generalize. Consider a large data set where a small
number of values are generalized. We wish that these
generalized values, which may be considered missing
values in an analysis process, are scattered across all
attributes. The randomness of a small number of general-
ized values does not cause a big impact on any attribute
and, therefore, does not affect analysis results significantly.

The second approach is to set priority attributes. More
often than not, attributes have different importance in data
for an application. For example, the attribute Age is usually
more important than the attribute Postcode in a medical
data set. We may sacrifice postcode information for the
integrity of age information as much as possible. Attributes
to be sacrificed are set with high priority. High priority
attributes receive low weights in calculating distortions
while low priority attributes receive high weights. As a
result, more generalizations will occur in high priority
attributes than low priority attributes. This could reduce the
overall inconsistency. For example, when we set attribute
Marriage in Table 3a as a higher priority than attribute
Gender, Table 3a will be generalized as Table 3c, which has
an inconsistency of 0 percent.

The third approach is to incorporate global recoding
generalization into local recoding generalization. The
inconsistency from the global recoding generalization is
always zero. However, the global recoding methods may
overgeneralize a table and cause high distortions. The
strength and weakness of the local recoding generalization
complement those of the global recoding generalization.
Ideally, we wish that the consistency of a table is high and
that a small number of more generalized values are
scattered among attributes.

To make the inconsistency controllable, we introduce
another requirement, the maximum inconsistency. We
require that the inconsistency of a generalized table is
smaller than max_inconsist.

We present the following metric to be a criterion for
deciding when to choose global recoding generalization.

Definition 13 (Generalization portion). Let values of
an attribute be drawn from a number of domains
< Db;Db�1; . . . > , where Db is the most specific domain.
The generalization portion is defined as genportion ¼ 1� PDb

,
where PDb

is the fraction of values in domain Db over all values
of the attribute.

Values in an attribute are split into base (the most
specific) and generalization portions. Note that the base
portion is not necessarily from the most specific domain
of an attribute hierarchy but the most specific one from
domains which the attribute currently draws values from.
For example, let the attribute Date-of-Birth be in domain
levels {day/month/year, month/year, year, 10-year inter-
val, *}. Assume that fractions of values drawn from each
domain level are listed in the following: 0 percent from
level day/month/year, 20 percent from level month/year,
40 percent from level year, 20 percent from 10-year
interval, and 20 percent from *. The base domain is at
domain level month/year since there are no values
drawn from domain level day/month/year. As a result,
genportion ¼ 1� 20 percent ¼ 80 percent.

We have the following relationship between general-
ization portion and inconsistency.

Lemma 3. For an attribute, when the generalization portion is
less than 50 percent, inconsist ¼ genportion.

Proof. When generalization portion is less than 50 percent,
the fraction of values drawn from the base domain is
greater than 50 percent. As a result, the base domain has
the largest fraction of values among all domains. There-
fore, inconsist ¼ 1� PDb

¼ genportion. tu

The relationship between generalization portion and
inconsistency is not this simple when generalization portion
is greater than 50 percent. In the previous example, Date-of-
Birth values are drawn from the following four domain
levels: 20 percent from level month/year, 40 percent from
level year, 20 percent from 10-year interval, and 20 percent
from *. genportion ¼ 1� 20 percent ¼ 80 percent, whereas
inconsist ¼ 1� 40 ¼ 60 percent.

In most applications, the required maximum inconsis-
tency is less than 50 percent. Therefore, the requirement for
the inconsistency of a generalized table to be less than
max_inconsist is equivalent to the requirement that the
generalization portion is less than max_inconsist for every
attribute.

The reason for using generalization portion instead of
inconsistency is that generalization portion gives a desir-
able direction for generalization. See the following two
examples. Attribute 1: 90 percent of values are generalized
to a more general domain, and 10 percent values remain at
the original domain. We have inconsist ¼ 10 percent and
genportion ¼ 90 percent. Attribute 2: 10 percent of values
are generalized to a more general domain, and 90 percent of
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values remain in the original domain. We have inconsist ¼
10 percent and genportion ¼ 10 percent. In the former case,
10 percent of the detailed information does not improve the
quality of the attribute significantly but reduces its utility.
So, we generalize the 10 percent of values to the more
general domain for a 100 percent consistency. In the latter
case, it is worthwhile to sacrifice 10 percent values to keep
90 percent detailed information. Therefore, we do not
generalize the remaining values.

We use the generalization portion as a criterion for
switching on the global recoding. If the generalization
portion is larger than max_inconsist, we have to generalize
values in the base domain (the current most specific one)
to a more general domain. In other words, we need to use
a global generalization method to generalize an attribute
until the portion of values to be generalized further is less
than max_inconsist. The following lemma gives an in-
dicator for this.

Lemma 4. Let D be a table to be generalized into a k-anonymity
view. Consider an attribute i in the quasi-identifier and
inconsisti ¼ 0. Let fj be the frequency of value j in the
attribute. The lower bound of the generalization portion is
ð
P

fj<k
fjÞ=jDj.

Proof. When the frequency of a distinct value in an attribute
is less than k, this value will be generalized to satisfy the
k-anonymity requirement. All such values are to be
generalized. The number of generalized values is hence
at least

P
fj<k

fj since some other values may be involved
in the generalization. Therefore, the lower bound of
generalization portion is ð

P
fj<k

fjÞ=jDj. tu

As a result, we can generalize an attribute globally and
recursively until the lower bound of the generalization
portion is less than max_inconsist. Then, the data set is
ready for local recoding generalization.

The objective of keeping low inconsistency contradicts
the objective of minimizing distortions. The maximum
inconsistency gives users a means to achieve balance
between minimizing distortions and keeping the consis-
tency of a generalized table.

7 TWO LOCAL RECODING ANONYMIZATION

ALGORITHMS

After the distortion has been mapped to a proper distance
metric, it is a natural way to achieve k-anonymization by a
clustering approach. An agglomerative hierarchical cluster-
ing method [12] suits k-anonymization by local recoding
generalization very well. An agglomerative hierarchical
clustering method works in the following way. Initially,
each object is assigned as a cluster. Then, two clusters with
the smallest distance are merged into one cluster. This
procedure repeats until the number of clusters reaches the
user’s specified number. We modify the agglomerative
hierarchical clustering algorithm for k-anonymization by
local recoding.

One issue needs to be resolved when using a clustering
algorithm for local recoding generalization. One equiva-
lence class is initially assigned as a cluster. In multi-
dimensional local recoding generalization, each equivalence

class as a whole is to merge with another equivalence class
to form a new equivalence class. In local recoding general-
ization, only a portion of tuples in an equivalence class
merge with another equivalence class. In other words,
overlapping clusters are allowed and data points in the
identical position are mapped into different clusters.

The purpose of allowing overlapping clusters is to
preserve partial detailed information of a large equivalence
class. For example, a small equivalence class (e.g., containing
one tuple) is generalized with a large equivalence class (e.g.,
containing 100 tuples). Should we generalize the whole large
equivalence class in order to absorb the small equivalence
class? We should not. A better solution is to allocate a small
number of tuples, k� 1 tuples, from the large equivalence
class to generalize with the small equivalence class. As a
result, information in most tuples of the large equivalence
class is preserved. Data points representing tuples in the large
equivalence class belong to two clusters, one for the large
equivalence class and the other for merging with data points
of the small equivalence class.

We propose two concepts, stub and trunk, to facilitate
local recoding k-anonymization by clustering.

Definition 14 (Stub and trunk of equivalence class).

Suppose a small equivalence class C1 and a large equivalence
class C2 are to be generalized for k-anonymity. If jC1j < k and
jC1j þ jC2j � 2k, C2 is split into two parts, a stub and a
trunk. The stub contains ðk� jC1jÞ tuples, and the trunk
contains ðjC1j þ jC2j � kÞ tuples. The stub is to be generalized
with the small equivalence class C1.

After this split, both the new generalized equivalence
class and the remaining trunk of C2 satisfy the k-anonymity
property. The detailed information in the trunk is preserved.

We modify the distance calculation between two equiva-
lence classes C1 and C2, where jC1j < k, in the following, to
support stub and trunk splitting:

. If ðjC1j þ jC2j < 2kÞ, calculate the distance between
C1 and C2.

. If ðjC1j þ jC2j � 2kÞ, calculate the distance between
C1 and the stub of C2.

We present two algorithms. The first algorithm does not
have the maximum inconsistency constraint, and the second
algorithm does.

The pseudocode of the first algorithm is presented in
Algorithm 1. In the algorithm, we say that an equivalence
class C is generalized with another equivalence class C0. We
mean that C is generalized with the stub of equivalence
class C0 when ðjCj þ jC0j � 2kÞ and C is generalized with C0

when ðjCj þ jC0j < 2kÞ.

Algorithm 1 K-Anonymization by Clustering in Attribute

hierarchies (KACA1)

1: form equivalence classes from the data set
2: while there exists an equivalence class of size < k do

3: randomly choose an equivalence class C of size < k

4: �evaluate the pairwise distance between C and all

other equivalence classes

5: �find the equivalence class C0 with the smallest

distance to C
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6: �generalize the equivalence classes C and C0

7: end while

(� simplified statements. Read explanation for details.)

Line 1 forms equivalence classes. Sorting data will speed
up the process. One tuple is also called an equivalence class.
The generalization process continues in lines 2-6 when there
is one or are more equivalence classes whose size is smaller
than k. In each iteration, we randomly find an equivalence
class C of size smaller than k in line 3. Then, we calculate
the pairwise distances between C and all other equivalence
classes in line 4. Note that the distance of C and another
equivalence class C0 means the distance of C and the stub of
C0 when ðjCj þ jC0j � 2kÞ. Line 5 finds the equivalence
class C0 with the smallest distance to C. When there are
more than one such equivalence classes, we select one
randomly. Line 6 generalizes the equivalence classes C and
C0. This implies that C is generalized with the stub of C0 if
ðjCj þ jC0j � 2kÞ. When C is generalized with the stub of C0,
the trunk of C0 remains as an equivalence in the next round.
This means that a large equivalence class can be split into a
number of generalized equivalence classes. The algorithm
terminates when there is no equivalence class whose size is
smaller than k left.

The complexity of KACA1 is analyzed in the follow-
ing. Let n be the number of tuples. All tuples are sorted
and only OðnÞ passes are needed to find all equivalence
classes. The complexity of this step is Oðn lognÞ. Let jEj
be the number of all equivalence classes, and jEsj be the
number of equivalence classes whose size is less than k.
Each iteration chooses an arbitrary equivalence class,
which takes Oð1Þ time, evaluates the pairwise distance,
which takes OðjEjÞ time, finds the equivalence class with
the smallest distance, which takes OðjEjÞ time, and finally
generalizes the equivalence class, which takes Oð1Þ time.
As there are OðjEsjÞ iterations, the overall runtime is
Oðn lognþ jEj � jEsjÞ.

We present another algorithm that extends KACA1 by
using the constraint of maximum inconsistency. The
pseudocode is listed in Algorithm 2.

Algorithm 2 K-Anonymization by Clustering in Attribute

hierarchies with the maximum inconsistency constraint

(KACA2)

1: for each attribute in the quasi-identifier do

2: generalize the attribute by the global recoding until

the lower bound of genportion < max_inconsistency
according to Lemma 4

3: end for

4: call KACA1

5: for each attribute i in the quasi-identifier do

6: if inconsist i < max inconsistency then

7: generate the attribute until

inconsist i < max inconsistency

8: end if

9: end for

The maximum inconsistency constraint is used in
KACA2 to balance consistency and distortion. KACA2
incorporates the global recoding generalization to reduce
inconsistency. In line 2, the employment of global recoding
generalization is determined by the lower bound of the

generalization portion from Lemma 4. KACA1 is called
after the lower bound of the generalization portion is less
than max_inconsist for each attribute. After local recoding
generalization by calling KACA1, a final generalization step
is conducted when necessary to ensure the inconsistency of
each attribute is less than the user-specified threshold. In
this step, low distortion is sacrificed for high consistency.

The complexity of KACA2 has a similar formulation as
that of KACA1. Global recoding generalization takes OðnÞ
for each generalization. The number of global general-
izations has a lower bound of 0 and an upper bound of
m � ðh� 1Þ, where m is the number of attributes in the
quasi-identifier and h is the maximum height of attribute
hierarchies. In practice, some attributes do not need global
generalization to satisfy Lemma 4 and some attributes only
need one or two global generalizations. We estimate the
complexity of this step as Oðm � nÞ. In sum, the time
complexity of KACA2 is Oðn lognþm � nþ jEj � jEsjÞ. The
additional computational cost for global generalization
Oðm � nÞ can be well compensated for by the reduction in
OðjEj � jEsjÞ since jEsj, the number of equivalence classes
whose size is less than k, is significantly reduced as a result
of global generalization.

8 PROOF-OF-CONCEPT EXPERIMENTS

Our proposed methods are compared with a typical global
recoding method, Incognito [9], and a typical multidimen-
sional recoding method, Multi [10]. Different methods are
compared against four quality measures, distortion, dis-
cernability metric, normalized average equivalence class
size, and inconsistency. Multi assumes fully ordered
attributes and does not use attribute hierarchical taxo-
nomies, and hence, we do not have distortion and
inconsistency results for it.

The adult data set from the UCIrvine Machine Learning
Repository [16] has become a benchmark data set for
comparing k-anonymity methods. The data set has been
used in most recent k-anonymity studies [6], [7], [9], [10],
[11], [24]. We eliminated the records with unknown values.
The resulting data set contains 45,222 tuples. Eight
attributes were used as the quasi-identifier, as shown in
Table 4.

Experimental results are shown in Figs. 4 and 5. In Fig. 4,
the first six attributes are selected as the quasi-identifier. In
Fig. 5, k is fixed to 10. Since there is random selection in our
algorithms, we report the distortion, discernability, normal-
ized average equivalence class size, and inconsistency of
our methods based on the average of 10 trials. Our methods
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TABLE 4
Description of Adult Data Set



have been evaluated in both uniform and height weight
schemes. Conclusions from both schemes are very similar,
and here, we only show results from the height weight

scheme. For the height weight scheme, � ¼ 1. For the
KACA2 algorithm, the maximum inconsistency is set as
10 percent.
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Fig. 4. Performance of different methods with variant k. (a) Distortion. (b) Discernability. (c) Normalized average equivalence class size.

(d) Inconsistency.

Fig. 5. Performance of different methods with variant quasi-identifier size. (a) Distortion. (b) Discernability. (c) Normalized average equivalence class

size. (d) Inconsistency.



Based on three quality measures, namely distortion,
discernability, and normalized average equivalence class
size, KACA1 performs consistently better than other meth-
ods. This shows that local recoding based on the proposed
distance metric achieves good quality k-anonymity tables
based on the three measures. However, its inconsistency is
the highest. In some cases, the inconsistency of tables
produced by KACA1 can be 70 percent. In such cases, values
are drawn from every domain level in the Age attribute. This
may cause difficulty in data mining applications.

Based on the inconsistency measure, Incognito performs
best since its inconsistency is always zero. However,
Incognito suppresses more than 50 percent of values (being
generalized to the top) in some cases. Such generalized
tables also cause difficulty in data mining applications.
KACA2 balances distortion and consistency. Its inconsis-
tency is capped by 10 percent, and its distortion is in
between the distortions of local and global recoding
methods. We note that with the increase of k, inconsistency
of KACA2 is closer to that of Incognito. This is because
larger k requires larger equivalence classes. Based on
Lemma 4, more attributes need global recoding when k is
larger. KACA2 balances distortion and inconsistency of
local recoding and global recoding.

Based on discernability and normalized average equiva-
lence class size measures, both KACA1 and KACA2 are
better than Multi. Note that normalized average equiva-
lence class sizes for the Multi in Fig. 4b look flat. This is
caused by the scale in Fig. 4b. In comparison to big
differences of normalized average equivalence size among
different methods, differences of a method in variant k are
negligible. When we drew Multi results in a separate figure,
it is consistent with [10, Fig. 10]. Fluctuations in Fig. 5b are
caused by different attributes in the quasi-identifier. A
heuristic is used in the Multi algorithm [10] for choosing an
attribute to partition the data space in the top-down greedy
algorithm. A new attribute leads to a new partition.
Different partitions initiated from different attributes bear
little similarities.

Both KACA1 and KACA2 are not as efficient as
Incognito and Multi on the Adult data set. One computa-
tional intensive part of both algorithms is to compute the
distances between equivalence classes to find the closest
equivalence class pair. This time complexity is quadratic to
the number of equivalence classes. The employment of an
advanced indexing technique to keep track of the closest
equivalence classes for the efficient search of the closest
equivalence class pair will improve the search efficiency
significantly. This means that the current implementations
of KACA1 and KACA2 are to be optimized for better
efficiency.

9 CONCLUSIONS

In this paper, we have studied two major issues in local
recoding k-anonymization: measuring the distance of
generalization in data with attribute hierarchical taxo-
nomies and handling the inconsistency of domains in the
fields of a k-anonymity table. We define generalization
distances to characterize distortions of generalizations and
discuss properties of the distance. We conclude that the

generalization distance satisfies properties of metric dis-

tances. We discuss how to handle a major problem in local

recoding generalization, inconsistent domains in a field of

a generalized table, and propose a method to approach the

problem. We show by experiments that the proposed local

recoding method based on the distance metric achieves

better quality k-anonymity tables by three quality measures

than a typical global recoding method and a typical

multidimensional recoding method, and that our incon-

sistency handling method balances distortion and consis-

tency of a k-anonymity table well.
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