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Abstract: Data mining is the discovery of interesting and hidden patterns from 
a large amount of collected data. Applications can be found in many 
organisations with large databases, for many different purposes such as 
customer relationships, marketing, planning, scientific discovery, and other 
data analysis. In this paper, the problem of mining N-most interesting itemsets 
is addressed. We make use of the techniques of COFI-tree in order to tackle the 
problem. In our experiments, we find that our proposed algorithm based on 
COFI-tree performs faster than the previous approach BOMO based on the  
FP-tree. 
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1 Introduction 

One of the important topics in the literature of data mining is Association Rule Mining. 
Association Rule Mining (Agrawal et al., 1993) has been proposed for understanding the 
relationships among items in transactions or market baskets. For instance, if a customer 
buys butter, what is the chance that he/she buys bread at the same time? Such 
information may be useful for decision makers to determine strategies in a store. The 
formal statement of the problem of data-mining: 

Let I = {i1, i2, …, im} be a set of literals, called items. Let D be a set of transactions, 
where each transaction T is a set of items such that T ⊆ I. Each transaction is associated 
with a unique identifier, called its TID. X is a set of some items in I. If X ⊆ T, transaction 
T contains X. 

An association rule is an implication of the form X ⇒ Y, where X ⊂ I, Y ⊂ I, and 
X ∩ Y = φ. The rule X ⇒ Y holds in the transaction set D with confidence c if c% of 
transactions in D that contain X also contain Y. The rule X ⇒ Y has support s in the 
transaction set D if s% of transactions in D that contain X ∪ Y. 

Given a set of transactions D, the problem of mining association rules is to generate 
all association rules that have support and confidence greater than the minimum support 
and minimum confidence respectively. 

The problem of Association Rules Mining can be decomposed into two subproblems:  

• Find all sets of items (itemsets) that have transaction support above minimum 
support. The support for an itemset is the number of transactions that contain the 
itemset. Itemsets with minimum support are called large itemsets while those 
without, are called small itemsets. 

• Use the large itemsets to generate the desired rules. A k-itemset is a set of items 
containing k items. 

The Apriori algorithm for discovering large itemsets make multiple passes over the data. 
It is very time-consuming to make multiple passes over the data to discover large 
itemsets. To approach real-time data-mining, we need to shorten the time to accomplish 
this task. There are many researchers who propose to tackle the above problem  
(Agrawal and Srikant, 1994; Han et al., 2000; El-Hajj and Zaiane, 2003).  
Agrawal and Srikant (1994) propose an Apriori algorithm. Han et al. (2000) propose an 
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FP-growth algorithm by using a new tree structure, the FP-tree. El-Hajj  
and Zaiane (2003) propose a similar data structure called COFI-tree which mines 
frequent itemsets. 

All the above proposed algorithms focus on the problem of mining frequent itemsets 
with frequency greater than a support threshold. However, it is difficult for the users to 
determine the threshold value. If the threshold is set too large, then there are  
no frequent itemsets in the output. If the threshold is set too small, then there  
are too many frequent itemsets in the output. Thus, finding a suitable threshold is a 
difficult task. 

Let us next introduce the problem of finding N most interesting itemsets.  
It is in general much easier for the users to give the parameter N compared  
with the threshold parameter. Before formulating our problem, we have the following 
definitions. 

Definition 1: The N-most interesting k-itemsets. Let us sort the k-itemsets by descending 
support values, let S be the support of the N-th k-itemset in the sorted list. The N-most 
interesting k-itemsets are the set of k-itemsets having support ≥S.1 

Definition 2: The N-most interesting itemsets is the union of the N-most interesting  
k-itemsets for each 1 ≤ k ≤ kmax, where kmax is the upper bound of the size of itemsets we 
would like to find. We say that n itemset in the N-most interesting itemsets is interesting. 

Objective: We set our goal to find a fast algorithm to mine N-most interesting k-itemsets 
without a given minimum support threshold. 

2 Background 

Agrawal and Srikant (1994) first proposed an algorithm to tackle the problem of mining 
frequent itemsets with frequency greater than a given threshold. The Apriori heuristic 
achieves good performance gain by (possibly significantly) reducing the size of candidate 
sets. However, in situations with prolific frequent patterns, long patterns, or quite low 
minimum support thresholds, an Apriori-like algorithm may still suffer from the 
following two non-trivial costs: it is costly to handle a huge number of candidate sets. To 
discover a frequent pattern of size 100, such as {a1, a2, …, a100}, it must generate  
more than 2100 ≈ 1030 candidates in total. It is tedious to repeatedly scan the  
database and check a large set of candidates by pattern matching, especially for mining 
long patterns. 

The bottleneck of the Apriori-like method is at the candidate set generation and test. 
If one can avoid generating a huge set of candidates, the mining performance can be 
substantially improved. A data structure called Frequent-Pattern tree, or FP-tree and an 
efficient algorithm called FP-growth are proposed by Han et al. (2000) to overcome the 
above weaknesses. The idea of FP-tree is, fetching all transactions from the database and 
inserting them into a compressed tree structure. Then, algorithm FP-growth reads from 
the structure FP-tree to mine frequent itemsets. El-Hajj and Zaiane (2003) found that  
FP-growth algorithm has a bottleneck of the excessive recursive call of functions. They 
thus proposed the COFI-tree which is similar to the FP-tree. In the COFI-tree, a vast 
amount of recursive calls are reduced. 
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As we mentioned before, it is more straightforward to mine N most interesting 
itemsets. Cheung and Fu (2004) proposed an algorithm called BOMO which mines the  
N most interesting itemsets. Algorithm BOMO is based on an FP-tree structure. Initially, 
by updating the threshold dynamically, BOMO can find the N most interesting itemsets. 
However, El-Hajj and Zaiane (2003) claim that the COFI-tree should have a better 
performance, when compared with the FP-tree. Thus, in this paper, we propose an 
algorithm based on the COFI-tree in order to find N most interesting itemsets.  

3 Proposed algorithm 

Our proposed algorithm adopts the techniques used in COFI-tree (co-occurrence 
Frequent Item Tree) in order to find N-most interesting itemsets. The COFI-tree approach 
consists of two main stages, namely Stage 1 and Stage 2. 

Stage 1: the construction of a frequent pattern tree (FP-tree). 

The construction of an FP-tree is the same as the one proposed by Han et al. (2000). That 
is, we build an FP-tree with a given minimum support threshold is equal to 0 initially. 
The details can be found in the paper (Han et al., 2000). Initially, the threshold is set to 
be 0. However, during processing, for a number of COFI-trees in Stage 2, the threshold is 
updated incrementally.  

Stage 2: building the co-occurrence frequent-item-trees (COFI-trees) 

The idea of the construction of a COFI-tree is to build a number of independent and 
relatively small trees, called the COFI-tree, for each item. The COFI-tree has  
tree-structure similar to the FP-tree. It also contains a header table with the horizontal 
link connecting to a number of nodes. The COFI-tree for an item X is the one with the 
root node containing the item X, which is constructed with a pruning technique to remove 
all items which co-exist with the main frequent item X with frequencies less than a 
threshold value.2 After the COFI-tree is constructed, all frequent itemsets with their 
frequencies in the COFI-tree can be found. The trees will be discarded after all frequent 
itemsets in the COFI-tree are mined. At any given time, only one COFI-tree exists in  
the main memory.  

In our proposed approach, there are kmax result sets Rk, where each result set Rk keeps 
the current N-most interesting k-itemsets where 1 ≤ k ≤ kmax. Besides, we also keep kmax 
threshold values ξk , where each threshold value ξk is the greatest frequency of the 
itemsets stored in the result set Rk for 1 ≤ k ≤ kmax. Besides, we also store a global 
threshold ξ, which is the minimum of ξk for 1 ≤ k ≤ kmax. 

In the COFI-tree for each item, we can, not only, find the frequent itemsets but also 
have to update the result sets Rk and the threshold values ξk. If the frequencies of the  
k-itemsets I mined are greater than the current threshold value ξk, then the result sets Rk 
will be updated with the k-itemsets I. If Rk does not contain enough N-most interesting  
k-itemsets, then k-itemsets I will be inserted into the result sets Rk. Otherwise, the itemset 
I’ with the smallest frequency is removed from Rk and the k-itemsets I are inserted  
into Rk. 
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3.1 Mining the COFI-trees 

The COFI-trees of all frequent items are not constructed at the same time. Each tree is 
built and then mined. Finally, it is discarded before the next COFI-tree is built. 
The mining process is repeated for each COFI-tree for item X independently  
for finding all frequent k-itemset patterns in which the item X on the root of the tree 
participates. 

3.2 Pruning the COFI-trees 

We adopt a clever way of pruning in constructing the COFI-tree. Pruning can be done 
after building a tree or, while building it. We adopt pruning on the fly because there are 
minimal overheads and drastic reduction in memory requirements.  

Example: Let us illustrate our algorithm with an example. The example used here is 
similar to the one used by El-Hajj and Zaïane (2003). Suppose we have to mine 2-most 
interesting items and 2-most interesting 2-itemsets. That is, kmax = 2 and N = 2. There are 
the following 18 transactions and six items in the data set.  

Trans. No. Item 
1 A B C D 
2 B C D E 
3 A B D E 
4 A C E F 
5 A B   
6 A C   
7 A C   
8 B E F  
9 A F   
10 C F   
11 A B D  
12 B D E  
13 C D   
14 C F   
15 B D E F 
16 A B D E 
17 A C E F 
18 A B C D 

Initially, we initialise the results sets with empty sets and the thresholds with 0. 

Result set Itemsets 
R1 {} 
R2 {} 
Threshold Values 
ξ1 = 0, ξ2 = 0, ξ = min{ξ1, ξ2} 
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In Stage 1, we build an FP-tree from the transactions with threshold = 0 (see Figure 1).  

Figure 1 Frequent pattern tree (Minimum Support Threshold ξ = 0) 

 

In this FP-tree, the dotted arrow corresponds to the horizontal link of an item X while the 
solid line corresponds to the link between two nodes in the parent-and-child relationship. 
Each node in the FP-tree is represented by an oval containing the item name and its 
frequency. In the paper (El-Hajj and Zaïane, 2003), the COFI-tree for item X is 
constructed in the ascending order of the frequency of the item X. That is, in this 
example, the order of the construction is F COFI-tree, E COFI-tree, D COFI-tree, C 
COFI-tree and B COFI-tree3. However, we adopt the reverse order in our proposed 
method. That is, the construction order is B COFI-tree, C COFI-tree, D COFI-tree, E 
COFI-tree and F COFI-tree. This is because it is likely that the itemsets mined in the 
COFI-tree for the item X with higher frequency have higher frequencies. If we can mine 
the itemsets with higher frequencies in the initial step, then we need not update or switch 
the result set Rk frequently.  

There is no need to construct the COFI-tree for the most frequent item A because all 
COFI-trees for other items yields all possible itemsets containing item A. We just need to 
mine the item (i.e., A) with frequency 11. Thus, we update the result sets and the 
thresholds as follows.  

Result set Itemsets 

R1 {<A:11>} 
R2 {} 

Threshold values 

ξ1 = 0, ξ2 = 0, ξ = min{ξ1, ξ2} = 0 

The overall threshold ξ is still equal to 0. 

3.3 B COFI-tree 

The first COFI-tree is built for item B as it is the second frequent item. In this tree for B, 
all items which are more frequent than B and share transactions with B participate in 
building the tree. This can be found by following the chain of items B (by the horizontal 
node-link) in the FP-tree structure. 
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The resulting B COFI-tree is shown in Figure 2. The two nodes on the right are nodes 
from the tree with an item label and two counters. The first counter is a support-count for 
that node while the second counter, called participation-count, is initialised to 0 and is 
used by the mining algorithm. A horizontal link (dotted line) points to the next node that 
has the same item-name in the tree, and a child node is linked with its parent by a  
bi-directional vertical link.. The squares one the left are cells from the header table as in 
the FP-Tree. This is a list made of all frequent items that participate in building the tree 
structure sorted in ascending order of their global support. Each entry in this list contains 
the item-name, item-counter, and a pointer to the first node in the tree that has the same 
item-name. 

Figure 2 B COFI-tree 

 

The B-COFI-tree is constructed in the following way. We will traverse the FP-tree twice. 
The first traversal is to count the frequency of each item with respect to item B. In the 
header table of the FP-tree, we follow the horizontal link of the item B. First, we reach 
the node (B:6), called N1. Then, we need to traverse all the nodes N2 upwards in node N1. 
In this example, the node above N2 is (A:11). However, we know that AB has the 
frequency of six in this branch as node N1 has the frequency six. In other words, the item 
in node N2 (i.e., item A) occurs six times with item B only. We continue to traverse the 
nodes containing item B horizontally according to the horizontal link of item B and 
process the node similarly. The goal of this traversal is to count the frequency of each 
item with respect to item B. The frequency of each item is stored and will be used in the 
pruning step4. By doing so, we find that item A occurs six times. 

The second traversal of the FP-tree is to create the COFI-tree for item B. Every time 
we visit a node, we will create a node and insert it into the COFI-tree. In the FP-tree, we 
traverse the first node (B:6). There is a branch AB with node N1 (B:6) containing B and 
node N2 (A:11) containing A. We just need to create a new node (A:6) as the frequency of 
this node should be equal to that in node N1 (which is the node containing the testing  
item B). Then, we insert it into the COFI-tree for item B (shown in the following figure). 
Then, the process continues until all nodes in the horizontal link of item B are processed. 
If multiple frequent items share the same prefix, they are merged into one branch and a 
counter for each node of the tree is adjusted accordingly. Like the FP-Tree, the COFI-tree 
is constructed with the header constituting a list of all frequent items to maintain the 
location of the first entry for each item in the COFI-tree. A link is also made for each 
node in the tree pointing to the next node of the same item in the tree if it exists. 

Finally, we mine the itemsets in the B COFI-tree before we remove it and create the 
next COFI-tree for the next item in the header table. From the B COFI-tree, we obtain the 
following itemsets: 
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Item <B:10> 

2-itemsets <{A,B}:6> 

Then, we update the result sets and thresholds as follows. 

Result set Itemsets 

R1 {<A:11>, <B:10>} 
R2 {<{A,B}:6>} 

Threshold values 

ξ1 = 10, ξ2 = 0, ξ = min{ξ1, ξ2} = 0 

3.4 The C COFI-tree 

Next we construct the C COFI-tree. After the first traversal we know that, with respect to 
item C, item B occurs three times and item A occurs six times. For the second traversal, 
we traverse the horizontal link of item C in the FP-tree. First, we visit the node (C:4). 
This node indicates that it shares a branch with items A and C, with support = 4. Then, a 
node (A:4) is created and is inserted into the COFI-tree. The second node we visit is 
(C:2), which shares items A, B and C with support = 2. So, two nodes are created for 
items A and B with support = 2. The third node is (C:1), which shares items B and C with 
support one. As there is a branch with node N containing item B (i.e., (B:2)) from the root 
(which was just created in the previous step), we just increment the counter in that node 
N by one. Thus, the counter in node N is equal to three. The fourth node we visit is (C:3), 
which shares only one item C. The resulting COFI-tree is shown in Figure 3. 

Figure 3 C COFI-tree 

 

From the C COFI-tree, we obtain the following itemsets: 

Item <C:10> 

2-itemsets <{A,C}:6>, <{B,C}:3> 

We update the result sets and the thresholds as follows. 
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Result set Itemsets 

R1 {<A:11>, <B:10>, <C:10>} 
R2 {<{A,B}:6>, <{A,C}:6>} 

Threshold values 

ξ1 = 10, ξ2 = 6, ξ = min {ξ1, ξ2} = 6 

It is noted that R1 contains three elements, because item B and item C have the same 
frequency: ten. Besides, itemset {B, C} (or shortly itemset BC) cannot be inserted into R1 
as its frequency is smaller than six.  

3.5 D COFI-tree 

Recall that the overall threshold is six. In the construction of the COFI-tree for  
item D, item C and item A will thus be eliminated since they do not have enough support 
when appearing together with D (see Figure 4). 

Figure 4 D COFI-tree 

 

From D COFI-tree, we obtain the following itemsets: 

Item <D:9> 

2-itemsets <{B, D}:8> 

We update the result sets and the thresholds as follows 

Result set Itemsets 

R1 {<A:11>, <B:10>, <C:10>} 
R2 {<{B,D}:8>, <{A,B}:6>, <{A,C}:6>} 

Threshold values 

ξ1 = 10, ξ2 = 6, ξ = min {ξ1, ξ2} = 6 

It is noted that R2 contains three elements because itemset {A, B} and itemset {A, C} have 
the same frequency: six; D is not inserted into R1 as its frequency is smaller than ten. 
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3.6 E COFI-tree 

The next frequent item is E. The COFI-tree for item E indicates that items A, C and D are 
eliminated as their frequencies of appearances with E are smaller than the threshold six 
(see Figure 5). 

Figure 5 E COFI-tree 

 

From the E COFI-tree, we obtain the following itemsets: 

Item <E:8> 

2-itemsets <{D,E}:6> 

We update the result sets and thresholds as follows. 

Result set Itemsets 

R1 {<A:11>, <B:10>, <C:10>} 
R2 {<{B,D}:8>, <{A,B}:6>, <{A,C}:6>, <{D, E}:6>} 

Threshold values 

ξ1 = 10, ξ2 = 6, ξ = min {ξ1, ξ2} = 6 

It is noted that R2 contains four elements because itemsets {A, B}, {A, C} and {D, E} 
have the same frequency six. Besides, item E cannot be inserted into R1 as its frequency 
is less than ten. 

3.7 F COFI-tree 

We can construct the following F COFI-tree. However, all items (i.e., items A, B, C, D 
and E) are locally not frequent with respect to item F as the support for all these items 
(with respect to item F) are not greater than the global threshold: six. So, they are not 
involved in the generation of the F COFI-tree. The F COFI-tree has only one node  
for F. 
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From the F COFI-tree, we obtain the following itemsets. 

Item <F:7> 

2-itemsets  

As the frequencies of all itemsets mined are smaller than the correspondence threshold, 
we need not update the results and the thresholds. 

Next we present the pseudo code for the algorithm. 

Algorithm 

In general, our proposed algorithm called COFI + BOMO algorithm runs as follow: 

1 Declare k result sets. For each result set, set maximum size as N. Initialise each with 
empty set. Also, keep a threshold value ξk or each result set. 

2 Scan through transaction database D and count the support of each item. Sort them in 
order. 

3 Build a FP-tree with threshold as 0. 

4 Do COFI-tree building for each item in header table. Mine the COFI-tree. 
4.1 Whenever a pattern is generated,  

4.1.1 If the result set of the corresponding size is not full, add the pattern to 
the result set, update the thresholds. 

4.1.2 Else if support of that pattern > corresponding threshold, add the 
pattern to the result set, update the thresholds. 

The pseudo-code of the proposed algorithm is shown as follows. 

Pseudo Code of COFI + BOMO: 

1. Let resultk be the resulting set of interesting k-itemsets. Set resultk = φ. 

2. Scan through transaction database D. Count the support of each item. 

3. Sort the items by their supports in descending order, denoted as sorted-list. 

4.  ξ1 = ξ2 = ξ3 = ξ4 = ··· = ξk max = ξ = 0 

5. Create FP-tree, T, with root node only labeled as ‘NULL’. 

6. Build (T, D, sorted-list, ξ ) 

7. COFI (T, ξ, ξ1, ξ2 ,…, ξk max) 
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Function Build (T, D, sorted-list, ξ): 
Build (T, D, sorted-list, ξ) 

1. sorted-list  sorted 1-itemsets list whose support ≥ξ. 

2. For each Trans in D, 

If Trans consists of some items in sorted-list, 
Select and sort the items in Trans according to the order of sorted-list. 
Let [p|P] be the sorted frequent item list in Trans, where p is the first element and P is the remaining 
list.  
Call Insert ([p|P], T)  
{ 
If T has a child C such that C.item-name= p.item-name, 
Then increment C’s count by one, 
Else create a new node C, and let its count be one, it’s parent link be linked to T, and its node-link be 
linked to nodes with the same item-name via the node-link structure. 
If P is non-empty, Call insert (P, C). 

Modified COFI Algorithm for Mining N-most interesting itemsets 

Algorithm COFI: Creating, Pruning and Mining COFI-trees 
Input: FP-Tree, a minimum support threshold ξ  
Output: Full set of frequent patterns 
Method: 

1. A = the most frequent item on the header table of FP-Tree 

2. While (There are still frequent items) do { 
2.1 count the frequency of all items that share item (A) in a path. Frequencies of all items 

that share the same path are the same as of the frequency of the (A) items 
2.2 Remove all non-locally frequent items for the frequent list of item (A) 
2.3 Create a root node for the (A)-COFI-tree with both frequency-count and  

participation-count = 0 
2.3.1 C is the path of locally frequent items in the path of item A to the root 
2.3.2 Items on C form a prefix of the (A)-COFI-tree. 
2.3.3 If the prefix is new then 

Set frequency-count=frequency of (A) node and participation-count=0 for all 
nodes in the path 

Else 
2.3.4 Adjust the frequency-count of the already existing part of the path. 
2.3.5 Adjust the pointers of the Header list if needed 
2.3.6 find the next node for item A in the FP-tree and go to 2.3.1 

2.4 MineCOFI-tree (A) 
2.5 Release (A) COFI-tree 
2.6 A = next frequent item from the header table} 
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Function: MineCOFI-tree (A) 

1 nodeA = select_next_node  

(Selection of nodes starting with the node of the most locally frequent item and following its 
chain, until we reach the least frequent item in the Header list of the (A)-COFI-tree) 

2 While there are still nodes do { 

2.1 D = set of nodes from nodeA to the root 

2.2 F = nodeA.frequency-count – nodeA.participation-count 

2.3 Generate all Candidate patterns X from items in D. Patterns that do not have A will be 
discarded. 

2.4 Patterns in X that do not exist in the A-Candidate List will be added to it with 
frequency = F otherwise just increment their frequency with F 

2.5 Increment the value of participation-count by F for all items in D 

2.6 nodeA = select_next_node} 
3 Based on support threshold ξ remove non-frequent patterns from A-Candidate List. 
4 For each pattern S in the A-Candidate List, 

4.1 L = number of items in pattern S 

4.2 If (L < kmax) { 

4.2.1 If frequency of pattern S ≥ ξL then 

4.2.1.1 Insert pattern S into resultL; update ξL; update ξ if necessary. 
max1 2{ min( , , , )}kξ ξ ξ ξ= …  

4.2.2 If (ξL ≠ 0) and (resultL contains itemset X with support < frequency of 
pattern S), 

4.2.3 Remove X from resultL} 

4 Empirical study 

After implementing the COFI + BOMO in C++, we would like to do some experiments 
to evaluate its performance. Before this, we have to generate some data sets. We have 
used the IBM synthetic data set generator for generating various synthetic data sets. We 
use the Pentium IV 2.2GHz PC to conduct our experiment. 

We label our dataset by Dx.Ty.Mz, where D refers to the Number of transactions, T is 
the average number of items in a transaction, M is the number of different items, for 
dataset Dx.Ty.Mz, there are x transactions, each transaction has y items on average and 
there are z different possible items. 

We aim to find the N-most interesting itemsets. 
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4.1 Performance 

First, let us look at the performance of ‘COFI + BOMO’ itself only  

Figure 6 Fix k = (4, 6), varying N = (10, 20, 40, 100) using D1k.T10.M1k 

 

Figure 7 Fix k = (4, 6), varying N = (10, 20, 40, 100) using D100k.T10.M1k 

 

The above two figures show that for a fix k, the total time needed to mine a result set 
grows almost linearly with N. 

Figure 8 Fix N = (20, 100), various k = (1, 2, 3, 4, 5, 6, 7), using D1k.T10.M1k 
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This figure reveals that for k < 4, the mining time grows linearly for a wide range of N. 
However, as k grows larger and larger, especially when k > 6, the mining time tends to 
grow exponentially. 

Consider the Mine-COFI-tree function. In the step of adding a pattern in a result set, ξ 
is updated by 

max1 2min( , , , )kξ ξ ξ ξ= … . If k is large, ξ will probably grow slower. When ξ 
is small, the pruning power when constructing the COFI-tree will be weaker. And thus, 
more items will be added to the COFI-tree, and more candidate patterns will be generated 
in COFI-mining. For example, suppose result1 to resultkmax-1 are full and their 
corresponding thresholds are high; as long as resultk max is not full, maxkξ will be 0. Since 

max1 2min( , , ... , )kξ ξ ξ ξ= , ξ will also be 0. As a result, every item in the COFI header  
table will be taking part in the construction and mining of COFI-tree and this is very 
time-consuming. 

Figure 9 Varying number of transactions, D (N = 20, k = 5, T = 10, M1k) 

 

This figure clearly shows that the mining time grows linearly with the number of 
transactions. 

Figure 10 Varying average number of items in a transaction, T (N = 10, k = 4, varying D) 

 

As the average number of items in a transaction increases, the total mining time grows 
geometrically by a factor that increases linearly with the N value. 
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Figure 11 Varying number of items, M = (2k, 4k, 6k, 8k, 10k) (D = 100k, T = 10) Fix N = 100 
Varying k = 7 

 

The plot shows that for a fixed transaction number and average transaction size the 
mining time decreases with the number of items, with large N and k. 

Next we compare the performance of ‘COFI + BOMO’ with that of BOMO. 

Figure 12 Fix k = (4, 6), various N = (10, 20, 40, 100) using D1k.T10.M1k 

 

For small data set, It is clear that BOMO has better performance for most N and k. 
However, COFI+BOMO is better than BOMO for N ≤ 20 and k ≤ 4, Hence 
COFI+BOMO performs well for small N and k. 

Figure 13 Fix k = (4, 6), various N = (10, 20, 40, 100) using D100k.T10.M1k 

 

It is easy to notice that COFI+BOMO has better performance for all test cases for large 
data set. It is because COFI+BOMO has a good pruning power and there is no need to 
construct conditional sub-trees recursively. 
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Figure 14 Fix N = (20, 100), various k = (1, 2, 3, 4, 5, 6, 7), using D1k.T10.M1k 

 

Again, for small data set, It is clear that BOMO has better performance for most N and k. 
However, COFI+BOMO is better than BOMO for N ≤ 20 and k ≤ 4, hence COFI+BOMO 
performs well for small N and k. 

Figure 15 Fix N = (20, 100), various k = (1, 2, 3, 4, 5, 6, 7), using D100k.T10.M1k 

 

Again, it is easy to notice that COFI+BOMO shows better performance for all test cases 
for large data set. It is because COFI+BOMO has good pruning power and there is no 
need to construct conditional sub-trees recursively. 

Figure 16 Varying number of transactions, D (N = 20, k = 5, T = 10 M = 1k) 
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From the result above, we observe that except for the case of D < 10k, i.e., small data set, 
COFI+BOMO has much better performance for all data set sizes. 

Figure 17 Varying average number of items in a transaction, T (N = 10, k = 4, varying D) 

 

 

From the above two graphs, it is trivial that for data sets with, on average, more (e.g., 20) 
items in a transaction, BOMO is better than COFI+BOMO. However, with smaller 
average transaction size, COFI+BOMO out-performs BOMO. 

The graph shows that for a fixed number of transactions and average transaction  
size, the mining time of COFI+BOMO decreases with the number of items, with large N 
and k while that of BOMO remains constant. Two lines intersect at the point when M is 
about 6000. 

Figure 18 Varying number of items, M = (2k, 4k, 6k, 8k, 10k) (D = 100k, T = 10) Fix N = 100 
Various k = 7 
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4.2 Performance conclusion: 

COFI + BOMO Algorithm 

Strength: Good performance for large data set 
Excellent for small k value (k ≤ 4) 
Works well with small average items in a transaction 

Weakness: Weak performance for large k because of the slow growth of threshold.  
With small data set, poor performance for k ≥ 4 
Not as good as BOMO for large average items in a transaction 

5 Conclusion 

We have implemented an algorithm to solve the problem of mining N most interesting  
k-itemsets without giving a minimum support threshold. The algorithm performs 
especially well with small k. 
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Notes 
1If multiple itemsets have the same support S, we pick all of them according to Definition. 
Therefore, the resulting set may contain more than N itemsets. There is an extreme case where too 
many patterns exist with the same support S; in this case, we suggest that the scenario be reported 
to the user, instead of returning all the patterns. 

2The threshold value is not fixed, but is updated incrementally. 
3There is no need to construct the COFI-tree for the most frequent item A. 
4The pruning step occurs when the global threshold is not equal to 0. 




