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ABSTRACT
Non-independent reasoning (NIR) allows the information about one
record in the data to be learnt from the information of other record-
s in the data. Most posterior/prior based privacy criteria consider
NIR as a privacy violation and require to smooth the distribution
of published data to avoid sensitive NIR. The drawback of this ap-
proach is that it limits the utility of learning statistical relationship-
s. The differential privacy criterion considers NIR as a non-privacy
violation, therefore, enables learning statistical relationships, but at
the cost of potential disclosures through NIR. A question is whether
it is possible to (1) allow learning statistical relationships, yet (2)
prevent sensitive NIR about an individual. We present a data per-
turbation and sampling method to achieve both (1) and (2). The
enabling mechanism is a new privacy criterion that distinguishes
the two types of NIR in (1) and (2) with the help of the law of large
numbers. In particular, the record sampling effectively prevents the
sensitive disclosure in (2) while having less effect on the statistical
learning in (1).

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—Secu-
rity, integrity, and protection; H.2.8 [Database Applications]: Da-
ta Mining

General Terms
Algorithm, Data Privacy, Theory

Keywords
Data Privacy, Differential Privacy

1. INTRODUCTION
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national Conference on Extending Database Technology (EDBT). March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

1.1 Motivation
Many privacy definitions/criteria have been proposed in the lit-

erature and many ways exist to categorize them, such as semantic
methods vs syntactic methods, prior/posterior methods vs differen-
tial methods, etc. See surveys [1][2][3] for details. Another way to
categorize privacy definitions is by whether non-independent rea-
soning (NIR) is considered as a privacy violation. In NIR, the in-
formation about one record in the data can be learnt from the in-
formation of other records in the data, under the assumption that
these records follow the same underlying distribution. A classifier
is a master example of NIR where the class information of a new
instance is learnt from the distribution in a related training set.

Most posterior/prior based privacy definitions consider NIR as
a privacy violation, such as l-diversity [4], t-closeness [5], ρ1-ρ2
privacy [6], β-likeness [7], small sum privacy [8] and ∆-growth [9].
These criteria quantify the risk to an individual by the information
learnt from the subpopulation containing that individual. To avoid
privacy violation, the information learnt is required to have a small
change compared to a prior of an adversary, and this often requires
to “smooth” the distribution in the published data. One drawback
of this approach is that it is hard to model the prior of the attacker
[10][11]. Another drawback is that it limits the desired utility of
learning statistical relationships. For example, ∆-growth postulates
that the distribution in each subpopulation should be close to the
global distribution in the whole data set. This requirement makes
it difficult to learn novel statistical relationships such as “smokers
tend to have lung cancer” in the subpopulation of smokers.

At the other side of the aisle, differential privacy [10] considers
NIR as a non-privacy violation, as stated in [11] (page 4): “We ex-
plicitly consider non-independent reasoning as a non-violation of
privacy; information that can be learned about a row from sources
other than the row itself is not information that the row could hope
to keep private”. Instead of avoiding the occurrence of disclosures,
the differential privacy criterion seeks to mask the impact of a s-
ingle individual on such occurrences. A popularized claim is that,
even if an attacker knows all but one records, the attacker will not
learn much about the remaining tuple. As indicated above, this
comes with the price of permitting disclosures through NIR. In-
deed, the recent study in [12] suggests that disclosures could occur
under differential privacy if records are correlated, and the study in
[13] demonstrates that a Bayes classifier could be built using on-
ly differentially private answers to predict the sensitive attribute of
an individual. In this paper we propose that a sensitive disclosure
of NIR could occur in more general cases: no correlation among



Table 1: {Prof-school, Prof-specialty, White, Male} → >50K (Conf=83.83%)

ε = 0.01 (b = 200) ε = 0.1 (b = 20) ε = 0.5 (b = 4)
Mean SE Mean SE Mean SE

Conf ′ 1.34392 1.36299 0.860966 0.0985138 0.832659 0.0645165
|ans1 − ans′1|/ans1 0.614742 0.533185 0.0693353 0.0272098 0.0262412 0.0144438
|ans2 − ans′2|/ans2 0.570118 0.983959 0.102247 0.0820627 0.069974 0.0636316

records is required and only two differentially private query an-
swers are needed to infer the sensitive attribute value. The example
below demonstrates such a disclosure.

EXAMPLE 1. Consider the ADULT data set [14] that contain-
s 45,222 records (without missing values) from the 1994 Census
database. We did not observe any record correlation in this data
set. Consider the five attributes Education, Occupation, Race, Gen-
der, and Income. The Income attribute has two values, “≤50K”,
for 75.22% of records, and “>50K”, for 24.78% of records. We
assume that learning the Income value for a record is sensitive. On
the raw data, the following two count queries Q1 and Q2 return
the answers ans1 = 501 and ans2 = 420, respectively:

Q1: “Prof-school ∧ Prof-specialty ∧ White ∧ Male”,
Q2: “Prof-school ∧ Prof-specialty ∧ White ∧ Male ∧ >50K”.

These answers imply the following rule with the confidenceConf =
ans2
ans1

= 0.8383.

{Prof-school, Prof-specialty, White, Male} → >50K.

Since this confidence is significantly higher than the overall fre-
quency 24.78% of the value “>50K”, this rule may violate the pri-
vacy of the individuals matching the condition of Q1. While this
rule seems expected, it does demonstrate the potential risk of NIR
on a real life data distribution. After all, truly sensitive data and
findings are difficult to obtain and publish.

The differential privacy mechanism will return the noisy answers
ans′i = ansi + ξi, i = 1, 2, where the noises ξi’s follow some dis-
tribution, and an adversary has to gaugeConf byConf ′ =

ans′2
ans′1

.

Consider the widely used Laplace noise distribution Lap(b) = 1
2b

exp(− |ξ|
b

), where b is the scale factor. The setting of b = ∆/ε
would ensure ε-differential privacy for the sensitivity ∆ of the query
function. Let us set ∆ = 2 to account for the two count queries.
Note that the effect of a larger ∆ can be simulated by the effect of
a smaller ε because b = ∆/ε.

Table 1 shows the mean ofConf ′ and the relative error |ansi−ans
′
i|

ansi
of query answers over 10 trials of random noises, and the standard
error (SE) of the mean. Conf ′ measures the disclosure (in red) and
|ansi−ans′i|

ansi
measures the utility of query answers (in blue). At the

higher privacy level ε = 0.01, Conf ′ deviates substantially from
Conf = 0.8383, but the utility of the noisy answers is also poor
because of the large relative errors and SE. At the lower privacy
level ε = 0.5, the utility of noisy answers improves significantly,
but Conf ′ = 0.8327 is within 1% difference from Conf with a s-
mall SE (i.e., 0.0645); in this case any instances of ans′1 and ans′2
are sufficient to gauge the income level of an individual. 2

To ensure a good utility, a fixed (and small) scale b of noises
is essential. Indeed, improving utility through reducing noises is
a major focus of the work on differential privacy (see [15] for a
list). As the query answer becomes larger, such noises become
less significant, which improves the utility of noisy answers ans′i,
therefore, the accuracy of ans′2

ans′1
. Thus, the good utility of ans′i

comes together with the risk of disclosures. A general and quan-
titative analysis on this type of attack will be presented in Section
2. Choosing a large noise scale (i.e., a smaller ε) helps thwart such
attacks, but it also hurts the utility for data analysis. In fact, as
long as the noise scale stays fixed, the noises eventually become
insignificant for large query answers.

1.2 Our Approach
The question we study in this paper is how to (A) allow learn-

ing statistical relationships (such as “smokers tend to have lung
cancer”), and at the same time, (B) prevent learning sensitive in-
formation about an individual (such as “Bob likely has HIV”). As
discussed above, posterior/prior based privacy criteria provide (B)
but not (A), whereas the differential privacy criterion provides (A)
but not (B). The difficulty of providing (A) and (B) is that they
both make use of NIR, one for utility and one for privacy violation.
The key lies at distinguishing these two types of learning. The next
example illustrates the ideas of our approach.

EXAMPLE 2. Consider a tableD(Gender, Job,Disease), where
Gender and Job are public and Disease is sensitive. Assume that
Disease has 10 possible values. To hide the Disease value, for each
record in D, uniform perturbation [16] for a given retention prob-
ability, say 20%, will retain the Disease value in the record with
20% probability and replace it with a value chosen uniformly from
the 10 possible values of Disease at random with the remaining
80% probability. This can be implemented by tossing a biased coin
with head probability 20%. Let D∗ denote the perturbed data.
D∗ can be utilized to reconstruct the distribution of Disease in a

given subset of records. Consider any subset S of D, the counter-
part S∗ forD∗, and any Disease value d. Let fd denote the (actual)
frequency of d in S, f∗d denote the (observed) frequency of d in S∗,
and E[F ∗d ] denote the expectation of f∗d (over all coin tosses). All
frequencies are in fraction. The following equation follows from
the perturbation operation applied to the data:

E[F ∗d ] = (0.2 + 0.8/10)fd + (0.8/10)(1− fd) (1)

Approximating the unknown E[F ∗d ] by the observed f∗d , we get an
estimate of fd as f

∗
d−0.08

0.2
. This estimate is the maximum likelihood

estimator (MLE) [16] computed using the perturbed S∗.
Given the publishedD∗, suppose that an adversary tries to learn

the likelihood that Bob, a male engineer with a record in D, has
breast cancer or BC for short. One way is considering the subset
Sme for all male engineers in D, and another is considering the
subset Se for all engineers in D. Let Mme

d and Me
d be the MLE

for a disease d in Sme and Se, respectively. Two questions can be
asked.

Question 1: Which of Mme
BC and Me

BC should be used to
quantify the risk to Bob? Sme contains exactly the records that
match all Bob’s public information, whereas Se contains additional
records that do not belong to Bob. Without further information,
Sme is more relevant to Bob than Se, so Mme

BC should be used
as the risk to Bob. If the additional records for female engineers
follow a different distribution on BC from those for male engineers,
Me
BC most likely is not useful for inferring whether Bob has breast



cancer. We will discuss the case where the additional records have
the same distribution as Bob in Section 3.4. On the other hand,
the frequency Me

d for some disease d (e.g., cervical spondylosis)
may be useful for data analysis, such as learning the statistical
relationship that career engineers tend to have d. This leads to the
next question.

Question 2: How to limit the accuracy of Mme
BC while pre-

serving the accuracy of Me
d for data analysis? The errors of

Mme
d andMe

d were caused by approximating the unknownE[F ∗d ]
with the observed f∗d in Equation (1). From the law of large num-
bers, f∗d is closer toE[F ∗d ] when more records are randomized (i.e.,
more coin toss). Since S∗e contains more records than S∗me, M

e
d is

more accurate for estimating the frequency of d in Se than Mme
d

for estimating the frequency of d in Se. We can leverage this gap to
limit the accuracy of Mme

BC while preserving the accuracy of Me
d .

2

This example illustrates two types of reconstruction for MLEs.
The reconstruction of Mme

BC based on Sme is called personal re-
construction because it aims at a particular individual by matching
all public attributes of Bob; the reconstruction of Me

d based on Se
is called aggregate reconstruction because it aims at a large pop-
ulation without specifically targeting any individual. We argue (in
Section 3.2) that personal reconstruction is the source of privacy
concerns whereas aggregation reconstruction is the source of u-
tility. The law of large numbers suggests that these two types of
reconstruction respond differently to the reduction of record per-
turbation. We leverage this gap to limit the accuracy of personal
reconstruction while preserving the accuracy of aggregate recon-
struction.

The small count privacy and large count utility in [8] use the
number of records involved to distinguish the reconstruction for
privacy concern and the reconstruction for utility. It is not clear how
to set appropriate thresholds for such sizes. Indeed, it could be the
case that two reconstructions are performed on two subsets of data
with the same size but one aims at finding an individual’s sensitive
information while the other aims at finding general patterns.

1.3 Contributions
Here are the main contributions in this work:
Contribution 1 (Section 2): We present a condition to character-

ize the occurrence of disclosures of differentially private answers
through NIR. For the Laplace noise distribution, this condition is
simple and neat as it is expressed in terms of the ratio of the scale
factor to the query answer.

Contribution 2 (Section 3): We propose an inaccuracy require-
ment on personal reconstruction as a new privacy criterion called
reconstruction privacy. This criterion imposes a minimum value
δ for the best upper bound on Pr

[
F ′−f
f

> λ
]

for the actual and

estimated frequency f and F ′ of a sensitive value in a personal
reconstruction, where δ and λ are privacy parameters. Note that
F ′−f
f

is the error of the reconstruction for f , which should not
be confused with the relative increase of the attacker’s belief such
as the β-likeness [7], (n, t)-closeness [17] and (c, 2)-diversity [4].
This criterion does not bound the maximum value of F ′ or f or re-
quire them to be close to the global distribution, making it suitable
for learning statistical relationships through aggregate reconstruc-
tion. Also, this criterion avoids modeling the prior of an adversary,
which can be tricky as shown in [10][11].

Contribution 3 (Sections 4): We present an efficient test of re-
construction privacy. First, we show a conversion between an upper
bound for the tail probability of Poisson trials into an upper bound

on Pr
[
F ′−f
f

> λ
]
. Then, we obtain an efficient test of reconstruc-

tion privacy by adapting the notion of reconstruction privacy to an
existing upper bound for Poisson trials, i.e., the Chernoff bound.

Contribution 4 (Section 5): We present an efficient algorithm
for producing a perturbed version D∗ that satisfies a given specifi-
cation of reconstruction privacy. The algorithm is highly efficient
because it only needs to sort the records once and make another
scan on the sorted data.

Contribution 5 (Section 6): We evaluate two claims. The first
claim is that reconstruction privacy could be violated by real life
data sets even after data perturbation. The second claim is that the
proposed method can preserve utility for statistical learning while
providing reconstruction privacy.

2. OBSERVATIONS ON DIFFERENTIAL PRI-
VACY

In this section, we answer the question under what condition-
s would differentially private answers disclose sensitive informa-
tion through NIR? The standard ε-differential privacy mechanis-
m [10] ensures that, for any two data sets D1 and D2 differing
on at most one record, for all queries Q of interest, and for any
value α in the range for noisy answers, Pr[K(D1, Q) = α] ≤
exp(ε) Pr[K(D2, Q) = α], where K(Di, Q) is a noisy answer
a+ ξ for the actual answer a and a random noise ξ following some
distribution. The scale E[|ξ|] of noises depends on the query class
and the privacy parameter ε. The purpose of the noise is to mask
the impact of a single record on query answers.

Let us construct a disclosure by differentially private answers.
Let SA denote the sensitive attribute (e.g., diseases) and NA de-
note the public attributes. Suppose that an adversary tries to deter-
mine whether a participating individual t has a particular value sa
on SA. Let t.NA denote the values for t on NA, which is known
to the adversary. The adversary issues two count queries:

Q1 :NA = t.NA

Q2 :NA = t.NA ∧ SA = sa
(2)

Let X = x + ξ1 and Y = y + ξ2 be the noisy answers for Q1

and Q2 returned by the ε-differential privacy mechanism, where
x and y are actual answers and ξi’s are the noises. Note y

x
≤ 1

and y
x

represents the chance that t has the sa value on SA. Note
Y
X

= y+ξ2
x+ξ1

= y/x+ξ2/x
1+ξ1/x

.
The intuition that Y

X
may lead to a disclosure is as follows. For

any ξi of a fixed scale, as the answer x increases, ξ2/x and ξ1/x
decrease and Y

X
approaches y

x
. If y

x
is large enough (which is appli-

cation specific), the adversary learns that t has the sensitive value
sa with a high probability. This construction is general because
it does not assume record correlation and does not depend on the
noise distribution except that the noises have a fixed scale. Below,
we formalize this intuition. First, we show a lemma.

LEMMA 1. Let x and y be the true answers to Q1 and Q2,
x 6= 0. Let X = x + ξ1 and Y = y + ξ2 be the noisy answers
for Q1 and Q2 with the noises ξi having the zero mean and the
variance V . Then

E[ Y
X

] ' y
x

(1 + V
x2

) and V ar[ Y
X

] ' V
x2

(1 + y2

x2
)

PROOF. Note that E[ Y
X

] is not equal to E[Y ]
E[X]

. Using the Taylor
expansion technique [18, 19], E[ Y

X
] and V ar[ Y

X
] can be approxi-

mated as follows:

E[
Y

X
] ' E[Y ]

E[X]
+
cov[X,Y ]

E[X]2
+
V ar[X]E[Y ]

E[X]3



V ar[
Y

X
] ' V ar[Y ]

E[X]2
− 2E[Y ]

E[X]3
cov[X,Y ] +

E[Y ]2

E[X]4
V ar[X]

The error of the approximation is the remaining terms of the Taylor
expansion that are dropped. E[X] = x and E[Y ] = y (because
noises have the zero mean), V ar[X] = V ar[Y ] = V , and the
covariance cov[X,Y ] = cov[x+ ξ1, y + ξ2] = cov[ξ1, ξ2]. Since
ξ1 and ξ2 are unrelated, cov[ξ1, ξ2] = 0. Substantiating these into
the above equations and simplifying, we get E[ Y

X
] and V ar[ Y

X
] as

required.

For any noise distribution with the zero mean and a fixed vari-
ance V , as the query answer x increases, V

x2
decreases, E[ Y

X
] ap-

proaches y
x

and V ar[ Y
X

] approaches zero. In general, E[ Y
X

] ap-
proaching y

x
does not entail Y

X
approaching y

x
, for particular in-

stances X and Y . However, if V ar[ Y
X

] approaches zero, the devi-
ation of Y

X
from E[ Y

X
] approaches zero, Y

X
approaches y

x
. This is

summarized in the next corollary.

COROLLARY 1. For any noise distribution with the zero mean
and a fixed variance V , as the query answer x increases, Y

X
ap-

proaches y
x

.

To our knowledge, Corollary 1 covers all noise distributions em-
ployed by the differential privacy mechanism, including Laplace
mechanism [10], Gaussian mechanism [20], and Matrix mechanis-
m [21], because these distributions have a zero mean and a fixed
variance. To see how large x is needed for Y

X
to be accurate e-

nough for y
x

, let us consider the Laplace mechanism Lap(b) =
1
2b
exp(−|ξ|/b), but a similar analysis can be performed for oth-

er mechanisms. b is the scale factor. Lap(b) has the zero mean
and the variance V = 2b2. The setting b = ∆/ε ensures ε-
differential privacy, where ∆ is the sensitivity of the queries of in-
terest, which roughly denotes the worst-case change in the query
answer on changing one record in any possible database. ∆ is a
property of the queries, not a property of the database. Hence, V
is fixed for a given query class and Corollary 1 applies to Lap(b).
Substituting y

x
≤ 1 and V

x2
= 2b2

x2
= 2

(
b
x

)2 into Lemma 1 and
simplifying, we get a simple bound on |E[ Y

X
] − y

x
| and V ar[ Y

X
]

in terms of the scale factor b and the query answer x (but not the
privacy parameter ε or the sensitivity ∆ of queries).

COROLLARY 2. Let X and Y be the noisy answers for actual
answers x and y, where the noises follow the Laplace distribution
Lap(b). (i) |E[ Y

X
]− y

x
| ≤ 2

(
b
x

)2
. (ii) V ar[ Y

X
] ≤ 4

(
b
x

)2
.

Table 2: 2
(
b
x

)2
HH

HHb
x 5000 1000 500 200 100

b = 10 (ε = 0.2) 0.000008 0.0002 0.0008 0.005 0.02
b = 20 (ε = 0.1) 0.000032 0.0008 0.0032 0.02 0.08
b = 40 (ε = 0.05) 0.000128 0.0032 0.0128 0.08 0.32
b = 200 (ε = 0.01) 0.0032 0.08 0.32 2 8

Thus, the value of 2
(
b
x

)2 is an indicator of how close Y
X

is to
y
x

. Table 2 shows the values of 2
(
b
x

)2 for various query answers x
and settings of b (within the brackets is the corresponding privacy
parameter ε for the setting of ∆ = 2, which accounts for answer-
ing the two queries Q1 and Q2 in a row). The boldface highlights
where 2

(
b
x

)2 is small enough so that Y
X

is a good indicator of y
x

.
Take (b = 20, x = 500) as an example where 2

(
b
x

)2
= 0.0032.

|E[ Y
X

] − y
x
| ≤ 0.0032 and V ar[ Y

X
] ≤ 0.0032 × 2 = 0.0064.

Indeed, Corollary 2 quantifies a condition of the occurrence of dis-
closures in terms of b

x
: as a rule of thumb, a ratio b

x
≤ 1

20
would

ensure that Y
X

is a good indicator of y
x

because 2
(
b
x

)2 ≤ 2
400

. In
this case, if y

x
is high enough to be considered as sensitive, a sen-

sitive disclosure would occur through accessing noisy answers X
and Y . This condition also suggests that such disclosures cannot
be avoided by choosing a large scale factor b if the actual answer x
can be arbitrarily large.

We end this section with an explicit acknowledgement of disclo-
sures by differential privacy from [10]: “Note that a bad disclosure
can still occur, but our guarantee assures the individual that it will
not be the presence of her data that causes it, nor could the disclo-
sure be avoided through any action or inaction on the part of the
user”. In the rest of the paper, we present an approach to avoid the
disclosures of NIR in a data perturbation approach. This effort can
be considered as an action on the part of the data publisher.

3. PROBLEM STATEMENT
We define our model of data perturbation, privacy criterion, and

the problems we will study.

3.1 Data Perturbation
As in [7, 9, 22], we consider a tableD that has one sensitive (pri-

vate) attribute denoted by SA and several pubic attributes denoted
by NA = {A1, · · · , An}. We assume that the domain of SA has
m > 2 sensitive values, sa1, · · · , sam.

Assumptions. To hide the SA information of a record, we per-
turb the SA value but keep the attributes in NA unchanged in a
record. We assume that an adversary has no prior knowledge on
positive correlation betweenNA and SA; otherwise, the public in-
formation onNA already discloses the information about SA. The
adversary can have prior knowledge on correlation among the at-
tributes inNA, which presents no problem because we never mod-
ify the attributes in NA. We also assume that an adversary has no
prior knowledge about correlation among SA of different records.
This assumption can be satisfied by including exactly one record
from a set of correlated records, as suggested in [23].

Prior knowledge on negative correlation [24] deserves some more
explanations. Consider the negative correlation “females do not
have prostate cancer”. This correlation tells that the observed prostate
cancer is not the original SA value for a female, but does not tell
what is the original value because each of the remaining m − 1
values has an equal probability. For this reason, we assume that m
is larger than 2 (or even larger) so that guessing a remaining value
has enough uncertainty. We should emphasize that this situation is
not unique for data perturbation, and differentially private answers
have similar issues: if the noisy answer for the query on “Female
and Prostate Cancer” is -5 (or more generally, too small according
to prior knowledge), the above negative correlation would disclose
a small range of the noise added, i.e., -5 or less, after observing
the noisy answer, which invalids the Laplace distribution assump-
tion. In general, if too much information is leaked through prior
knowledge, no mechanism will work.

One criticism on distinguishing SA andNA is that such distinc-
tion can be tricky sometimes. This deserves some clarification as
well. One approach that does not make such distinction is treat-
ing all attributes as sensitive attributes and randomizing a record
over the Cartesian product of the domains of all attributes [25][23].
Unfortunately, this approach is vulnerable to undoing the random-
ization by removing “infeasible” records added during randomiza-
tion. An example of infeasible records is (Age=1, Job=prof, Dis-



ease=HIV) since a 1-year child can not possibly be a professor, so
the adversary can easily tell that this record was added by random-
ization. Treating Age and Job as public attributes and randomiz-
ing only Disease can avoid this problem. In general, treating and
randomizing more attributes like sensitive ones when they are ac-
tually public attributes would introduce more vulnerabilities to the
removal of “infeasible” records. In this sense, randomizing only
the truly sensitive attribute actually provides more protection.

We produce the perturbed version D∗ of D by applying uniform
perturbation [25][16][6] on SA as follows. For a given retention
probability p, where 0 < p < 1, for each record in D, we toss
a coin with head probability p. If the coin lands on head, retain
the SA value in the record; if the coin lands on tail, replace the SA
value in the record with a value picked from the domain of SAwith
equal probability (i.e., 1−p

m
) at random. This perturbation operator

is characterized by the following matrix Pm×m:

Pji =

{
p+ 1−p

m
if j=i (retain sai)

1−p
m

if j 6=i (perturb sai to saj)
(3)

A proper choice of the retention probability p can ensure some
privacy requirements, such as ρ1-ρ2 privacy [6][25]. We end this
section with a comparison between output perturbation and data
perturbation in the current work. In output perturbation, such as
the differential privacy approach, a noise is added to the query an-
swer and the noisy answer is used as is. For this reason, a small
and fixed noise scale is essential for good utility. As discussed in
Sections 1.1 and 2, as the data size increases, such noises are vul-
nerable to NIR. In data perturbation, the SA value in each record is
perturbed independently and the original distribution of SA must
be reconstructed from the perturbed records by taking into account
the perturbation operation performed. As the data size increases,
the number of record perturbation increases proportionally, which
is less vulnerable to NIR. In addition, data perturbation is more a-
mendable to record insertion because each record is perturbed inde-
pendently and the reconstruction is performed by the user himself.
In contrast, updating (published) noisy query answers can be tricky
because a new record could affect multiple queries and a correlated
change of query answers can be exploited by the adversary to learn
the information about the new record.

3.2 Types of Reconstruction
We adopt the following notation. Let NA = {A1, · · · , An}.

For 1 ≤ i ≤ n, let xi be either a domain value of Ai or a wildcard,
denoted by−, that matches every domain value ofAi. D(x1, · · · , xn)
denotes the subset of records in D that match xi on every Ai,
and D∗(x1, · · · , xn) denotes the corresponding subset for D∗. If,
for 1 ≤ i ≤ n, xi is a non-wildcard, D(x1, · · · , xn) is a per-
sonal group. If at least one xi is a wildcard, D(x1, · · · , xn) is
an aggregate group. For example, for NA = {Gender, Job},
D(male, eng) is a personal group and D(−, eng) is an aggregate
group. Intuitively, a personal group contains all records that can
not be distinguished by any information other than SA. For exam-
ple, even if an adversary may know the age of Bob, this informa-
tion is not helpful to distinguish any record in the personal group
D(male, eng) because all records in the personal group are exactly
identical on NA. Without confusion, we call both D(x1, · · · , xn)
and D(x1, · · · , xn)∗ a personal or aggregate group as there is an
one-to-one correspondence between the two.

In Example 2, we argued that the personal groupD∗(male, eng)
should be used to quantify the risk of inferring the disease breast
cancer for the male engineer Bob, instead of the aggregate group-
s D∗(−, eng), D∗(male,−), or D∗(−,−). The rationale is that
unless further information is available, it is to the adversary’s ad-

vantage not to use a record that is known not belonging to Bob.
In Section 3.4 we will consider the case where further information
is available to the adversary and using additional records not be-
longing to Bob may help the adversary. An analogy is short-listing
the suspect of a robbery: if the eyewitness has reported that the
suspect was a male blonde caucasians (i.e., the public attributes),
it makes sense to focus on the subset of male blonde caucasian-
s in the police database, instead of examining all male caucasians
records. The above observation motivates the following two types
of reconstruction.

DEFINITION 1. A personal reconstruction refers to estimating
the frequencies of the SA values in a personal group g based on
the perturbed g∗. An aggregate reconstruction refers to estimating
the frequencies of the SA values in an aggregate group g based on
the perturbed g∗. 2

We consider a personal reconstruction as the source of privacy
concern because it aims specifically at an individual by matching
all the individual’s public information. In contrast, we consider an
aggregate reconstruction as the source of utility because it aims at
a larger population without specifically targeting a particular indi-
vidual. These different roles of reconstruction are stated in the next
principle.

DEFINITION 2 (SPLIT ROLE PRINCIPLE). A personal recon-
struction aims specifically at a particular individual and is respon-
sible for privacy violation. An aggregate reconstruction aims at a
larger population and is responsible for providing utility. As far as
privacy protection is concerned, it suffices to ensure that personal
reconstruction is not accurate. 2

Remarks. The Split Role Principle provides only a relative pri-
vacy guarantee because some disclosure can still occur to an indi-
vidual through aggregate reconstruction in the name of utility, such
as “females tend to have breast cancer (compared to males)”. But
our principle assures the individual that such disclosures are not
specifically targeting him or her, and those that do (i.e., personal
reconstruction) have been made unreliable. In fact, any statistical
database with any non-trivial utility incurs some amount of dis-
closure [10]. Our principle assures that only a limited amount of
disclosure is incurred by enabling non-trivial utility.

3.3 Reconstruction Privacy
Under the Split Role Principle, our privacy guarantee is that all

personal reconstructions are not effective for learning the informa-
tion about SA. To formalize this guarantee, consider a personal
group g∗ and g, and a particular SA value sa. Let f denote the fre-
quency of sa in g and let F ′ denote the estimate of f obtained from
the personal reconstruction based on g∗. Note that F ′ is a random
variable because D∗ is a result of coin tosses. F

′−f
f

is the relative

error of F ′. A larger F ′−f
f

means that an adversary faces more
uncertainty in using F ′ to gauge of the likelihood of sa for an indi-
vidual. The next definition formalizes an “inaccuracy requirement”
on F ′−f

f
.

DEFINITION 3 (RECONSTRUCTION PRIVACY). Let λ > 0 and
δ ∈ [0, 1]. sa is (λ, δ)-reconstruction-private in a personal group

g∗ if Pr
[
F ′−f
f

> λ
]
< U or Pr

[
F ′−f
f

< −λ
]
< L, for some

U and L, implies δ ≤ min{U,L}. A personal group g∗ is (λ, δ)-
reconstruction-private if every sa is (λ, δ)-reconstruction-private in
g∗. D∗ is (λ, δ)-reconstruction-private if every personal group g∗

is (λ, δ)-reconstruction-private. (All probabilities are taken over
the space of coin tosses during the perturbation of SA values.) 2



Note that reconstruction privacy is a property of the perturba-
tion matrix P, not a property of a particular instance of D∗. In
plain words, (λ, δ)-reconstruction-privacy ensures that the small-
est upper bound is not less than δ; in this sense, the adversary
has difficulty to get an accurate estimate of f , and the larger λ
or δ is, the greater this difficulty is. As an example, violating
(0.3, 0.3)-reconstruction-privacy by g∗ means that the adversary

can get a smaller-than-0.3 upper bound on Pr
[
F ′−f
f

> 0.3
]

or

Pr
[
F ′−f
f

< −0.3
]
. This implies at least one of the following:

Pr
[
F ′−f
f
≤ 0.3

]
≥ 70%, where F ′ > f

Pr
[
F ′−f
f
≥ −0.3

]
≥ 70%, where F ′ < f

Our definition considers such a high probability of a small error as
a potential risk.

Remarks. F ′ − f should not be confused with the change in
the posterior belief of an adversary. In fact, f is the probability of
sa in the personal group g and F ′ is the estimate of f based on
the personal reconstruction for g∗, and F ′−f

f
is the relative error

of the estimate. Our definition considers a small estimation error
as a privacy risk, regardless of the absolute value of f , on the ba-
sis that any accurate person reconstruction is potentially a risk be-
cause it discloses the actual distribution of SA that aims at a target
individual. The choice of the relative error, instead of the abso-
lute error, is necessary because a larger actual frequency f requires
a larger absolute error for protection. Bounding the accuracy of
estimating f , instead of bounding the posterior belief of an adver-
sary, has two important benefits: it allows the room for learning
statistical relationships (through aggregate reconstruction), and it
frees the publisher of measuring the adversary’s prior belief and
specifying a threshold for posterior beliefs, which can be tricky
[10][11]. Finally, the choice of smallest upper bounds, rather than
lower bounds, on Pr

[
F ′−f
f

> λ
]

and Pr
[
F ′−f
f

< −λ
]
, allows

us to leverage the literature on upper bounds for random variables
to estimate Pr

[
F ′−f
f

> λ
]
.

DEFINITION 4 (ENFORCING PRIVACY). Given a databaseD,
a retention probability p (1 > p > 0) for perturbing SA, and pri-
vacy parameters λ and δ, devise an algorithm that enforces (λ, δ)-
reconstruction-privacy on D∗ while preserving aggregate recon-
struction as much as possible. 2

By leaving the retention probability p as an input parameter to
our problem, other privacy criteria, such as ρ1-ρ2 privacy, can be
enforced through a proper choice of p. In this sense, reconstruc-
tion privacy can be considered as an additional protection on top of
other privacy criteria.

3.4 Generalized Personal Groups
Consider two personal groups g∗ = D(male, eng) and g′∗ =

D(female, eng). Our reconstruction privacy limits the recon-
struction for each personal group, but does not limit the reconstruc-
tion for the combined g∗∪g′∗, i.e., the aggregate groupD∗(−, eng),
because the reconstruction for g∗∪g′∗ is not relevant to an individ-
ual, assuming that males and females have a different distribution
on SA, such as on breast cancer. However, this argument may be
invalid if the adversary has further knowledge about the distribu-
tion of SA values. For example, suppose that FavoriteColor is
another public attribute and that the favorite color of an individu-
al has nothing to do with the diseases, the adversary may do re-
construction after aggregating all personal groups that differ only

in the values on FavoriteColor, and such reconstruction is more
accurate than the reconstruction based on a single personal group
because it uses more randomized records. In this case, aggregate
groups disclose sensitive information.

To address this issue, for each public attribute Ai, if two domain
values xi and x′i (e.g., male and female) of Ai have the same
impact on SA, we will merge xi and x′i into a single generalized
value, and we define personal groups based on such generalized
values. With this preprocessing, every generalized value ofAi now
has a different impact on SA, thus, has a different distribution on
SA. Then our previous argument that an aggregate group does not
provide a representative statistics for a target individual remain-
s valid because such groups combine several sub-populations that
follow a different distribution on SA.

So the question is how to identify the values of Ai that have
the same impact on SA. To this end, the well studied χ2-squared
test that tells if two data sets are from different distributions can be
used. For two domain values xi and x′i of Ai, let oij (resp. o′ij) be
the number of records in D satisfying Ai = xi (resp. Ai = x′i)
and SA = saj , 1 ≤ j ≤ m. Let Oi = [oi1, · · · , oim] and
O′i = [o′i1, · · · , o′im], which represents the distributions of SA
conditioned on xi and x′i. In proper statistical language, can we
disprove, to a certain required level of significance, the null hy-
pothesis that the two data sets Oi and O′i are drawn from the same
population distribution function? Disproving the null hypothesis in
effect proves that the data sets are from different distributions.

Since |Oi| =
∑m
j=1 oij and |O′i| =

∑m
j=1 o

′
ij are not necessar-

ily equal, our case is that of two binned distributions with unequal
number of data points. In this case, the degree of freedom is equal
to m and the χ2 value is computed as [26]:

χ2 =

m∑
j=1

(√
|O′i|/|Oi|oij −

√
|Oi|/|O′i|o

′
ij

)2
oij + o′ij

(4)

Then we obtain the expected value ofχ2 by checking the chi-square
distribution with two parameters, the degree of freedom (e.g., m)
and the value of significance, the maximum probability that the
computed χ2 from Equation (4) could be greater than the expected
χ2. We set the conventional setting of 0.05 for significance. If
the value computed by Equation (4) is greater than this expected
value of χ2, we can disprove the null hypothesis that the two data
sets Oi and O′i are drawn from the same population distribution
function because the probability for this is less than 5% (i.e., the
significance). Otherwise, we consider that the two data sets are
consistent with a single distribution function.

We represent the χ2 test results for all pairs (xi, x
′
i) of values of

Ai using a graph. Each value xi of Ai is a vertex in the graph and
we connect two vertices xi and x′i if the χ2 test on (xi, x

′
i) fails

to disprove the above null hypothesis. Finally, for each connected
component of the graph, we merge all the values in the component
into a single generalized value. This method ensures that any two
values xi and x′i from different components have a different impact
on SA.

In the rest of the paper, we assume that the domain values of each
public attribute Ai are generalized values produced by the above
merging procedure and that the personal and aggregate groups de-
fined in Section 3.2 are based on such generalized domain values.

4. TESTING PRIVACY
An immediate question is how to test (λ, δ)-reconstruction-privacy.

From Definition 3, this requires to obtain the smallest upper bounds
U and L on Pr

[
F ′−f
f

> λ
]

and Pr
[
F ′−f
f

< −λ
]
. The follow-



Table 3: Notations

Symbols Meaning
D,D∗ the raw data and perturbed version
S, S∗ a subset of records and perturbed version
g, g∗ a personal group and perturbed version
m the domain size |SA|
t a target individual
sai a domain value of SA
fi the frequency of sai in S
o∗i the count of sai in S∗

O∗i the variable for o∗i
F ′i the variable for the estimate of fi
←−
f ,
←−
F ′,
←−
O∗ the column-vectors of fi, F ′i , O∗i

P the perturbation matrix in Equation (3)
p the retention probability
(λ, δ) privacy parameters

ing discussion refers to a subset S of D and the corresponding
subset S∗ of D∗. |S| denotes the number of records in S. Let
(f1, · · · , fm) be the frequencies of SA values (sa1, · · · , sam)
in S, (O∗1 , · · · , O∗m) be the variables for the observed counts of
(sa1, · · · , sam) in S∗, and (F ′1, · · · , F ′m) be the variables for an
estimate of (f1, · · · , fm) reconstructed using S∗. These vectors

are also written as column-vectors
←−
f ,
←−
O∗, and

←−
F ′. When no con-

fusion arises, we drop the subscripts i from fi, O
∗
i , F

′
i . Table 3

summarizes the notations used in this paper.

4.1 Computing F ′

First of all, let us examine the computation of F ′. Example 2
illustrates the basic idea of computing the estimate F ′ of f for a
particular SA value sa based on the perturbed data. Generalizing
that idea to the vectors

←−
F ′ and

←−
f , our perturbation operation im-

plies the equation P ·
←−
f = E[

←−
O∗]
|S| , where P is the perturbation ma-

trix in Equation (3). Approximating E[
←−
O∗] by the observed counts

←−
O∗, we get the estimate of

←−
f given by P−1 ·

←−
O∗

|S| , where P−1 is
the inverse of P. This estimate is called the maximum likelihood
estimator (MLE).

THEOREM 1 (THEOREM 2, [16]). P−1 ·
←−
O∗

|S| is the MLE of
←−
f

under the constraint that its elements sum to 1. Let
←−
F ′ denote this

MLE. 2

The next lemma gives an equivalent computation of
←−
F ′ without

referring to P−1.

LEMMA 2. For any subset S of D and any SA value sa, (i)
E[O∗] = |S|(fp + (1 − p)/m), (ii) F ′ = O∗/|S|−(1−p)/m

p
, and

(iii) E[F ′] = f .

PROOF. (i) O∗ comes from two sources of records in S: those
that have the SA value sa and are retained, and those that have
a SA value other than sa and are perturbed to sa. The expected
number of the records in the first source is |S|f(p+(1−p)/m), and
the expected number of the records in the second source is |S|(1−
f)(1−p)/m). Summing up the two givesE[O∗] = |S|(fp+(1−
p)/m). This shows (i).

(ii) From Theorem 1,
←−
F ′ = P−1 ·

←−
O∗

|S| . Let
←−−
1−p
m

denote the
column-vector of the constant 1−p

m
of length m. We have

←−
O∗

|S| = P ·
←−
F ′ = p

←−
F ′ +

←−−−
1− p
m

Thus, F ′ = O∗/|S|−(1−p)/m
p

, as required for (ii).
(iii) Taking the mean on both sides of the last equation, E[F ′] =

E[O∗]/|S|−(1−p)/m
p

. Substituting E[O∗] in (i) and simplifying, we
get E[F ′] = f . This shows (iii).

Lemma 2(iii) implies that F ′ is an unbiased estimator of f . Lem-
ma 2(ii) gives a computation of F ′ in terms of the known values
O∗, |S|, p, m without referring to P−1. In the rest of the paper,
we adopt this computation of F ′ in the definition of reconstruction
privacy (Definition 3).

4.2 Bounding Pr
[
F ′−f

f
> λ

]
and Pr

[
F ′−f

f
< −λ

]
Recall that F ′ = O∗/|S|−(1−p)/m

p
from Lemma 2(ii). To bound

Pr
[
F ′−f
f

> λ
]

and Pr
[
F ′−f
f

< −λ
]
, we first obtain the upper

bounds for the error of observed O∗ and then convert them into the
upper bounds for the error of reconstructed F ′. The next theorem
gives the conversion between these bounds.

THEOREM 2 (BOUND CONVERSION). Consider any subset S
of D and any SA value sa with the frequency f in S. Let O∗ be
the observed count of sa in S∗ and let F ′ be the MLE of f . Let
µ = E[O∗]. For any functions U(ω, µ) and L(ω, µ) of ω and µ,
and for a comparison operator

⊕
that is either < or >,

1. Pr
[
O∗−µ
µ

> ω
]⊕

U(ω, µ) if and only if Pr
[
F ′−f
f

> λ
]

⊕
U(ω, µ);

2. Pr
[
O∗−µ
µ

< −ω
]⊕

L(ω, µ) if and only if Pr
[
F ′−f
f

< −λ
]

⊕
L(ω, µ).

where λ = ωµ
|S|pf .

PROOF. We show 1) only because the proof for 2) is similar.
From F ′ = O∗/|S|−(1−p)/m

p
(Lemma 2(ii)), O∗ = |S|(F ′p +

(1 − p)/m), and from Lemma 2(i), µ = |S|(fp + (1 − p)/m).
So O∗−µ

µ
> ω ⇔ O∗ − µ > ωµ ⇔ |S|p(F ′ − f) > ωµ ⇔

F ′−f
f

> ωµ
|S|pf . 1) follows by letting λ = ωµ

|S|pf .

According to Theorem 2, if we have the smallest upper bound-
s on Pr

[
O∗−µ
µ

> ω
]

or Pr
[
O∗−µ
µ

< −ω
]
, we immediately have

the smallest upper bounds on Pr
[
F ′−f
f

> λ
]

or Pr
[
F ′−f
f

< −λ
]
.

This conversion does not hinge on the particular form of the bound
functions U and L, and applies to both upper bounds (when

⊕
is

<) and lower bounds (when
⊕

is>). Therefore, finding the small-
est upper bounds for F ′ is reduced to that for O∗. The latter can
benefit from the literature on upper bounds for tail probabilities of
Poisson trials. Markov’s inequality and Chebyshev’s inequality are
some early upper bounds, for example. The Chernoff bound, due
to [27], is a much tighter bound as it gives exponential fall-off of
probability with distance from the error. The following is a simpli-
fied yet tight form of the Chernoff bound.

THEOREM 3 (CHERNOFF BOUNDS, [27]). Let X1, · · · , Xn
be independent Poisson trials such that for 1 ≤ i ≤ n, Xi ∈
{0, 1}, Pr[Xi = 1] = pi, where 0 < pi < 1. LetX = X1 + · · ·+
Xn and µ = E[X] = E[X1] + · · ·+ E[Xn]. For ω ∈ (0,∞),

Pr

[
X − µ
µ

> ω

]
< U(ω, µ) = exp(− ω2µ

2 + ω
) (5)

and for ω ∈ (0, 1],

Pr

[
X − µ
µ

< −ω
]
< L(ω, µ) = exp(−ω

2µ

2
).2 (6)



The observed count O∗ of sa in S∗ is equal to X = X1 +
· · · + Xn, where Xi is the indicator variable whether the i-th row
in S∗ has the value sa. If the i-th row has sa prior to perturbation,
pi = p + (1 − p)/m, otherwise, pi = (1 − p)/m. E[O∗] =
|S|(fp+ (1− p)/m) (Lemma 2). To obtain the upper bounds for
F ′, we instantiate the upper bounds U and L for O∗ in Equations
(5) and (6) into Theorem 2. This gives the next corollary.

COROLLARY 3 (UPPER BOUNDS FOR F ′). Let ω = λ|S|pf
µ

and µ = |S|(fp+ (1− p)/m). For ω ∈ (0,∞),

Pr

[
F ′ − f
f

> λ

]
< U(ω, µ) = exp(− ω2µ

2 + ω
) (7)

and for ω ∈ (0, 1],

Pr

[
F ′ − f
f

< −λ
]
< L(ω, µ) = exp(−ω

2µ

2
).2 (8)

Note that ω = λpf
pf+(1−p)/m and µ = |S|(fp + (1 − p)/m).

λ, p, f,m are constants. Reducing |S| decreases µ, which increas-
es the upper bounds U and L exponentially. Thus, reducing |S| ef-

fectively thwarts the attacker from bounding Pr
[
F ′−f
f

> λ
]

and

Pr
[
F ′−f
f

< −λ
]

by a small upper bound. Our enforcement algo-
rithm presented in the next section is based on this observation.

A remaining question is whether U = exp(− ω2µ
2+ω

) and L =

exp(−ω
2µ
2

) in Corollary 3 derived from the Chernoff bound for
O∗ are the smallest upper bounds for F ′, as required by the defi-
nition of (λ, δ)-reconstruction-privacy. Suppose not. There would

exist a smaller upper bound U2 on Pr
[
F ′−f
f

> λ
]

or a smaller

upper bound L2 on Pr
[
F ′−f
f

< −λ
]
. Then Theorem 2 implies

that U2 and L2 are better bounds than the Chernoff bounds U and
L for O∗. However, the fact that the Chernoff bound remained in
use in the past 60 years suggests that finding smaller upper bounds
is difficult. Until the Chernoff bound is improved, we assume that
the upper bounds U and L in Corollary 3 are the best upper bounds
for F ′. This assumption is not a real restriction because Theorem
2 allows us to “plug in” any better bound for O∗ for a better bound
for F ′. If the adversary finds a better bound than the Chernoff
bound and the data publisher still uses the Chernoff bound. If the
better bound is a general result and the publisher refuses to “plug
in” it, the responsibility is with the publisher. Otherwise, under our
assumptions about prior knowledge in Section 3.1, getting a bet-
ter bound requires knowledge about the random coin tosses in the
perturbation process. Like all randomized mechanisms, we assume
that actual results of random trails are not available to the adversary.

4.3 Testing
With the upper bounds L and U in Corollary 3, it is straightfor-

ward to test whether (λ, δ)-reconstruction-privacy holds by testing
δ ≤ min{L,U}. We can further simplify this test. For ω in the
range (0, 1], it is easy to see L < U , therefore, δ ≤ min{L,U}
degenerates into δ ≤ L. Substituting the expressions for ω and µ
in Corollary 3 into L(ω, µ), we get L = exp(− (λpf)2|S|

2(fp+(1−p)/m)
),

where λ is in the range (0, 1 + (1−p)/m
pf

], which corresponds to the
range (0, 1] for ω. Substituting the expression for L into δ ≤ L
gives rise to the following test of (λ, δ)-reconstruction-privacy.

COROLLARY 4. Let sa be a SA value, g be a personal group,
and f be the frequency of sa in g. For λ ∈ (0, 1 + (1−p)/m

pf
] and

δ ∈ [0, 1], sa is (λ, δ)-reconstruction-private in g∗ if and only if

|g| ≤ −2(fp+ (1− p)/m) ln δ

(λpf)2
2 (9)

Given D, the personal groups g and the frequencies f for all
SA values in g can be found by sorting the records in D in the
order of all attributes in NA followed by SA. Therefore, all the
quantities in Equation (9) are either given (i.e., λ, δ, p,m) or can
be computed efficiently (i.e., f and |g|). A larger |g|, f, p makes
this inequality less likely hold, thus, makes (λ, δ)-reconstruction-
privacy more likely violated. In fact, under these conditions there
are either more random trials or more retention of the SA value,
which leads to a more accurate reconstruction.

5. ENFORCING PRIVACY
If reconstruction privacy is not satisfied, we can restore recon-

struction privacy by satisfying the condition in Equation (9) for
every SA value and every personal group. Observe that the right-
hand side of Equation (9) decreases as f increases. Therefore, a
personal group g∗ satisfies reconstruction privacy if and only if
|g| ≤ sg , where

sg =
−2(fp+ (1− p)/m) ln δ

(λpf)2
(10)

and f is the maximum frequency for any SA value in g. Anoth-
er interpretation is that sg is the maximum number of independent
trials if g∗ is to satisfy reconstruction privacy. If |g| > sg , re-
construction privacy is violated (because of too many independent
trails). To fix this, one approach is increasing sg to the current
group size |g| by reducing f or p (note that m,λ, δ are fixed). This
approach is not preferred because reducing f will distort the data
distribution and reducing p has a global effect of making the per-
turbed data too noisy. Our approach is reducing |g| to the size sg
by sampling a subset g1 of the size sg and perturbing g1 instead
of g. This sampling essentially reduces the excessive number of
independent random trials. To ensure sg1 = sg , g1 must preserve
the (relative) frequency of every SA value in g (to the right-hand
side of Equation (10) unchanged after sampling). Preserving fre-
quencies also helps minimize the distortion to data distribution. Af-
ter perturbing the sample g1, a scaling step is needed to scale the
perturbed g∗1 back to the original size |g| to minimize the impact
on the global distribution. Below, we present an algorithm named
Sampling-Perturbing-Scaling (SPS) to meet both the group size re-
quirement and the frequency preservation requirement.

Sampling-Perturbing-Scaling (SPS) algorithm. The input is a
database D, the retention probability p (0 < p < 1), the domain
size m of SA, and the privacy parameters λ and δ. The output is a
modified version of D∗ that satisfies (λ, δ)-reconstruction-privacy.
For each personal group g inD, this algorithm computes a modified
version g∗2 of g∗, then outputsD∗2 =

⋃
g∗2 . In a preprocessing step,

we sort the records in D by the attributes in NA and followed by
SA. The result is a collection of personal groups g together with
the frequencies f of every SA value in g.

For each personal group g inD, compute sg as in Equation (10),
if |g| ≤ sg , g already satisfies the maximum group size constraint,
let g∗2 = g∗. We assume |g| > sg . In the following, g∗2 is produced
in three steps: Sampling, Perturbing, and Scaling, described below.
Let τ = sg/|g|, called the sampling rate.

1. Sampling(g, sg) takes a sample of the records in g while p-
reserving the frequency of each SA value. For each SA val-
ue sa occurring in g, let gsa denote the subset of the records



in g that have sa. Note that all records in gsa are identical.
We pick any b|gsa|τc records from gsa and pick one addi-
tional record from gsa with the probability |gsa|τ−b|gsa|τc.
Let g1 be the set of the picked records. Return g1.

2. Perturbing(g1, p,m) perturbs the SA values of the records
in g1 with the retention probability p, as in the Uniform Per-
turbation described in Section 3.1. Return g∗1 .

3. Scaling(g∗1 , |g|) scales up g∗1 to the original size |g|while p-
reserving the frequency of each SA value. Let τ ′ = |g|/|g∗1 |.
For each record r∗ in g∗1 , let g∗2 contain bτ ′c duplicates of
r∗ and one additional duplicate of r∗ with the probability
τ ′ − bτ ′c. Return g∗2 .

Remarks. Several points are worth noting. First, Sampling kicks
in only if |g| exceeds the maximum size sg; otherwise, all record-
s in g will be used for perturbation. Therefore, if the data set is
small enough to have such a poor accuracy that already satisfies
reconstruction privacy, our algorithm will behave like the standard
uniform perturbation without performing sampling. In this case,
the poor accuracy is not caused by our sampling, but by the inade-
quate amount of data. Second, the duplication in Scaling does not
introduce new random trials because it is performed after the per-
turbation in g∗1 . The adversary may notice some duplicate records
in g∗2 , but this is not a problem because privacy is actually achieved
on g∗1 before the scaling step.

Complexity analysis. Let |D| denote the number of records in
D. The sorting step takes |D|log|D| time to generate all personal
groups. Subsequently, each of the steps Sampling, Perturbing,
and Scaling takes one data scan. A more efficient implementation,
however, is to perform these three steps in a single data scan: as a
record r is sampled, immediately we perturb the SA value of r
and then duplicate the perturbed record a certain number of times
as described, and add the duplicates to g∗2 . In total, the algorithm
takes (|D|log|D|+ |D|) time.

5.1 Analysis
We prove two claims about the outputD∗2 = ∪g∗2 . The first claim

is on privacy guarantee: each g∗2 in D∗2 is (λ, δ)-reconstruction-
private. The second claim is on utility: for any subset S consisting
of one or more personal groups and the corresponding subset S∗2 in
D∗2 , F ′g2 is an unbiased estimator of f , where f is the frequency of a
particular SA value in S and F ′g2 is the estimate of f reconstructed
from S∗2 , respectively. We first present some facts.

Let g be a personal group. Assume |g| > sg . Let g1, g∗1 , g∗2 be
computed for g and let O∗g , O∗g1 , O

∗
g2 be the observed count for a

particular SA value sa in g∗, g∗1 , g∗2 , respectively. Let fg and fg1
be the frequency of sa in g and g1. Let F ′g, F ′g1 , F

′
g2 be the MLE

reconstructed from g∗, g∗1 , g
∗
2 . We avoid to use f1, F ′1, F ′2 as these

symbols have been used as the frequencies for SA values sa1 and
sa2. Let u ' v denote that u and v are equal modulo the random
trial for the additional record in Scaling and Sampling.

• Fact 1: fg1 ' fg and |g1| ' sg . This is because Sampling
preserves the frequency of sa in g and the sample g1 has the
size sg .

• Fact 2: O∗g2/|g
∗
2 | ' O∗g1/|g

∗
1 |. This is because Scaling from

g∗1 to g∗2 preserves the frequency of sa.

• Fact 3: F ′g1 ' F
′
g2 . This follows fromF ′gi =

O∗gi
/|g∗i |−(1−p)/m

p
,

i = 1, 2 (Lemma 2(ii)) and Fact 2.

• Fact 4: E[O∗g2 ] ' E[O∗g ]. From Lemma 2(i), E[O∗g1 ] =
|g1|(fg1p + (1 − p)/m) ' sg(fg1p + (1 − p)/m) (Fact
1). Since Scaling duplicates each record in g∗1 by |g|

sg
times,

E[O∗g2 ] ' |g|
sg
× E[O∗g1 ] = |g|(fg1p + (1 − p)/m). From

Lemma 2(i),E[O∗g ] = |g|(fgp+(1−p)/m). Then fg1 ' fg
(Fact 1) implies E[O∗g2 ] ' E[O∗g ].

THEOREM 4 (PRIVACY). For each personal group g, g∗2 re-
turned by the SPS algorithm is (λ, δ)-reconstruction-private.

PROOF. If |g| ≤ sg , g∗2 = g∗, by Corollary 4, g∗2 is (λ, δ)-
reconstruction-private. We assume |g| > sg . In this case, g∗1 is
(λ, δ)-reconstruction-private because |g1| ' sg (Fact 1). We claim
F ′g2
−fg
fg

'
F ′g1
−fg1
fg1

, which implies that F ′g2 has the same tail

probability for error as F ′g1 ; therefore, g∗2 is (λ, δ)-reconstruction-
private because g∗1 is. This claim follows from fg1 ' fg (Fact 1)
and F ′g1 ' F

′
g2 (Fact 3).

THEOREM 5 (UTILITY). Let S be a set of records for one or
more personal groups in D, S∗ be the corresponding set for D∗,
and S∗2 be the corresponding set for D∗2 . Let f be the frequency
of a SA value sa in S, and let F ′ and F ′S2

be the estimates of f
reconstructed from S∗ and S∗2 . Then E[F ′S2

] ' f .

PROOF. Let O∗2 =
∑
O∗g2 , O∗ =

∑
O∗g , |S∗| =

∑
|g∗|, and

|S∗2 | =
∑
|g∗2 |, where

∑
is over the personal groups g for S.

|S∗| ' |S∗2 |. From Lemma 2(ii), E[F ′] = E[O∗]/|S∗|−(1−p)/m
p

andE[F ′S2
] =

E[O∗2 ]/|S∗2 |−(1−p)/m
p

. From Fact 4,E[O∗] ' E[O∗2 ].
Thus, E[F ′] ' E[F ′S2

]. From Lemma 2(iii), E[F ′] ' f , thus,
E[F ′S2

] ' f .

Intuitively, Theorem 5 says that the estimate reconstructed using
the corresponding records in D∗2 is an unbiased estimator of the
actual frequency.

6. EXPERIMENTAL STUDIES
We evaluate two claims. The first claim is that reconstruction

privacy could be violated on real life data sets. The second claim is
that the proposed SPS algorithm eliminates personal reconstruction
with minor sacrifice on the utility of aggregate reconstruction.

6.1 Experimental Setup
We implemented the proposed SPS algorithm as described in

Section 5 in C++ and ran all experiments on an Intel Xeon(R)
E5630 CPU 2.53GHZ PC with 12GB of RAM. We utilized two
publicly available data sets. The first one is the ADULT data set
[14]. This data set has 45,222 records (without missing values)
extracted from the 1994 Census database with the attributes Educa-
tion, Occupation, Race, Gender, and Income. We chose Income as
SA and the remaining attributes as the public attributes NA. The
second data set is the CENSUS data previously used in [28][22].
This data set contains personal information about 500K American
adults with 6 discrete attributes Age, Gender, Education, Marital,
Race, and Occupation. We chose Occupation as SA and the re-
maining attributes as NA. We considered five samples of CEN-
SUS of sizes 100K, 200K, 300K, 400K, 500K. These data sets
have different characteristics: ADULT represents a small data set
with very few SA values (with Income having only two values),
whereas CENSUS represents a large data set with a large number
of balanced distributed SA values (with Occupation having 50 val-
ues). We want to see how these characteristics would affect the
evaluation of our claims.



As discussed in Section 3.4, the values for public attributes with
the same impact on SA have to be aggregated before generating
personal groups. The aggregation affects data sets to some extent.
Tables 4 and 5 show the impacts on the domain size of each public
attribute, the total number of personal groups (e.g., |G|), and the
averaged personal groups size (e.g., |D|/|G| with |D| as the total
number of records) of ADULT and CENSUS 300K. In the rest of
this section, we use the generalized values of public attributes.

Table 4: NA Aggregation Impact on ADULT

Domain Size of NA |G| |D|/|G|Education Occupation Race Gender
Before Aggregation 16 14 5 2 2240 20
After Aggregation 7 4 2 2 112 404

Table 5: NA Aggregation Impact on CENSUS 300K

Domain Size of NA |G| |D|/|G|Age Gender Education Marital Race
Before Aggregation 77 2 14 6 9 116424 3
After Aggregation 1 2 14 6 9 1512 331

The utility of the published data is evaluated by the accuracy of
answering count queries of the form:

SELECT COUNT (∗) FROM D

WHERE A1 = a1 ∧ · · · ∧Ad = ad ∧ SA = sai
(11)

where Aj ∈ NA, aj ∈ dom(Aj), and sai ∈ dom(SA). The
answer to the query, ans, is the number of records in D satisfying
the condition in the WHERE clause. Such answers can be used
to learn statistical relationships between the attributes in NA and
SA. Given the perturbed data D∗, ans is approximated by est =
|S∗| ∗ F ′, where S∗ is the set of records in D∗ satisfying A1 =
a1∧· · ·∧Ad = ad, |S∗| is the size of S∗, and F ′ is the MLE given
by Lemma 2(ii) based on S∗. The relative error of est is defined
as |est−ans|

ans
. A smaller relative error means a larger accuracy and

better utility. Queries on only NA are not considered because such
queries have zero relative error.

Data mining and analysis typically focuses on low dimensional
statistics, such as 1D or 2D marginals with a size above a sani-
ty bound [29]. We generated a pool of 5,000 count queries with
the query dimensionality d in {1, 2, 3} and with the selectivity
ans/|D| ≥ 0.1%. For each query, we selected d from {1, 2, 3}, s-
elected d attributes fromNA without replacement, selected a value
ai ∈ dom(Ai) for each selected attribute Ai, and finally selected a
value sai ∈ dom(SA). All selections are random with equal prob-
ability. If the query’s selectivity is 0.1% or more, we replaced the
NA value with aggregated values and then added it to the pool. Re-
call that we aggregated NA values based on their impact on SA as
in Section 3.3. The query pool simulates the set of possible queries
generated from real life, therefore, the original NA value (before
aggregation) is used to generate the query pool. Since we protect
reconstruction privacy on aggregated personal groups we evaluate
relative error on these aggregated personal groups as well. We re-
port the average of relative error over all queries in this pool. In
addition, since D∗ is randomly generated in each run, we reported
the average of 10 runs to avoid the bias of a particular run.

Table 6: Parameter Table

Parameters Settings
p 0.1, 0.3, 0.5, 0.7, 0.9
λ 0.1, 0.2, 0.3, 0.4, 0.5
δ 0.1, 0.2, 0.3, 0.4, 0.5

The uniform perturbation, denoted by UP, as described in Sec-
tion 3.1 has been used as a privacy mechanism in [25][16][6]. But
these privacy mechanisms do not address the disclosure of personal
reconstruction. Our method addresses this disclosure by applying
UP to sampled data. So our evaluation has two parts. First, we
evaluate how often reconstruction privacy is violated by the per-
turbed data D∗ produced by UP. Then, we evaluate the cost of
achieving reconstruction reconstruction by our SPS algorithm. This
cost is measured by the increase in the relative error for queries an-
swered using D∗2 produced by SPS, compared to the relative error
of queries answered using D∗ produced by UP. The same reten-
tion probability p is used for both UP and SPS. Table 6 shows the
settings of p, λ, and δ with the default settings in boldface.
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Figure 1: Maximum group size sg vs. maximum frequency f

Below, a group means a personal group. First, we study the con-
dition |g| ≤ sg for testing whether a group g∗ satisfies reconstruction-
privacy as described in Section 5, where sg is the maximum thresh-
old on the group size defined as

sg =
−2(fp+ (1− p)/m) ln δ

(λpf)2
(12)

f is the maximum frequency of any SA value occurring in g. Fig-
ure 1 plots the relationship between sg and f (for the default set-
tings of λ and δ). Note that the range of f is [0.5, 0.9] for ADULT,
but is [0.1, 0.9] for CENSUS. This is because ADULT contains on-
ly 2 distinct SA values, as a result, f is at least 50% in all personal
groups. Each curve corresponds to a setting of p. For each curve in
Figure 1, the region above the curve represents the area where this
condition fails, that is, |g| > sg for a given f . The large area above
these curves suggests that the maximum group size sg can be easily
exceeded, and thus, there is a good chance of violating reconstruc-
tion privacy. Observing both Figure 1 and Equation (12) we get
that, when parameters: λ, δ and p are given, the value of m and
f have opposite effects on the value of sg , particularly, f becomes
the dominant factor when f is small (e.g., when f ≤ 0.3 in Figure
1). The value of sg boosts when f is smaller, implying that person-
al groups with smaller f tend to be reconstruction private because
it is easier for them to satisfy the condition of |g| ≤ sg . We will
confirm this observation on the two real life data sets shortly.

6.2 ADULT Data Set
Violation. Figure 2 shows the extent to which reconstruction

privacy is violated on the perturbed ADULT data set D∗ produced
by UP. This extent is measured at two levels. vg represents the per-
centage of groups that violate reconstruction privacy. vr represents
the percentage of records contained in a violating personal group,
i.e., the coverage of the violating groups in terms of the number
of individuals affected. We consider this coverage because all the
records in a violating group are under the same risk of accurate
personal reconstruction.

Both violations in terms of vr and vg are obvious. Take the de-
fault setting of p = 0.5, λ = 0.3 and δ = 0.3 as an example. The
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Figure 2: ADULT: Privacy Violation
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Figure 3: ADULT: Relative Error

85% of all groups are violating and covering more than 99% of the
records. This privacy risk is interpreted as follows: with probability
of 1− δ = 70%, the estimate F ′ of some SA value is within a rel-
ative error of λ = 30%, and this case covers more than vr = 99%
of all individuals. The large coverage is expected because a larger
group more likely violates reconstruction privacy (Figure 1).

Cost. Figure 3 shows the increase of relative error due to the
sampling of SPS. Compared to UP, the relative error for SPS in-
creases about 50% in the worst case. This increase is due to the
sampling required to eliminate the violation of reconstruction pri-
vacy. Considering the large coverage of the violation (i.e., vr in
Figure 2), having such increase of error is reasonable. We empha-
size that this increase is due to the large f in personal groups in
ADULT. Recall that f is no less than 50% and when f is larger
personal groups tend to violate reconstruction privacy (Figure 1).
Note that ADULT is not general in real life in terms of very few
number of SA values, for other data sets with more SA values, the
increased error would be reduced, which will be confirmed soon on
the CENSUS data set. Choosing a small p helps eliminate viola-
tion, but also quickly increases the relative error for both UP and
SPS (Figures 2a and 3a). Indeed, a too small pmakes the perturbed
data become nearly pure noises. This study confirms our discussion
at the beginning of Section 5 that the approach of reducing p does
not preserve utility.

6.3 CENSUS Data Set
Violation. CENSUS is a larger data set with a much larger num-

ber of balanced distributed SA values. We are curious how this
characteristic change would affect our claims. Figure 4 shows the
extent to which reconstruction privacy is violated. The default data
size is 300K when |D| is not specified. Compared to the ADULT
data set, the frequency f of a SA value is much smaller; conse-
quently, the value of sg is much larger (Figure 1). The larger sg
makes it easy to satisfy the condition of |g| ≤ sg , therefore, it
is less likely that groups in CENSUS would violate reconstruction
privacy, which explains the much smaller vg and also confirms our
claim on Figure 1 that smaller f may lead to less reconstruction vi-
olations. Besides, the larger sg implies that violation groups must
have larger g because |g| > sg , which explains the small number
of violation groups covering the most records in the data set.

Cost. Figure 5 compares the relative error of UP and SPS. A big

difference from the ADULT data set is that there is less increase in
the relative error (e.g., less than 10% for most of settings) for SPS
compared to the relative error for UP across all settings of parame-
ters. This is a consequence of the smaller percentage rg of the vio-
lating groups discussed above. In this case, most of the groups do
not need sampling because they satisfy reconstruction privacy and
only the small number of violating groups will be sampled. Even
for such groups, a small reduction in the number of record pertur-
bation is sufficient to increase the error of personal reconstruction
to the level required by our privacy criterion.

Another interesting point is that even though a larger data size
|D| causes more violations of reconstruction privacy (Figure 4d),
it actually decreases the relative error for SPS (Figure 5d). As ex-
plained above, for this data set, eliminating violation incurs little
additional error beyond that of UP. Therefore, as the data size in-
creases, the relative error of UP gets smaller, so does the relative
error of SPS. This finding suggests that the proposed SPS algorith-
m could be more effective on a larger data set.

In summary, our empirical studies supported the claim that re-
construction attack could occur on real life data sets, whether they
are small or large and whether the number of sensitive attribute is
small or large. The studies also supported the claim that the pro-
posed privacy criterion and the sampling method are effective to
preserve the utility for data analysis while eliminating such attacks.
This effectiveness is more observed on larger data sets with a large
number of balanced distributed sensitive attributes.

7. CONCLUSION
Differential privacy has become a popular privacy definition for

sharing statistical information thanks to good utility. However,
this good utility comes with the cost of disclosures through non-
independent reasoning. In this work, we presented a data perturba-
tion approach to prevent sensitive non-independent reasoning while
enabling statistical learning. We achieved these goals through a
property implied by the law of large numbers, which allows us to
separate these two types of learning by their different responses
to reduction in random trials. Based on this idea, we use record
sampling to reduce the random trials in data perturbation, which
mostly affects non-independent reasoning specific to an individual
while having only a limited effect on statistical learning.
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Figure 4: CENSUS: Privacy Violation
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