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Abstract: Binary Factor Analysis (BFA) aims to discover latent binary structures
in high dimensional data. Parameter learning in BFA faces an exponential com-
putational complexity and a large number of local optima. The model selection
to determine the latent binary dimension is therefore difficult. Traditionally, it is
implemented in two separate stages with two different objectives. First, parameter
learning is performed for each candidate model scale to maximise the likelihood;
then the optimal scale is selected to minimise a model selection criterion. Such
a two-phase implementation suffers from huge computational cost and deterio-
rated learning performance on large scale structures. In contrast, the Bayesian
Ying-Yang (BYY) harmony learning starts from a high dimensional model and au-
tomatically deducts the dimension during learning. This paper investigates model
selection on a subclass of BFA called Orthogonal Binary Factor Analysis (OBFA).
The Bayesian inference of the latent binary code is analytically solved, based on
which a BYY machine is constructed. The harmony measure that serves as the
objective function in BYY learning is more accurately estimated by recovering a
regularisation term. Experimental comparison with the two-phase implementations
shows superior performance of the proposed approach.
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1. Introduction

Latent structures often exist in high dimensional observations. Depending on the
characteristics of data, such a structure can be a low dimensional manifold or just
a discrete set. Discovering the underlying structure with an appropriate scale is
a central problem in statistical learning. In classical Factor Analysis (FA) [1], the
underlying structure is assumed to be a low dimensional Gaussian distribution. A
variant model called Binary Factor Analysis (BFA) adopts a vector of independent
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Bernoulli distributions as the latent model. As in FA, BFA also faces the difficulty
of model selection, that is, to determine the number of binary factors so that the
resulting model represents the regularity well but does not overfit the training
data. The problem is even more difficult in BFA because of the combinatorial
complexity and a large number of local optima. Research on BFA under the names
of latent trait model, item response theory, latent class model or multiple cause
model [1, 2, 3] is widely used in data reduction, psychological measurement, political
science, ete.

This paper focuses on Orthogonal Binary Factor Analysis (OBFA) which re-
stricts the loading matrix in BFA to be orthogonal. OBFA constructs an orthogo-
nal co-ordinate system in a m-dimensional lincar subspace of the observation space
R™ (m < n), so that the representative clusters lie around {—1,1}™ and there-
fore are separated by the co-ordinate planes. For example, in a 2-level Orthogonal
Experiment Design (OED) [4], OBFA can be applied to extract 2™ representative
experimental inputs based on a training set. In information theory, a parallel binary
channel with additive Gaussian noise and rotational transformation at the output
end results in a OBFA model. In a single hidden layer free-forward stochastic
neural network with sigmoid activation function, the hidden layer encodes space
regions according to linear separations and thus can be initialised by OBFA. In
psychological measurement, the questionnaires can be analysed with OBFA if the
latent trait is binary, such as sex or a threshold based property. Moreover, analysis
on OBFA is useful to construct parametric structures in BFA, which does not have
analytical Bayesian inverse in general,

Given finite observations Xy = {@:}{L,, learning is traditionally implemented
in two separate phases. The first phase estimates for cach model scale m within
a candidate set K the unknown parameters ©,, through maximising the log-
likelihood log (X | ©,,); the second phase selects the optimal scale m* with

m”* = arg min J(é).,,,__. m), (1)
mek

where C;)m is the maximum likelihood solution, J(@m,m) is a model seclection
criterion, such as Akaike’s Information Criterion (AIC) [5], Schwarz’s Bayesian
Information Criterion (BIC) [6], Hannan-Quinn Information Criterion (HQC) [7],
and Bozdogan’s Consistent Akaike’s Information Criterion (CAIC) [8]. For OBFA,
these criteria are listed as follows.

J(éms ?’."I,J - _QIGgQ(xN | é?n) + pndpm,
dp=mn—m(m—-1)/24+m+n+1,

2 for AIC;
_ ) log(N) for BIC;
PN =19 loglog(N) for HQC; 2)

log(N)+1 for CAIC,

where d,,, is the number of free parameters in the OBFA model, n = dim(z) is the
data dimension, and m = dim(y) is the latent binary dimension. For all criteria
listed above, the term —2 log g(Xy | ém} represents the description error of the
candidate model, while the term pyd,, represents the penalty of model seale. The
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model selection in Eq. (2) tries to balance the descriptive capacity and model com-
plexity. This two phase approach suffers from huge computational cost, especially
for intractable problems such as BFA. Morcover, the parameter learning perfor-
mance deteriorates rapidly as m increases, which will make J (é).n;,m) estimated
unreliably.

Proposed firstly in 1995 [9] and systematically developed in the past decade
(10, 11, 12], the BYY harmony learning provides a general statistical learning
framework, under which model sclection is performed automatically during pa-
rameter learning. To characterise the parametric structure of a learning system,
both the external observation X and its internal presentation Y are considered
within two complementary Bayesian decompositions

q(X,R) = q(X |R)g(R) and p(R,X)=p(R|X)p(X), (3)

where R = {Y, ©} consists of both the inner state Y and all the unknown param-
cters ©. In the BYY system, a Ying Machine models the internal representations
via a distribution ¢(Y) and describes the generation process with a conditional
distribution q(X |Y); the complementary part, the Yang Machine, characterises
the observations {x;}/¥, as a distribution p(X) and describes the inference pro-
cess with a conditional distribution p(Y | X). Once these parametric substructures
are fixed, the BYY harmony learning is implemented by maximising the harmony
measure

H(p|lq) = f p(R| X)p(X) log [¢(X | R)g(R)] dXdR, (4)

with a large initial model scale, which is usually represented by the dimension of
Y and will be deducted during learning [10].

Much work has been dedicated to FA, BFA and other related models using
the BYY harmony learning [10, 11, 13]. When the other structures are fixed, sev-
cral typical choices of p(Y | X), an important component in the joint distribution
p(X, R), result in several implementation scenarios with different model selection
performances [11, 12]. The paper [13] investigates BFA with p(Y | X) chosen free
of structure. A systematical comparison with several typical model selection crite-
ria shows the BYY approach has superior performance [13]. As a follow-up work of
(13], the present paper studies BFA by considering p(Y | X) in a Bayesian structure,
restricted to OBFA so that analysis and computation are feasible. The harmony
measure in Eq. (4) is more accurately estimated by recovering a regularisation
term that is missing in [13]. According to experimental comparison with the two
phase implementations, the BYY approach shows the best performance in model
selection.

The rest of this paper is organised as follows. Section 2 introduces the OBFA
model. Section 3 constructs a BYY machine for OBFA and presents an OBFA
learning algorithm. Section 4 cvaluates the proposed algorithm through experi-
mental comparison with traditional two phase implementations for model selection.
Section 5 concludes.
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2. Orthogonal Binary Factor Analysis
Factor Analysis in the literature of statistics [1] is formulated as
z=Ay+c+e, » (5)

where € R" is the observations, y € R™(m < n) represents the latent factors,
A, xm is a loading matrix, ¢, is a mean offset and €nx1 18 a zero-mean Gaussian
noise that is independent of y. Therefore

a(z|y) = G(z| Ay + ¢, =), (6)

where ¥ is the covariance matrix of e, G(- | #, £) denotes a Gaussian distribution
with mean u and covariance X. In the classical FA, y is assumed to be Gaussian
distributed with indepent dimensions. As a variation, BFA assumes ye{-1,1}m
is distributed according to

aly) = [0 21 -0)0w2 (0<i<1,i=1,....m). (@)

=1

Intuitively, FA models the observations with one single independent Gaussian dis-
tribution for each of a set of directions, while BFA adopts a Bernoulli distribution
on two possible positions along cach direction. It tries to adapt the model to real
world data with complementary characteristics, such as sex, extreme joint angle,
ete.

The combinatorial complexity induced by such a variation results in huge com-
putational cost. The Maximum Likelihood (ML) fearning through the Estimation
Maximization (EM) in Algorithm 1 has to estimate the 2™-point posterior distri-
butions q(y | z;) for cach training sample z, € Xy and thus requires exponential
space and time. Morcover, it can only train a model given a prefixed model scale
m. For model selection, EM has to be repeated several times on a candidate set of
different scales, which leads to much more computation. A BYY-AUTO algorithm
for BFA have avoided this ML training enumeration [13] by deducting the model
scale during training. However, there is still a combinatorial problem to compute

Yy, = argmax logq(y|x;) (8)
ye{ - 1.1}’"

in the BYY-AUTO learning algorithm. As logg(y|2) is quadratic in y, Eq. (8)
is a binary quadratic programming (BQP) problem that falls in the category of
NP-hard.

Orthogonality is a natural condition in FA where an orthonormal basis always
exists within a linear subspace of R". In BFA the loading matrix A is not neces-
sarily orthogonal because the set {~1,1}™ € R™ is not closed under an orthogonal
transformation. Nevertheless, orthogonal BFA still makes sense in wide appli-
cations where the linear transformation of the binary factors mainly consists of
rotation, as discussed in Section 1. In this case, Anxm = Q, 5, Amxm, Where the
columns of @ are orthonormal and A = diag(\y, Xs, . . ., A )y Ap 0t = 1, 000y
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Algorithm 1: EM algorithm for BFA.

Input : Xy = {z:}{L; C R"; a fixed binary dimension m = dim(y)
Output: © = {6, A,¢, T}

Initialise @y = {@o, Ao, co, Bo};

.

repeat
(E-step) for @ € Xn,y € {—1,1}" do
L qly | xe) = qy)a(@e | Y)/ Zyeq-vym [a@)alze | y)];
N
1
(M-step) 0= %> > allz)y+1)/2
t=1ye{-1,1}m
1
= Yo Y alylm)(x - Ay);
t= 1ve{ ll}"‘
N
A= qly | ) (@~ e)y”
t= we{ Lajm
-1
N
ayledyy” |
t—lye{ 11}
W
Z q(y | x¢)diag ((w: — Ay —¢)(x: — Ay — c]T);
A= ye{—1,1}m
until log ¢(Xn | © ) converges ;

From Bayes’s rule,

loggq(y |x) = logq(y) +logg(z|y) —log | >  awalz|y)|. (9
ye{—1,1}m

Further from Eq. (6) and Eq. (7), logq(y|«) is a quadratic function of y. If the
observation error e is spherical such that ¥ = ¢2I, where I denotes the identity
matrix, the quadratic term of y in logq(y | ) becomes

1

fRlmye
~9g52Y '

T ATAT b i
ATqTQAy=-33 2 (10)

__yTATE lAy =)

and thus vanishes. Hence log g(y | ) is linear in y and the posterior distribution
q(y | x) has independent dimensions. We assume

(y|x) = Hg (x) (w21 — §;(x)) w2, (11)
i=1
Extracting the linear coefficients of y on both sides of Eq. (9) yields

1 é,;(m) 9 T' .
- log ————— lo + A B (x—e) d=1,2... m, 12
B = 518 +ATE (e - ) (12)
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where A; is the ith column of A. Hence

1 0,

0ifx) = TTea@’ §i(x) = log 7— 0

+2ATE—1(m—cj‘ i=1,2,...,m. (13)

This analysis provides evidence for using sigmoid neurons to simulate non-linearity
in Independent Component Analysis (ICA) [14], also for using the Bl-structure
BFA learning [13] with p(y|z) constructed in a similar form of Eq. (11) and Eq.
(13).

Taking benefit of the posterior independence of ¥ in logg(y|x), parameter
learning in OBFA can be performed efficiently. In the EM algorithm, ¢(y | ) can be
computed according to Eq. (11) and Eq. (13). Both Eyy |2)(y) and Eyy 2 (yy"),
which have to be solved by exhaustive enumeration in Algorithm 1, can be directly
computed from é(a:]. The exponential space-time complexity in EM is saved. Also,
the BYY-AUTO algorithm used in [13] becomes computationally feasible because
log q(y | ;) in Eq. (8) deteriorates to be linear in ¥ and the BQP can be solved
via a greedy algorithm which determines one bit at one time.

3. A BYY Machine for Orthogonal BFA

Under the BYY framework, a previous work [13] on BFA assumes the inference
process p(Y | X) to be free of structure. This paper assumes p(Y | X) = q(Y | X)
is the Bayesian inverse of the generation process Y — X, as in Eq. (11). Let

1< :
;J(X):NZE(X—:E;) (14)
t=1

be the empirical distribution, where §(.) is the Dirac delta. It further follows from
Eq. (4), Eq. (6), Eq. (7) and Eq. (11) that

. N £
Hpllg) = 5 3 A, i), ©) (15)
t=1

and

H(z,y, ©) = —%log?ﬂ'— %log|2|-—%[Ay+c—:c]TE_1 [Ay + ¢ - =]

~

m

0
14y 11—y 1 % 5
+zl [Ty log 0; + 2” log(1 ~9;)] —5Tr|ATE'A. (I - dmg(yyrr))}, (16)

~ e =

o ®

where X
y(x) = Eq(y | :c](y) =26(z) -1 (17)

and © = {0,A,¢,Z}. Term ©
log q(X | Y') from the inference results Y to the observations X; term @
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the negative entropy, or simplicity, of the internal structure; term @
sation term resulting from the Bayesian structure of p(Y | X). With a large initial
dimi(y), both parameter learning and model selection are implemented by an op-
timisation process to maximise H(p||q) in Eq. (15), during which a redundant
dimension y; may be identified when ¢; — {0,1} or ||A;|l2 — 0 and discarded at
a dimension deduction threshold, while parameter learning proceeds at the next
lower dimensional model. Eventually, the learning algorithm will determine all the
unknown parameters as well as an appropriate model scale [10, 11, 12].
Compared with the objective function used in [13], Eq. (15) is a more accurate
expression of the harmony measure due to the term @
regularisation strength to enlarge ¥ and reduce ||A;|]z. As a result, dimension
deduction in BFA learning is in the following two scenarios:

1. The internal structure q(Y') in Eq. (7) deteriorates to a (m — 1) dimensional
independent Bernoulli distribution when a bit y; tends to be deterministic,
that is, ¢; — 0 or 1;

2. The information carried by the ith bit y; vanishes during the generation
process ¢(X | Y) in Eq. (6), that is. ||A;]| — 0 when the random variable ;
is multiplied by zero and thus become deterministic.

Alternatively, the task is also equivalent to a neural network learnings as shown
in Fig. 1. The BYY learning adjusts the weights in a three-layer feed-forward
neural network to maximise H(p|| q) in Eq. (15), with saturated neurons discarded
during learning. To compute dH/9¢, V¢ € {0, A,c, £} and maximise H(pllq)
through a gradient based optimisation, we consider the total differential form

o T

N & 9H
aH = %; [%S‘(mh Q(wt)s 9)} dﬂ(mt) = l%g'(mh ‘f](wg), G)J de

(18)
obtained from Eq. (15). From Eq. (13) and Eq. (17),

@) = 5 (= §(0) 0+ §(z) o déay), (19)

where tmx1 = (1,1,...,1)7, “o” is the element-by-clement multiplication. From
Eq. (16),

) 1 1 & 1
Ty (Tt 9(@),8) = 7 log(0) - 5 log(t — 0) + AT @, — ) = S&(@,). (20)
Plugging Eq. (20) and Eq. (19) into Eq. (18) yields

%{-;{ = % ;{ %&(mt) ot —g(@:)) o (e +g(z)) o S—g(m} e %‘?(ze, Yz ), O) } V(eD.
(21)

A gradient ascend learning based on Eq. (21) is given in Algorithm 2.
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Fig. 1 A neural work structure for OBFA Learning.

4. Simulation

This section evaluates the proposed BFA algorithm, denoted as BYY-Bayes, through
experimental comparison with the two phase model selection implementations listed
in Section 1 and the free structure BYY-AUTO algorithm in pp. 151 [13] named
BYY-free. To investigate the performance of these algorithms under different con-
figurations, we fix dim(z) = 8, dim(y*) = 3 and vary the sample size N and noise
level o over a 9x9 grid {15,20,25,...,55}x{0.2,0.3,0.4,...,1.0}. For cach configu-
ration (dim(z), dim(y*), N, o) in such a grid, synthetic data is generated according
to Eq. (6) and Eq. (7) with @ ~ Beta(5,5)', A = Q,,xmAmxm, Q randomly
generated with orthonormal columns, A = diag(A1, A2, ..., Am), Ai ~ Uni(1,2)?,
= 1,2,...,m and e ~ G(e|0,0°I)." In total 200 data sets are independently
generated for cach grid point, and then passed to all six algorithms investigated
for model selection. For the two phase approaches, the candidate set of binary di-
mensions is fixed as {1,2,3,4,5}. For BYY-free and BYY-Bayes, the initial binary
dimension is chosen as 5

Fig. 2(a, ¢, e, g, i, k) shows the model selection accuracy over the 9 x 9 con-
figuration grid in the percentage x(N,o) that dim(y) is correctly estimated. The
corresponding contour graphs are drawn on the right hand side for a more accurate
comparison of different methods. For example, in Fig. 2(f), the inner contour line
circles a region where BIC gives a model selection accuracy greater than 90%. For
all approaches investigated, model selection becomes inaccurate when N goes small
or ¢ goes large. By comparing the area of the region {(N, ) : k(N,0) > 90%}, we
clearly sec BIC, CAIC, BYY-free and BYY-Bayes provide a better estimation than
AIC and HQC on large N and small o, especially AIC. Even when N is large, AIC
does not converge to the true model scale. There is a slight performance drop of
BYY-free and BYY-Bayes when o is very small, because a proper noise level can
form a natural regularisation to aid automatic dimension reduction. As N decreases
and o increases, the performance of all the two phase implementations deteriorates

1 Beta(a, ) denotes a beta distribution with parameters (a, )
2Uni(a, b) denotes a continuous uniform distribution over the interval (a, b)
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Algorithm 2: BYY-AUTO Learning algorithm for Orthogonal BFA.

input : A data set Yn = {x, }, C R"

output: @ the number of binary factors m = dim{y);
® all the unknown parameters © = {0, A, e. X }:
® the binary codes {y(a) ¥

Initialisation
m — mg large enough; 8, = 1/(1+e %) —05,i=12,... .m

A—3Q X= Em X/t Q@ =1y, Qi Bl 2, is the i'th
]ummpld cmnpr»m nt of Xy and A is rhu corresponding eigenvalue;
= V =1 Tt/N: B —codl. g is an empirical value such as 0.1: yp. 4.
ey yr — small [mMTl\(‘ learning rates:

for epoch — 1 to MAX_EPOCHS do

) — 0. 8A —0, 8c— 0, 0E « 0;
fort=1to N do

& —0+24TS Ha — ). dilw) — (1 —exp(=Ene)) / (1 + exp(=£rs))
06, —&ole=yl®))o (F+t)f-1;});4
a9 — 09+ 0, + (e +y,)/2—
A — 0A+25 (- c)O&]
~ BN Ay(ay) + ¢ - 2y’ (o) — 2YA( - diag(y(x: VT (@)
de — Ue — 240€, + (i — Aylas) — ¢)
I — I8 - 2z, — )] AT
+[Ad(a)+e-a)(Aita) +e—a) HAT — ie)i" (w )AT-£/2

O—D+70:09, 0;—1/(14e%), i=L2....,m
A= A+54004;
c—c+, -0

Y — X+ e 058
Orthogonalise 4, "™ — o031, where of = sum({diagl B I

for i — 1 to m do
if [|Adl2 <en. 0, <eport>1—¢y(ea >0, 60>0 are thresholds )
then
L m — m — 1. diseard the 'th dimension of y. update {#,.8, A}

correspondingly, break:

L if Hip||q) has reached convergence then break:

return m, @ and {Q(Jr,]};\;l
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(e) BIC (f) BIC (colour map)

(g) carc (h) CAIC (colour map)

(i) BYY-free (j) BYY-free (colour map)

(k) BYY-Bayes (1) BYY-Bayes (colour map)

Fig. 3 Average estimated dim(y) out of 200 runs for each configuration in a 9 x 9
grid of different sample sizes(N) and noise levels(c ), with the true dim(y*) = 3.
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to be less than 20%. CAIC even falls down 10% in the worst case. BYY-free and
BYY-Bayes show superior performance in this area. The configuration grid is al-
most covered by {(N, o) : kpyy(N,a) > 50%}, as shown in Fig. 2(j) and Fig. 2(1).
Overall speaking, BYY-free and BYY-Bayes arc more accurate than the two phase
approaches. Between the two, BYY-free performs better on small sample size;
BYY-Bayes further improves BYY-free on large sample size and provides a better
performance in general.

Fig. 3 presents the averge estimated binary dimension dim(y) over the same
configuration grid. On the right hand side of each graph is a corresponding colour
map to show the over/under-estimation tendency. When o is small, all methods
investigated give an accurate estimation in average around dim(y) = 3. As ¢ in-
creases, AIC tends to an over-estimation; BIC and CAIC tend to an under-estimation;
HQC, BYY-free and BYY-Bayes are relatively accurate in dim(y). This intuitively
shows BIC induces more penalty in the model complexity than AIC and HQC, while
CAIC induces even more such penalty. BYY-free studied in [13] tends to underes-
timate the model scale on large N and large o, while BYY-Bayes has avoided this
underestimation and thus is more accurate as shown in Fig. 2.

5. Concluding Remarks

The presented work investigates model selection on orthogonal BFA. Taking advan-
tage of the orthogonality, both the generation process from latent binary structures
to external observations and its Bayesian inverse have analytical solutions, from
which a BYY machine is constructed. Unlike traditional learning that separates
model selection from parameter learning, the BYY learning performs model selec-
tion and parameter learning simultancously by maximising a harmony measure,
which is more accurately estimated in the Bayesian structure by recovering a regu-
larisation term that is ommited in a previous study [13]. Two different dimension
deduction thresholds in BFA are discussed. In the experiments, the proposed ap-
proach shows superior performance in model selection, especially on small sample
size and large noise. Moreover, learning efficiency is improved due to the automatic
dimension deduction.
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