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Abstract: A new method is proposed for curve detection. For a curve with n parameters, instead of transforming one pixel
into a hypersurface of the n-D parameter space as the HT and its variants do, we randomly pick n pixels and map them into
one point in the parameter space. In comparison with the HT and its variants, our new method has the advantages of small
storage, high speed, infinite parameter space and arbitrarily high resolution. The preliminary experiments have shown that the

new method is quite effective.
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1. Introduction

Detecting curves (straight line, circle, ellipse,
etc.) from an image is one of the basic tasks in
computer vision. Presently, the commonly used
curve detecting methods are the Hough Transform
(HT) and its variants [1].

These methods consist of three basic steps: (1)
one pixel of the image space is transformed into a
parameterized curve (or a surface, depending on
the number of parameters) of the parameter space;
(2) an accumulator with a cell array is laid on the
parameter space, and each image pixel gives one
score to the cells lying on its transformed curve; (3)
finally, a cell with the local maximum of scores is
selected, and its parameter coordinates are used to
represent a curve segment in the image space.
These three steps make the method feasible, but
also give rise to the two following difficulties:

(1) For one image pixel, not only the correct cell
(the one that represents the curve on which the
pixel lies), but also many other cells are ac-

cumulated. This brings difficulties in finding the
local maxima in the accumulator array. Risse [2]
proposed a method which can partly overcome
such difficulties, by extracting the first maximum
and then eliminating all the scores contributed on
the accumulator by the pixels lying on the curve
which is represented by the first maximum cell.
(2) More importantly, the accumulator array is
practically predefined by windowing and sampling
the parameter space in a heuristic way. Generally,
to detect curves within a wide scope of images, we
need a window of large size; and to detect curves
with high accuracy we need a good parameter
resolution. The two needs, in turn, lead to the need
of a large array taking up much computing time
and storage. Usually, without some prior knowl-
edge about the image, it is not easy to appropriate-
ly predefine the accumulator array. However, an
inappropriate array will lead to at least one of the
following problems: (a) failure to detect some
specific curves, (b) difficulties in finding local
maxima, (c) low accuracy, (d) large storage and
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(e) low speed. Some efforts to deal with these
problems are parameter space decomposition (e.g.,
[3,4]) and parallel architecture.

Based on a well-known neural network method—
the Kohonen map, an extended self-organizing
map for curve detection was proposed in [S] by the
first two authors of this paper. The method gives
some advantages like high accuracy, low storage,
and an unbounded extent of the parameter space.
Furthermore, by using some key points of the ex-
tended map, paper [5] also proposed the basic idea
of a new non-neural-network curve detecting
method. In this paper, we develop this idea further

and propose a novel HT-like method (which we -

call the Randomized Hough Transform, RHT)
for detecting curves from a binary image. Such
images may be obtained from grey-level images by
some conventional techniques (e.g., the Canny
operator). The suggested method can overcome
the above mentioned difficulties; it shares with the
extended self-organizing map the advantages of
high accuracy, low storage and infinite parameter
space, and also reduces the computation time
drastically as compared with the standard HT.

2. The Randomized Hough Transform
2.1. The basic ideas

For convenience, here we take a straight line as
an example to introduce the basic ideas of RHT.
and then in Section 2.2 we will give the general
procedure of RHT for detecting various curves.
Throughout, assume that the original image is
binary with coordinates (x, y).

For a straight line expressed by

y=ox+a,, 1)

the conventional HT transforms a point (x;, ;)
into a line @, =y, —a,x; of the (a;, ;) parameter
space. However, using two points (x;, ¥;), (X2, V),
we can map them into a point (avl,arz)1 of the

! In this paper, we use a (@;) to denote a specific value of the
variable « (;) resp.
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parameter space simply by solving the following
joint equations:

{y1=alxl+a2’
N=a1 X%+ 0.

@

The basic ideas stem just from this key point.
First, we put all the bright or ‘on’ points of the
binary image into a pixel data set D. Then, we
implement an iterative procedure. At each step of
the procedure, we randomly take two points d; =
x1, Y1) dy=(x3,¥,), dy#d, out of the set D in
such a way that all points of D have an equal pro-
bability to be taken as d;, and then all points of
D - {d,} have an equal probability to be taken as
d,. Then we use eq. (2) to solve a parameter point
pi=la;(i),a,(i)] and put this point into a
parameter data set P. After a certain number of
steps, it is not difficult to see that there will be
several p; points accumulated at the point (a;, a,),
if the image space contains a line with parameters
(a;,a,). As a result, by finding out those ac-
cumulated points in the set P, we can detect all the
lines contained in the image space.

In practice, the search of the accumulated points
can be realized as follows. Assume that each ele-
ment or cell in the parameter set P has both a param-
eter pair or vector and an integer value called the
score. When a point p, is obtained, we search and
check whether there is an element in P with the
same parameter pair as p;. If there is such an
element, then we increase its score by one. If
none is found, then we create a new cell with
parameters equal to p; and score equal to one and
insert it into P as a new element. Finally, those
elements which have scores larger than a threshold
n, (which is a very small number, e.g., 2 or 3) are
regarded as the accumulated cells.

Furthermore, some improvements on this basic
procedure can be made:

(1) The elements of P can be ordered according
to their a;, a, values (e.g., the tree structure
shown in Figure 1) so that the search time can be
minimized.

(2) Given a tolerance 4, if there is an element in
P with the distance of its parameter vector to p;
smaller than J, then the element is regarded the
same as p;. Its parameters are updated by the
average of its old parameters and p;, and its score
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is increased by one. This will reduce the storage.

(3) It is possible to detect the accumulated cells
one by one. Once there is an element p with its
score larger than the threshold n,, we take out of
D all the d, points lying on the line represented by
D, and reset set P=null. As a result, the storage
can be greatly reduced, and it will also become
easier to find the accumulated cells.

In summary, the basic idea of the RHT consists
of the three parts:

(1) At each step, randomly pick two or n (for an
n parameter curve) pixels and map them into one
point (or sometimes more than one point for an n
parameter curve, see Section 2.2) in the parameter
space.

(2) Use a set P with each element containing
both a real valued vector and an integer score to
implicitly represent the parameter space, and up-
date set P at each step by the point mapped from
the randomly picked pixels.

(3) Find the accumulated cells in P containing
the parameters of the detected curves.

Since the method is mathematically a stochastic
method and it still retains some features of the
Hough Transform, we roughly call it the Ran-
domized Hough Transform (RHT). However, in a
strict mathematical sense, mapping the randomly
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picked pixels into the parameter space is not a
transform because it is irreversible.

2.2. The general RHT procedure

It is not difficult to see that the method given in
Section 2.1 can be directly used to detect the lines
represented by

g x+a,y—1=0 (3a)

ax+a,y—oa3=0 (3b)

and other curves with expressions linear with
respect to the parameters

arzi+ 02+ o+ 0,2, +20=0 (4a)

where z;,i=0,...,n only depend on X, y and con-
stants. An example is the quadratic curve ex-
pressed by

fAxY)=a;x* + ayxy + a;y*

+asx+asy+c=0 (4b)

where ¢ is a constant and A ={a,,a,,a;,a,,0as}
denotes the parameter set.

For these curves, the n parameters can be
explicitly solved from the randomly picked n pixels
by n joint linear equations. However, for curves
expressed by equations which are nonlinear with
respect to the parameters, the RHT cannot be

| [¢ [*
cell cell — | cell
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cell cell cell cell
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Figure 1. A particular example of the dynamic data structure for the ordered search in Set P (where each cell stores a p = [a;, a5] point
and its score, and the cells are ordered according to the values of @; and a).
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directly used. The circle expressed by eq. (5) is an
exception:

(a1 —x)*+ (- yP =03, (5a)

(- %)+ (a2, —y)*=R> (5b)

We assume that in (5a), all the three parameters
are unknown, while in (5b) the radius R is known.
For eq. (5a), using three randomly picked points
(x1, Y1), (%2, 3), (x3,¥3), the three parameters are
not easily solved directly. However, the first two
parameters «;, a, can be solved by any two of the
following three equations: T

I a _yr+yi>: Yr=Xi a _xr‘i,'xi)
2 2 2 X=X A 2 )

i=1,23 6)

r=mod,[i+ 1],

where if m=3k+r and k, r are integers, then
mod;[m]=r. There /; is the midperpendicular of
the line segment from (x;, ;) to (x,,»,), and any
two of such midperpendiculars should cross at
the center of a circle. Using eq. (5a), we can then
obtain the third parameter o3 directly. As for
eq. (5b), i.e., a circle with the known radius R,
two pixels will define two parameter points p, =
(a1, @), p, = (a1, 3), and we must insert cells cor-
responding to both p,, p, into the set P.

It should be mentioned that for other curves ex-
pressed by nonlinear equations with respect to the
parameters, it may still be possible to use the RHT
by some other method, e.g., by introducing ad-
ditional parameters. We will describe the details
elsewhere.

By summing up both the above discussion and
the one in Section 2.1, for a curve expressed by an
n parameter equation f(a, ..., @,, X, ¥) =0, we give
the general RHT procedure as follows:

Step 1. Scan a binary image and put the coor-
dinates d;=(x;, y;) of all the ‘on’ pixels into the
pixel data set D. Then, initialize a parameter data
set P=null and k=0.

Step 2. Randomly pick » points d,...,d, out
of D in such a way that all points of D have an
equal probability to be taken as d,, then all points
of D—{d,} have an equal probability to be taken as
d,, etc.; finally, all points of D—{d,,d,,...,d,_,}
have an equal probability to be taken as d,,.
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Step 3. Solve n joint equations
f(al,...,ot,,,x,-,y,-)=0, i=1,...,n

to determine one parameter point p=(a;,...,a,)
(or it may be more than one when f(- ) is nonlinear
with respect to its parameters).

Step 4. Search among set P for an element p,
such that p.=p (or |p.—p| <6, with & being a
given tolerance). If found, goto Step 6, otherwise,
goto Step 5.

Step 5. Attach to p an accumulating cell with
score one, and insert it into set P as a new element
which is located according to the partial order of
a given dynamic structure (e.g., for n=2, see
Figure 1). Goto Step 7.

Step 6. Increase the score of the accumulating
cell of p. by one, and then check whether the in-
creased score is smaller than a given threshold n,
(e.g., n,=2,3); if yes, goto Step 7, otherwise, goto
Step 8. :

Step 7. k:=k+1; if k> ky,, then stop, other-
wise, goto Step 2.

Step 8. Take p, as the parameters of a possible
curve, and take out of D all the pixels lying on the
curve. If there are m,e such pixels and m,c>m;,,
then goto Step 9; otherwise, p, represents a false
curve, return the m,. pixels into set D, then take
p. and its accumulating cell out of set P (i.e., P:=
P—{p.}), and goto Step 2.

Step 9. A curve represented by p. has been
detected. Reset P=null and k=0, and goto Step 2.

Remarks. (1) The tolerance J is introduced to
further reduce the storage and adjust the resolu-
tion of the parameter space. When =0, the RHT
has the highest resolution. The larger ¢ is, the
lower is the resolution but the less storage is used.
It should be pointed out that even when 6 =0 the
storage used by the RHT is already greatly reduced
in comparison with that used by the conventional
HT.

(2) After all the pixels of the curves have been
taken out, the pixels remaining in set D are noise.
In this case, the time required for a p cell to attain
a score of n, should become considerably longer.
So, the procedure can be stopped by a suitable
threshold k,,,. The theoretical analysis on how to
appropriately choose k.,, will be given in a
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separate paper [6] where an alternative stopping
criterion will also be given.

(3) For detecting lines, the minimal », could be
2 (e.g., as used in Section 3). The related detailed
analysis will also be provided in [6].

(4) If there are less than my;, pixels lying on a
curve, we consider the curve being a false one.

(5) Finally, it deserves to point out that the
above procedure can be directly extended to detect
surfaces in a 3D scene.

2.3. The characteristics of the RHT

Compared with the conventional HT and its
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variants, the RHT has the following advantages:

Infinite parameter space. Due to the predefined
accumulator, the HT and its variants can only
observe those curves whose parameters are within
a finite window of the parameter space. In con-
trast, because P stores any parameter point
mapped from pixels of the image space, the RHT
can implicitly observe the whole extent of an in-
finite parameter space. There is no problem of pre-
defining an appropriate window as in the case of
the HT.

Arbitrarily high parameter resolution. The
resolution of the HT is predefined by the grid size
in discretizing the selected window of the

Figure 2. (a) The original grey picture. (b) The edge picture after preprocessing. (c) The result of the RHT (two lines, instead of one
line in Figure 2d, were detected for the leftmost edge because of the higher resolution of RHT and the fact that the edge in Figure
2b actually consists of several staged line segments). (d) The result of the HT.
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parameter space. It is constrained by the storage
and computation time since a high resolution in-
creases the number of array cells. In contrast, P
stores the real value parameter points without
discretization, so the RHT has inherently high
resolution. In fact, by changing the tolerance ¢ in
Step 4 from 0 to some chosen value, its resolution
can be arbitrarily adjusted.

Small storage. The storage of the HT depends
on the window size and resolution in the ac-
cumulator space. Large size and high resolution
result in an accumulator array with a great number
of cells. In contrast, due to the frequent resetting
of set P, the storage of the RHT is always kept
quite small. E.g., for the picture shown in Figure
2, the HT wuses a 256 X256 array while the RHT
uses a storage of only around 30 cells (see Section
3). ‘

High computation speed. For the HT, one pixel
is transformed into a curve, a surface, or a hyper-

PATTERN RECOGNITION LETTERS

May 1990

surface, and all the cells lying on the curve or sur-
face should be accumulated. So the computing
speed is constrained by the size of the accumulator
array. In contrast, for the RHT, at each step, only
one parameter point of P is updated which greatly
cuts down the computing time. E.g., in the case of
Figure 3, the computing time of the HT is 80 times
larger than that of the RHT (see Section 3). It
should be pointed out that especially for curves
with #n>2 parameters the computing time of the
RHT reduces much more drastically since in such
cases the HT need to accumulate all the cells lying
on a surface or hypersurface.

3. Computer experiments
3.1. Detecting straight lines

A grey image is shown in Figure 2a. After
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Figure 3. (a) The consumed storage of the RHT (each peak indicates where a line segment is detected and set P is reset to P=null).
(b) A comparison between the consumed times of the RHT with x marks and of the HT with o marks (each point indicates where
a line segment is detected).
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preprocessing by the Canny operator and a thin-
ning algorithm, a binary image is obtained in
Figure 2b. Then eq. (1) is used for detecting line
segments. Although for the HT this equation will
constrain the scope and the accuracy of parameter
oy, for RHT there is no such problem due to the
advantages of infinite parameter space and arbi-
trary resolution. The threshold n, at Step 4 is here
n,=2, and the dynamic structure of set P is given
by Figure 1. The result of the RHT is given in
Figure 2c superimposed on the original grey
picture.

For comparison, the standard HT with line ex-
pression

© =xcos(0)+ y sin(0) ©)

is also used on Figure la. The accumulator is a
256 X256 array with constant sampling on a
window

 0[0,V2x256], O[-n/2,7/2],

and the recently proposed decremental method [2]
is used to improve the extraction of local maxima.
The result is shown in Figure 2d.

From Figures 2¢ and 2d, it can be observed
that although a high sampling rate

Ao =V2 pixel/cell,  A0=mn/256/cell

is used to implement the HT for a high accuracy,
the line segments of the RHT are still generally
more accurate than those of the HT. Furthermore,
Figure 3a shows that the maximum storage used by
the RHT is around 30 cells which is a drastic reduc-
tion in comparison with 256 x256. Figure 3b
shows the comparison of the computing times used
by the RHT (with x marks) and the HT (with
o marks); again, a significant reduction by the
RHT can be observed.

3.2. Detecting circles

A test binary image is shown in Figure 4a, and
the circles are described by eq. (5a). In this case,
the standard HT will transform one pixel into a
surface, and all the cells on the surface have to be
accumulated. Thus the computation is very expen-
sive both in storage and in time, and it is also quite
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(a)

Figure 4. (a) The original edge picture. (b) The result of the
RHT.

difficult to make an appropriate window on the
3-D parameter space. However, the RHT can work
in this case without any difficulties. It has found
all the circles as shown in Figure 4b with quite
small computer time and storage.

4. Conclusions

We have proposed a new technique for curve
detection. For a curve expressed by an n
parameters equation, instead of transforming one
pixel into an n — 1-dimensional hypersurface in the
parameter space as the HT and its variants do, we
randomly pick » pixels and map them into one
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point of the parameter space. In comparison with
the HT and its variants, we have shown through
analysis and experiments that our new method has
advantages of small storage, high speed, infinite
parameter space and arbitrarily high resolution. In
addition, there is no difficulty of choosing an ap-
propriate window and sampling for the accumula-
tor and of finding local maxima. These two
difficulties significantly influence the performance
of the HT and its variants. While this paper has
concentrated on showing the key ideas of the
method and on giving some experimental results,
the results can be confirmed by a theoretical
analysis of the HT and the RHT. We will give the
theoretical analysis and some extensions of the
RHT elsewhere.

338

PATTERN RECOGNITION LETTERS

May 1990
References

[1] Illingworth, J. and J. Kittler (1988). A survey of the Hough
transform. Computer Vision, Graphics, and Image Proces-
sing 43, 221-238.

[2] Risse, T. (1989). Hough transformation for line recogni-
tion: Complexity of evidence accumulation and cluster
detection. Computer Vision, Graphics, and Image Proces-
sing 46, 327-345.

[3] lingworth, J. and J. Kittler (1987). The adaptive Hough
transform. IEEE Trans. Pattern Anal. Machine Intell. 9,
690-698.

[4] Li, H., M.A. Lavin and R.J. LeMaster (1986). Fast Hough
transform: A hierarchical approach. Computer Vision,
Graphics, and Image Processing 36, 139-161.

[5] Xu, L. and E. Oja (1989). Extended self-organizing map for
curve detection, submitted to 1990 IEEE Symposium on
Circuits and Systems, New Orleans, May 1-3, 1989.

[6] Xu, L., E. Oja and P. Kultanen. Randomized Hough
transform: Theoretical analysis and extensions. In pre-
paration.

ey

e



