.

CVGIP: IMAGE UNDERSTANDING
Vol. 57, No. 2, March, pp. 131-154, 1993

Randomized Hough Transform (RHT): Basic Mechanisms,
Algorithms, and Computational Complexities*

Ler Xut

Lappeenranta University of Technology, Department of Information Technology, Box 20, 53851 Lappeenranta, Finland; Department of
Mathematics, Peking University, Beijing, Peoples’ Republic of China

AND

Erkki1 Osa

Lappeenranta University of Technology, Department of Information Technology, Box 20, 53851 Lappeenranta, Finland

Received February 13, 1990; accepted May 14, 1992

Recently, a new curve detection approach called the randomized
Hough transform (RHT) was heuristically proposed by the authors,
inspired by the efforts of using neural computation learning tech-
niques for curve detection. The preliminary experimental results
and some qualitative analysis showed that in comparison with the
Hough transform (HT) and its variants, the RHT has advantages
of fast speed, small storage, infinite range of the parameter space,
and high parameter resolution, and it can overcome several diffi-
culties encountered with the HT methods. In this paper, the basic
ideas of RHT are further developed into a more systematic and
theoretically supported new method for curve detection. The fun-
damental framework and the main components of this method are
elaborated. The advantages of RHT are further confirmed. The
basic mechanisms behind these advantages are exposed by both
theoretical analysis and detailed experimental demonstrations. The
main differences between RHT and some related techniques are
elucidated. This paper also proposes several improved algorithms
for implementing RHT for curve detection problems in noisy im-
ages. They are tested by experiments on images with various Kinds
of strong noise. The results show that the advantages of RHT are
quite robust. Moreover, the implementations of these algorithms
are modeled by a generalized Bernoulli process, allowing probabil-
ity analysis on these algorithms to estimate their computa-
tional complexities and to decide some important parameters for
their implementations. It is shown quantitatively that the complexi-
ties are considerably smaller than those of the HT. © 1993 Academic

Press, Inc.

*This work was initialized and partly done at Lappeenranta University
of Technology, supported by Tekes Grant 4196 under the Finsoft project
(Finland).

+ Present address: Division of Applied Sciences, G-14 Pierce Hall,
Harvard University, Cambridge, MA 02138.

1. INTRODUCTION

The Hough transform (HT) was proposed by Hough in
1962 [6] and was brought to the attention of the main-
stream image processing community by Rosenfeld [7].
Duda and Hart [8] introduced the polar parameterization
to HT, which makes HT more efficient for line detection;
they also demonstrated circle detection. Kimme, Ballard,
and Sklansky [9] made circular curve detection signifi-
cantly more effective by using the gradient information of
local pixels. Furthermore, Merlin and Faber [10] showed
how the HT could be generalized to detect an arbitrary
shape at a given orientation and a given scale, and Ballard
[11] eventually generalized the HT to detect curves of a
given arbitrary shape for any orientation or any scale by
making use of the gradient information of local pixels. Up
to now, hundreds of papers have been published on the
issues related to HT. These issues include a lot of the
applications, variants, and extensions of HT. A recent
comprehensive survey on these developments of HT was
published by Illingworth and Kittler [3]. These issues also
involve many further theoretical studies on various as-
pects (especially on noise sensitivity) of both HT and the
generalized HT [11]. Some of these studies can also be
found in [3]. The further interesting studies on the noise
sensitivity of the generalized HT were provided recently
by Grimson and Huttenlocher [22, 23] and a number of
earlier studies on the noise sensitivity of the generalized
HT were given in the references provided by [22, 23].

Recently, when extending the Kohonen self-organizing
neural network for curve detection [1] and inspired by its
fundamental principles, the authors proposed a basic idea

131

1049-9660/93 $5.00
Copyright © 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

132

which introduces a random sampling mechanism and a
converging mapping mechanism into the conventional HT
methods. In [2], the idea was developed further and a
novel HT-like approach was proposed, called the random-
ized Hough transform, RHT, for detecting curves from a
binary image. Such images are usually obtained from grey-
level images by conventional edge-detection techniques
(e.g., the Canny operator). In comparison with the con-
ventional HT and its variants as well as extensions (which
are all deterministic methods), the preliminary experi-
ments and some qualitative analysis in [2] showed that
the RHT has several advantages like fast speed, small
storage requirements, infinite scope of the parameter
space, and high parameter resolution, and it can overcome
some major difficulties (see Section 1 in [2]) met by the
conventional HT methods.

In this paper, the basic ideas of RHT are further devel-
oped into a more systematic and theoretically supported
new method for curve detection. The fundamental frame-
work and the main components of this model are further
elaborated. The deep mechanisms behind the above-
mentioned advantages of RHT are revealed by both theo-
retical analysis and detailed experimental demonstra-
tions. It is shown that these advantages are due to the
consistent combinations of random sampling, converging
mapping, score accumulation, and stepwise implementa-
tion and the appropriate selection of accumulator struc-
ture. Especially the first two of these play key roles and
are most responsible for the effectiveness and novelty of
RHT.

Moreover, we propose several improved algorithms for
implementing RHT for curve detection problems in noisy
images. It is shown by several experiments as well as
an application example of form processing in document
analysis that these algorithms can robustly maintain the
advantages of RHT on images with strong random noise,
quantization errors, and non-random interference pixels.
Furthermore, the implementations of these algorithms are
modeled by the generalized Bernoulli process, and proba-
bility analysis on these algorithms is given for estimating
their computational complexities and deciding some im-
portant parameters for their implementations. As an ex-
ample of the complexity results, it is shown that RHT can
have the time or/and storage complexity much lower than
an upper bound of order O(n,N"/nl;), considerably
smaller than O(N N"~') and O(N"), which are the time
and storage complexities of HT. There N, N, are the sizes
of the image and accumulation arrays, respectively, A,
is the length of the shortest curve in the image, and n, is
a small number. An important feature is that the complexi-
ties of RHT are dependent on the complexity of the image.
For simple images, RHT algorithms can perform the tasks
with very fast speed and small storage. In contrast, even for
the simplest image, containing only one line without noise,

XU AND OJA

HT still needs the complexities of O(N N*~!) and O
(N (where n = 2) to find it, while RHT only needs the
time complexity of 2 ~ 3 and the storage complexity of 1.
The contents of the sections are as follows. In Section
2, we will first give a refined description of the key ideas
of RHT given in [2]. The fundamental framework and the
main components of this method will be further elabo-
rated. Then in Section 3, through theoretical analysis as
well as experimental demonstrations, we will reveal each
of the basic mechanisms which give RHT several favor-
able advantages. The main differences between RHT and
some related techniques, e.g., the technique of trading off
work in parameter space for work in image space [11, 13]
and RANSAC [14], will also be elucidated. In Section 4
and Appendix A, several algorithms of RHT (including
the earlier one given in [2] and some recent improvements
[M2]) are summarized in more concise forms, and the char-
acteristics of each version are discussed. In addition, we
will also show experimental results of an application ex-
ample in document analysis. In Section 5 and Appendix
B, we will model the implementation of the RHT algo-
rithms by the generalized Bernoulli process. The algo-
rithms are analyzed probabilistically to estimate the com-
putational complexities and to decide the proper values
of some important parameters in their implementations.
Finally, we make some conclusions in Section 6.

2. THE BASIC IDEAS OF RHT METHODS

2.1

The task of curve detection is conducted on a blnary
edge image which may be obtained from grey-level i 1mages
by either simple thresholding operations or by some stap-
dard edge detection techniques (e.g., the Canny operator).
Suppose the curves to be detected can be expressed by a
parametric function f(a, d) = 0 witha = [a;, ..., o]
containing n independent parameters and d = d(x, y)
being the coordinates of a ‘‘white’” pixel.! Roughly speak-
ing, the task of curve detection is to solve the parameters
of every curve expressed by this function.

Since n pixels may define a solution of f(a, d) = 0 (e. g
any two different pixels define a line and any three not
collinear pixels define a circle), an image with N plxels
will have at most C}, (the factorial n over N) curves ex-
pressible by the parametric function. However, many
such curves may have only a few pixels and usually are not
regarded as a real curve in practice. That is, a parameter
vector a is not enough for defining a real curve. Some
other parameters such as the total number of pixels lying

The Curve Detection Problem

! A white pixel means a pixel that has binary value 1; in the rest of
this paper, we call a white pixel simply a pixel.

RANDOMIZED HOUGH TRANSFORM

onacurve and/or the largest length of connected segments
of a curve are needed to define a real curve. Moreover,
in a digital image from real applications, the pixels are
usually not exactly located on a curve because of sensor
noise and quantization. Instead, pixels are located in the
digital neighborhood areas of a curve.

In order to make the presentation of RHT as precise as
possible and to facilitate the latter theoretical analysis,
we first formalize the curve detection problem by the
following definitions:

DEFINITION la. Assume as given a curve c; f(a;,
d) = 0. As shown in Fig. 1(a), a 8-band of c; is defined as
the following subset of R%: B(c) = {(x, y)|ro(x, y) = 8},
where 8 = 0 and r,,(x, y) is the minimum of
V(x — u)? + (y — v)? subject to f(a;, d(u, v)) = 0.

DEFINITION 1b. Assume as given a number m,;, > n
(n is the number of curve parameters) and a predefined
value of 8. A curve c;: f(a;, d) = 0, as shown in Fig. 1b,
is called a true curve under error § if there are n; = m,,,
pixels {d,, d,, . . . d,} C B(c) (i.e., the n, pixels fall in the
é-band of ¢)), and a pseudo curve when n; < mpy;,. We also
call n; the length of c;. Furthermore, in the special case
of 8 = 0, we say that true curves and pseudo curves are
ideal, and we call them ideal true curves and ideal pseudo
curves, respectively.

DEFINITION 1lc. Assume as given a specific curve
function f(a, d) = 0, a € R", and a set S, of m,, pixels
with m,,. = n. If there is no n- tuple of pixels in S, among
allthe Cj, n-tuples, givingana’' € R"such thatits n pixels
fall in a glven 8-band of the curve f(a’, d) = 0, then we
call the pixels of §,,. non-curve pixels under error 8. In the
special case of & = 0, we call the pixels in S, ideal non-
curve pixels.

(Note: When the curve function expresses a line, the
set of non-curve pixels §,. is always empty. However,
for a curve function with more than two independent
parameters, S,. may be non-empty. E.g., for the curve
function expressing a circle, if there are no other pixels
in an image except a set S, which consists of pixels located
on a line, then S,. = S, We emphasize that non-curve
pixels are defined subject to a specific curve function. For

Ni=12>Mmin=s / Ci Ni=4> Mmin=s / G
L] .
. / ol 7
/R c . /X2 . 7/
- Ly)

true curve _'/ pseudo curve

& — band

@) ®

FIG. 1. True curves and pseudo curves: (a) A 8 band of curve ¢, is
a band of width 28 with c; as the median axis. (b) A true curve ¢; has at
least my, pixels falling in a given 8 band; otherwise ¢ is a pseudo curve.

133

the just-mentioned example, the pixels of S, are not non-
curve pixels subject to the curve function of a line.)

DEFINITION 2. Assume as given a specific curve func-
tion f(a, d) = 0, a € R", and the predefined values of &
and m_;,. Subject to the given curve function, a model
binary picture (MBP) is defined as an N-pixel binary image
which contains m, true curves ¢;, i = 1, . . ., m,and m,,
pseudo curves ¢;,i = m, + 1, ,m, + m,, as well as
aset S, of non-curve pixels under the given error 8, where
m,=1,m, =0,and S, is possibly a null set. Furthermore,
for the special case that § = 0, i.e., the true curves,
pseudo curves, as well as non-curve pixels, are ideal, we
call an MBP an ideal model binary picture IMBP) subject
to the curve function.

DEeFINITION 3. Assume as given a binary image, a
specific curve function f(a, d) = 0, a € R", as well as the
predefined values of 8 and m,,;,,. The whole task of curve
detection consists of the following three interwoven parts:

(1) Find out the number m,, i.e., how many true curves
there are in the image.

(2) Solve the parameter vector a; of each c; of the m,
true curves under the given error 5.2

(3) For each pixel in the image, either classify it into
one of the m, true curves or regard it as a non-true-curve
pixel.

By the above definitions, and given a specific curve
function, any binary image encountered in practical curve
detection problems can be modeled using the MBP model.
However, it follows from the above definition that the
task of curve detection is only a partial task of modelling
a binary image into an MBP. In the sequel, we use the
MBP model to guide our design of the implementing algo-
rithms of RHT as well as our analysis of RHT. Especially,
the IMBP model which is the ideal version of MBP will
be used later to facilitate our theoretical analysis on the
performance of RHT.

2.2. The Basic Ideas of RHT

Assume now that we have a binary image and we have
decided on a specific curve function f(a, d) = 0, a € R"
of the type that we want to detect (e.g., a line or a circle).
Assume also that there are predefined values of §, m_,;, .
A description of the basic principles of the RHT method
is given in the following. In comparison with the earlier
description of the basic ideas given in [2], there are some
differences in the present one. The earlier one in [2] gave
only one specific version of RHT, while the present one
is more general.

? In the sequel, we will omit ‘‘under the given error 8’ in places where
no confusion occurs.

134

» The implementation of RHT is a series of simple ran-
dom trials. The whole series consists of a number of
epochs. Each epoch contains one or several accumulation
periods, and each accumulation period consists of a cer-
tain number of random trials.

+ At each random trial, n pixels d; = d(x;, y), i =
1, ..., n, are randomly sampled from the image with
each pixel being picked with equal probability, and then
are mapped using a converging mapping into one point a
€ R" in the parameter space by solving the set of n equa-
tions f(a,d) = 0,/ = 1, ..., n. The candidate a is put
into a storage P in the following way: if there exists an
element p € P, p = [param(p), score(p)] with its
param(p) being regarded as the same as a subject to a
given error criterion, then we let score(p) : = score(p) +
1; while if none exits, we insert into P a new element p =
[param(p), score(p)] = [a, 1].

+ An accumulation period is finished after a sufficient
number of trials. Then among all the elements which have
been accumulated in P during this period, one or several
pi,» i = 1,..., rare taken as candidate curves if the
score(p;) of each p; can be regarded as large enough in
some way (e.g., by checking if score(p,) is either a local
maximum or among one or several global maxima).

« For each candidate p,, it is verified whether param(p,)
represents a true curve by Definition 1(b); if yes, this
param(p,), together with those pixels falling in its given
8-band, are decided as the solution of one true curve; if
not, p; is discarded. If all the candidates are discarded,
another accumulation period is undertaken using the pres-
ent P after removing from it all these candidates. Other-
wise, we say an epoch is completed.

o After a completed epoch, P is reset to null, all the
pixels of the detected curves are removed from the image,
and then a new epoch is started.

» The whole series is stopped when it is known that
there is no true curve still remaining in the image.

The core of RHT is the combined use of random sam-
pling in the image space, score accumulation in the param-
eter space, and converging mapping as the bridge between
the two spaces. Around this core, some issues can be
implemented in different ways, which results in several
variants of RHT with different features. E.g., the earlier
version given in [2] gives significant advantages when
used on a low-noise image; the revised versions given in
[12] are more suitable for applications with various types
of noise although they may occupy more storage in less
noisy applications. In the above descriptions, we try to
include some of these versions (but not completely). Thus,
some terms and issues appearing in the above description
have to be further interpreted. We give such interpreta-
tions in the sequel.

(1) Random sampling. Although one can sample ran-
domly n pixels directly from an image, a more efficient

XU AND OJA

way is that at the very beginning all the ‘‘white pixels’’ of
the image are scanned into a data set D. Each pixel being
picked with equal probability means then the following:
at each trial one randomly picks n points d,, . . . , d, out
of D in such a way that all points of D have an equal
probability to be taken as d;, . . . , d, out of D in such a
way that all points of D have an equal probability to be
taken as d,, then all points of D — {d,} have an equal
probability to be taken as d,, . . ., etc.; finally, all points
of D — {d,, d,, ..., d,_} have an equal probability to
be taken as d,,.

(2) Converging mapping. To efficiently realize the con-
verging mapping, we hope that the parameterization of a
curve (i.e., the given curve function) is such that the n
equations f(a, d) = 0,{ = 1, ..., n, are analytically
solvable. As indicated in [2], all curves with the following
expression are linearly solvable;

(2274 + (e 2Y &) + e+ a,z, + ¢ = 0, (la)
where z;,i = 0, . . . , n, only depend on the coordinates
x, y of a pixel, and c is constant. That is, the expression
is linear with respect to the parameters. All the usual
curves such as a line and all quadratic curves can be
expressed in the form of Eq. (1a) (see [2]). Moreover, a
line with polar parameterization

p = xcos () + ysin(d) (1b)
is also easily solvable; given two pixels d; = d(x, y,),
d, = d(x,, y,), the solution can be directly obtained by?

xl - x2 .
6 = arctan A p = x;sin(@) + y;cos(h),
2 1

i=1lor2. (lc)
In [2], it was also shown that a circle with the parameter-
ization (x — a)? + (y — @)* = o3 can be solved through
two coupled linear equations.

However, it may be that a unique solution does not
exist. One possibility is that there exist several solutions
like in circle detection indicated in [2]. In such a case we
can just store each of them into P in the same way as
storing a unique solution. Another possibility is that there
exists no solution (e.g., three collinear pixels are picked
for circle detection) or there exist an infinite number of
solutions (e.g., when the n pixels happen to make the n
equations not independent). In these cases, we simply
discard the n pixels and randomly re-sample another set
of n pixels.

3 In a noisy image, it is better to use p = ((x + x,)/2) sin (6) +
((y; + y2)/2) cos (8). To avoid computing cos (), sin (), one directly
computes p = 0.5 (; — x)y; + y) — O — yx +
XNV = X + (v = y)).

RANDOMIZED HOUGH TRANSFORM

(3) Different types of storage P. Theoretically, P could
be a non-ordered set. However, practically, P should be
such that its elements can be effectively accessed. There
are several types of P that can be used. First, P can be
the usual accumulation array used in the HT methods [3].
In this case, before any sampling, all the elements of P
are placed at the bins of a discretized hypercube window
in the parameter space, and the scores of all the elements
are set to zero. When putting a candidate a into P, we
only need to discretize a by the same quantization into
the coordinates of a bin p and let score(p) : = score(p)
+ 1. Now storing param(p) is not necessary since it is
implicitly represented by the coordinates or indices of
each bin. Second, as used in [2], P can be either a dynamic
linear list or tree structure. When a list is used, the search
is made simply from the beginning of the list to the end of
the list, and each new element p = [param(p), score(p)]
= [a, 1]is appended at the end of the list. A tree structure
allows ordering of the elements by the coordinates of a,
and some management is needed for the operations of
searching and inserting. Third, as suggested in [12], P can
also have a structure which combines a hashing table and
linear list.

The different types of P have different characteristics
which produce both advantages and disadvantages, as
well be discussed in the sequent subsections. Especially
in Sections 3.4 and 4.1, we will further discuss P in detail.

(4) The error criterion for regarding two elements being
the same. When P is the usual accumulation array, two
elements are regarded as the same as they are discretized
into the same coordinates. Now the error criterion is im-
plicitly in effect through the quantization rate. When P is
of other types such as a list, we have two alternatives.
One is [2] that two elements are regarded as the same if
we have dis(a, param(p)) < & under a given distance
measure dis(x, y) (e.g., dis(x, y) = ||x — y||) and a tolerance
€. The other is [12] that all the elements are quantized and
stored at a given resolution rate and two elements are
regarded as the same if they have the same quantized
value. The way is almost the same as that used when P
is an accumulation array except here we still store the
quantized value as param(p), instead of transforming it
into the coordinates of a bin. The former one is selected
if one has some previous knowledge to choose an appro-
priate distance measure. Otherwise, the latter one is sug-
gested to be used since it is simple and easy to handle.

(5) How many trials are enough for finishing an accu-
mulation period? There are several possibilities. In this
paper, we only consider two simple methods. In the first
one, an accumulation period stops when the number & of
random trials in the period reaches a previously given
limit k,,,. In the other one, we stop when there is a p €
P with its score(p) reaching a predefined threshold n,;
i.e., after each update score(p) : = score(p) + 1, we check

135

whether score(p) = n,; if yes, we finish the accumulation
period. We can also combine the two ways such that a
period is finished whenever one of the two happens first.
In section 5.2, we will analyze how to appropriately select
the values of k,,, and n,.

(6) How do we know that no true curve remains in the
image? The task is easy if we know initially how many
true curves of the specific curve type there are in the given
image. In this case, we only need to check how many true
curves have been already detected at present. If we have
no such previous knowledge, as pointed above in Defini-
tion 3, the task is strongly interwoven with the task of
detecting out curves. In this case, what we can do is that
after a completed epoch we just run another epoch as if
there were some true curves remaining in the image. If
the new epoch is still not completed when the number ku
of accumulation periods that finished within the epoch
reaches a given limit ku,,,, then we assume that there is no
true curve left in the image. In Section 5.2, we will analyze
the problem of how to appropriately predefine ku

max*

3. THE NEW MECHANISMS IN RHT AND
THEIR ADVANTAGES

The core of the conventional HT is basically the com-
bined use of exhaustive enumeration of the pixels in the
image space, score accumulation in the parameter space
and a diverging mapping* bridging the two space. In RHT
methods, two new mechanisms, namely random sampling
and converging mapping, replace the roles of exhaustive
enumeration and diverging mapping, respectively. The
combined use of these two new mechanisms produces
some favorable characteristics which not only give RHT
the advantages of considerably increased computing
speed and more reliable detection of maxima in the accu-
mulation array, but also provide the possibilities for using
an effective stepwise procedure to assist curve verification
and for using storage of other types for score accumula-
tion. These measures can further speed up the computa-
tion of RHT and give the advantages of small storage,
infinite parameter space, and high resolution. In the se-
quel, we will show these characteristics through theoreti-
cal analysis and experimental demonstrations.

3.1

In the development of the HT and its variants, the function
of converging mapping has been explored by several au-
thors [11, 13]. It has been found that in the implementation
of HT one ¢an use more than one pixel simultaneously to
vote a hypersurface with a reduced dimension or even a

Two New Functions of the Converging Mapping

* That is, HT maps one pixel in the image space into all the points on
a hypersurface in the parameter space. We call this mapping shortly the
diverging mapping.

136

single point in the parameter space, and thus the computa-
tion in the parameter space can be reduced. However, for
an n-parameter curve function, it was found that in an
image of N pixels one needs the total of C% enumerations
to implement the mapping of a whole HT process. C% is
of the order O(N"), and the complexity of HT is of the
order O(N N"~!) with N, being the size (on one dimen-
sion) of the accumulation array used. As a result, the
function of converging mapping has been regarded as trad-
ing off work in parameter space for work in image space,
according to which of N, N, is larger. However, here we
like to show that the converging mapping has two other
favorable properties which have remained undiscovered
before.

First, the converging mapping can considerably
sharpen the local peaks (maxima) in the accumulation
array. Thus, it can ease the difficulty of finding maxima
encountered in HT and make curve detection more reli-
able. Consider the IMBP model given by Definition 2 in
Section 2.1. It is not difficult to figure out that the local
peaks of the stores in the accumulation array are gener-
ated by pixels of ideal true curves and that the sharpness
of a peak is affected by the relative difference between
the scores of the peak and the scores generated by ideal
pseudo curves, whose parameters are located in the neigh-
borhood of the peak in the parameter space. Thus, the
ratio of the scores of a local peak generated by an ideal
true curve to the scores generated by any one of the ideal
pseudo curves could be used as a tool for describing the
sharpness of a local peak. The larger the ratio is, the
sharper the peak.

Assume that there is an ideal true curve ¢, of n, pixels
and an ideal pseudo curve ¢, of n, pixels with n; >
Mpin > 1, = n. For the diverging mapping used in the HT,
the ratio of the scores of the local peak generated by ¢, to
the scores by c, are given by R(n,, n,, 1) = n,/n, > 1. On
the other hand, for the converging mapping, there will be

C% and C}, combinations of n-tuples for being mapped
into the scores corresponding to ¢, and c,, respectively.
Thus after enumerating all the possible n-tuples in an
image, the ratio of the scores of the local peak generated
by ¢, to the scores generated by c, is given by

R(n;, n n)—CZI—”l(”l_l)"-(nl—n+1)
15 25 :2 nz(nz— 1)...(n2__n+)

@

>R(”1, ny, 1) = ;ln_l.
2

Denote n,/n, = y; then we have approximately R(n,, n,,
n) = y"as long as n,, n, are much larger than »n. Recalling
v > 1 (since n; > n,), we see that R(n,, n,, n) has been
considerably increased. In other words, the local peaks
have been considerably sharpened.

XU AND OJA

Second, the converging mapping provides a possibility
of replacing the accumulation array by the storage P of
other types. For the diverging mapping used in the HT,
all the parameter points on a hypersurface are involved
after mapping each pixel. In this case, the storage used
for the accumulation in parameter space has to be able
not only to include all the involved parameter points, but
also to explicitly retain all the geometrical neighborhood
relations between these points so that every point on a
hypersurface is easily accessed through the given curve
function. The accumulation array used in HT satisfies this
requirement. However, as will be pointed out in Section
3.4, this kind of array has also some quite unfavorable
characteristics. For the converging mapping, each map
only involves one point in the parameter space. The geo-
metrical neighborhood relations between the stored pa-
rameter points are no longer of key importance although
the relations may still be useful (e.g., for finding the local
maxima). Thus, there exists the possbility of using other
types of storage P instead of accumulation array. This
opens up the possibility to give RHT several advantages
through combining other mechanisms and appropriately
selecting the storage P, as shown in later sections.

3.2 Random Sampling Can Speed Up
the Computation

In spite of its favorable functions, the mere use of the
converging mapping has an expensive computation cost of
order O(N"). However, the high cost can be significantly
reduced by combining its use with random sampling.

Consider again the IMBP model and assume that we
could reduce the total number of pixels N into N/r, in
such a way that the length of each ideal true and pseudo
curve is also reduced from n; into n;/r;, with r, > 1 the
reduction rate. Then, the ratio given in Eq. (2) will change
into
R(n, n,) Comlrmylrg =1 - (yfrg —n+ 1)

rg’ re ") T mdrdmlrg — D) (nylrg — n + 1)

(3a)
._nl(nl/rd_ 1)"'(nl/rd_n+ 1)
nz(nz/rd 1)" '(nz/rd—n+ 1)
(fl_l,@’ 1> _ n,lr, _m (3b)
ry tq nylry ny

Since n; > n,, aslong as (ny/ry — n + 1) > 1,ie.,r; <
n,/n, it follows that

v

R(2.%2) > R,

n
ra rq rqg tq '

1) = R(n,, my, 1) = (3c)

n;

RANDOMIZED HOUGH TRANSFORM

Since n, could be the number of any ideal true curve
and n,, the number of any ideal pseudo curve in the IBMP
model, in comparison with Eq. (2), we can see that curves
in an IBMP model of N pixels can be detected through its
proportionally reduced version of N/r, pixels in such a
way that:

(1) When using the diverging mapping, the ratios of
scores of ideal true curves to those of ideal pseudo curves
remain unchanged. In other words, the local peaks in the
accumulation array on the reduced model are as sharp as
they are on the original model.

(2) When using the converging mapping, the ratios of
scores of ideal true curves to those of ideal pseudo curves
are still higher than those obtained on the original model
by the diverging mapping. In other words, the local peaks
in the accumulation array on the reduced model are still
sharper than those obtained on the original model by the
diverging mapping.

At the same time, the computing complexity of the
diverging mapping will be reduced by r, times, and the
computing complexity of the converging mapping is now
of the order of O(N"/r%). That is, it has been reduced by
the amount of

Ch _ o (N=D- (N~ (n~1)
N, YN =r) (N =rfn—1)

>rh,

whenr,;> 1.

Obviously, this is a significant speed up on the computa-
tion of the converging mapping.

However, to realize the proportional reduction of an
IMBP model of N pixels into one of N/r, pixels, we have
to know which pixel belongs to which one of the ideal true
curves or ideal pseudo curves. This is precisely the task
we are trying to accomplish. There is a vicious circle
which is difficult to break in a deterministic way. Fortu-
nately, in the average sense the random sampling can
realize the task of proportional reduction. If we randomly
pick N/r, pixels of N pixels in such a way that each pixel
has equal probability to be picked, then each picked pixel
has probability p; = n,/N to be a pixel of curve c; with
length n;. On an average, when randomly sampling N/r,
times, among these picked pixels there are approximately
p{Nlry) = (n/N) (Nlry) = njr, pixels belonging to
curve c,.

The above analysis suggests that by randomly sampling
Nl/r, pixels and then using the converging mapping on
these pixels we can detect curves with a considerably
reduced complexity of computation while retaining the
higher reliability for finding maxima. This explains why
the RHT method uses the combination of random sam-
pling and converging mapping as its core ingredient. The

137

random picking of N/r, pixels first and then using them
for the converging mapping is equivalent to making N/r,
random trials and randomly sampling n pixels for the
converging mapping in each trial.

The advantages of the combined use of random sam-
pling and converging mapping discussed above are also
verified by the experimental results given in Fig. 2 and
Fig. 3. In comparison with the standard HT, Fig. 2 shows
that even in an image disturbed by very strong outlier
noise, the use of these two new mechanisms can reduce
the computation by more than a hundredfold and at the
same time make the local peaks A, B obviously sharper.’
Figure 3 shows that these advantages are still retained
when the two mechanisms are used on a more complicated
image, disturbed not only by strong outlier noise but also
by Gaussian noise and quantization errors, although the
computations spent by both the HT method and the com-
bined use of the two new mechanisms are larger than on
the image in Fig. 2a. In [2], these advantages were shown
by the experiments on two images with low noise levels.
Here Fig. 2 and Fig. 3 show that the advantages are robust
with respect to various types of random noise (outlier,
quantization errors, Gaussian noise). In Section 3.3 and
Figs. 4 and 5, we will also show that the advantages can
be further enhanced by cooperatively using the measures
of stepwise implementation and curve verification. More-
over, later in Section 4.2 the advantages will again be
shown by the application of detecting lines on a document
image with strong coherent (non-random) noise.

So, we have seen that the combined use of random
sampling and converging mapping in the RHT methods
are far beyond the well-known measure of trading off
work in parameter space for work in image space. In
Section 5, we will theoretically show that the computation
complexity of the RHT method is in fact not of the order
of O(N™) but in the average sense an order much lower
than O(N"/nl;,), Where n.;, is the length of the shortest
curve in an image. This is considerably smaller than the
O(N N"~1) complexity of the HT method and variants.

From Eq. (3c), one may find that even without the
converging mapping, some speedup could be obtained
by merely using random sampling to replace exhaustive
enumeration in the core of the conventional HT (i.e., the
combination of exhaustive enumeration, diverging map-
ping, and score accumulation). In fact, Fischler et al. [15]
proposed such a replacement. They suggested that the
computation of the conventional HT method can be
speeded up by using in parallel several machines for pick-
ing pixels randomly and then by mapping them with the
diverging mapping into the parameter space for score ac-

5 The number of flops in this and the following tests is counted by
the MATHWORK Inc.’s PROMATLAB software, by which one real
number addition or multiplication is defined as one flop.

138

XU AND OJA

L 51

FIG. 2. A comparison experiment on an image with strong outlier noise. An accumulation array of size 128 x 128 is used on a window [—2,
2] x [—2, 2] in the parameter space under the parameterization a;x + a,y = 1: (a) An image which contains two lines L, and L,; each has the
length of 100 pixels and these pixels are buried among 400 random outlier points. (b) The resulting 2D histogram by the standard HT. The maxima
A, B denote the two lines detected. The computation used 957,587 flops. (c) The resulting 2D histogram by using Random sampling and converging
mapping. The result is obtained after 400 random samplings, and the computation used 8773 flops which is 108.7 times faster than that used by
the HT. In addition, one can observe that the peaks A, B in (c) are much sharper than they are in (b). For a clarity, the displays in (b), (c) are
sampled from the real ones in such a way that every 2 x 2 bin is replaced by one bin with its score being the largest of the four. In addition, any
scores are set to zeros if they are lower than 2.5% of the maximal score in the whole accumulation array.

cumulation. Our analysis above has shown that even a
single machine with a sequential implementation can
speed up the computation. However, the use of random
sampling only, without combining it with the converging
mapping, has a limited advantage. It can only reduce the
computing complexity of the HT from O(N N7~ to O((N/
Ny N27Y. Also, it cannot share other advantages of the
RHT.

Interestingly, in their good robust method for paramet-
ric modelling—RANSAC [14], Fischler et al. did use the
combination of random sampling and converging map-
ping. The main difference between RANSAC and RHT is
that RANSAC does not use scores accumulation in the
parameter space. RANSAC is a guess-and-test method
but not a HT-like method. In addition, RANSAC is pro-
posed for modelling or curve fitting in the existence of
ouliers. Although it may also be possible to extend
RANSAC for the use of curve detection in an image, we

will show elsewhere that its computation complexity is
considerably larger than that of RHT. In addition, how
RANSAC performs for finding multiple curves in the
global optimal sense is also an interesting question to be
answered, since it has no accumulation array for globally
managing the parameter space and accumulating evi-
dence.

3.3 Further Reductions in the Computation by Using
Stepwise Procedure

Let us again consider the IMBP model. The pixels on
an ideal true curve are usually not merely on the true
curve but also possibly on other pseudo curves. Due to
the contributions of these pixels, in the accumulation
array the scores of pseudo curves may be comparable to
or may even bury the local peaks formed by short ideal
true curves. As a result, it is hard or impossible to find

RANDOMIZED HOUGH TRANSFORM

8 Fk M
a ‘ ,
o . ~:A":.u :
2t p
or 4
2b J
4} B
-6-6 -4 2 0 5 4 6 8
m‘: vfﬁ//////ljll i .
N
i
FIG. 3.

139

2k

A comparison experiment on an image distorted by Gaussian noise, quantization errors, and strong outlier noise. An accumulation

array of size 256 X 256 is used in the same window and under the same parameterization as Fig. 2: (a) In the image, there are two lines L; and
L, and each has the length of 100 pixels. Each pixel of the lines is disturbed by Gaussian noise, and the pixels are buried among 300 random outlier
points. (b) The image is obtained by quantization of that of Fig. 3a into a 256 x 256 array. The lines are reduced to 99 pixels and the outlier set
to 299 pixels, and the lines have become stair-shaped. (c) The resulting 2D histogram by the standard HT. The computation used 1,586,341 flops.
(d) The resulting 2D histogram by using random sampling and converging mapping. The result is obtained after 79,438 flops which is 19.6 times
faster than that used by the HT. Again one can observe the considerably sharpened peaks A, B in (c). The displays in (c), (d) are processed in the
way similar to those used in Fig. 2, except that here every 4 X 4 bin is replaced by one bin with its score being the largest one.

out these short ideal true curves. In [5], Risse gave an
approach for tackling the problem of HT. The idea is to
first find out one (or more) or local maxima (e.g., the
global maximum) from the accumulated array and then to
decrease the accumulated array in such a way that each
pixel on the curve specified by the detected maximum
decreases all the accumulated bins located on the hyper-
surface specified by the pixel. The effect of Risse’s ap-
proach is equivalent to using the HT on a reduced image
in which the pixels of the detected curves are removed.
Thus the contributions of all these pixels to other pseudo
curves are eliminated and the short true curves become
easy to detect. The cost of the approach is that the compu-
tation complexity is increased from N N*"'to N N"~!' +
N N"~! with N, being the total number of pixels of true
curves in the image.

Random sampling can provide the same effect as

Risse’s approach; however, now the computation cost is
not increased but can be in fact considerably decreased.
For using the HT, one can start to make a decision (i.e.,
find the local maxima in the accumulation array) only
after all the pixels in an image have been exhaustively
enumerated. In other words, the HT can only work in the
batch way, and the decision based on the accumulated
evidence from the partial pixels of an image can be totally
reversed after some more pixels are used for accumula-
tion. In contrast, the use of random sampling can allow
the decision to be made in an adaptive or incremental
way. The decision based on the evidence accumulated
during the previous trials of random sampling is gradually
enforced or improved after some more trials are made.
As a result, one can make a decision as long as the evi-
dence for detecting one (or more) of the true curves is
enough. With no need to wait until all the true curves can

140 XU AND OJA

8
C
6F
4l
2-
o-
2F
4b.
Py
6
8 — - .
e : L
d S -
ol |
2f]
4. - 1
ar 4 2 0 2 4 6 3

FIG. 4. The experiments for showing the advantage of detecting one line at one epoch: (a) The resulting 2D histogram by using Random
sampling and converging mapping on the image given in Fig. 3(b). Only after 200 random samplings with the computation of 3984 flops, the first
line is detected by the goal maximum A. (b) There are 105 pixels falling within a §-band of the line specified by the parameter given by the maximum
A, where 8 = 1 pixel. These pixels are taken out as the pixels of line L,. (c) The remaining pixels after removing the detected 105 pixels of L;.
(d) The resulting 2D histogram on the image given in Fig. 4(c). After 350 random samplings with the computation of 6943 flops, the second line
is found by the goal maximum B. (e) 94 pixels are detected as the pixels of L, because they fall within the band of 8 = 1 of the line specified by
the parameter given by the maximum B. In this experiment the total computation was 3984 + 6943 = 11,927 flops which is 6.7 times less than that
used for forming Fig. 3(b) and 133 times less than that used by the HT.

RANDOMIZED HOUGH TRANSFORM

be correctly detected, an accumulation period epoch can
be regarded as completed as long as one (or more) of the
true curves can be correctly detected. After removing
from the image all the pixels of the detected true curve
(or curves) and resetting to zero all the bins in the accumu-
lation array, we start another epoch on the reduced image
for detecting the remaining curves.

This kind of stepwise procedure can further reduce the
computation cost. One reason is that the number of ran-
dom trials needed to obtain enough evidence for detecting
all the true curves in an image is usually much larger than
the number of random trials needed to obtain enough
evidence for detecting one true curve in the image. The
other reason is that after removing from the image all the
pixels of the detected true curve, not only is the length of
a large number of pseudo curves decreased but also the
probability of a true curve being sampled at each trial is
increased, since the length of a true curve usually remains
unchanged but the total number of pixels in the image is
obviously decreased due to the removal of a detected
curve. ‘

These characteristics are also shown by the experimen-
tal results in Fig. 4. The experiments were conducted on
the image given in Fig. 3b which contains two lines under
the disturbances of strong outlier and Gaussian noise and
quantization errors. The use of the converging mapping
is combined into the above stepwise procedure for using
random sampling. The first epoch consists of 200 random
samplings. After this epoch the first line is detected by
the maximum A. The second epoch is completed after 350
random samplings with the second line found. In this
experiment, the stepwise implementation accelerates the

141

computation speedup 6.7 times in comparison with the
batch implementation of random sampling and converging
mapping, and by 133 times in comparison with the stan-
dard HT.

The key problem for implementing the above stepwise
procedure is how to decide when an epoch has been com-
pleted. The solution is to regard an epoch as further con-
sisting of one or several accumulation periods. Each accu-
mulation period is considered finished when the number
of random trials within the period reaches a given limit
kmax» and the curve (or curves) presently found are then
regarded as candidates. A test called curve verification is
made on each candidate to verify whether it is really a
true curve by Definition 1b. If not, then in the accumula-
tion array only reset to zero the bin that gives the candi-
date, and then random trials are continued for a new
accumulation period. If yes, an epoch is considered as
completed with some true curves detected, and we start
the next epoch after removing from the image all the pixels
of the detected true curve (or curves) and resetting to zero
all the bins in the accumulation array. Furthermore, an
alternative way for considering an accumulation array as
finished is to give a predefined threshold », and finish a
period if in the accumulation array there is one bin that
has reached the score n,. The appropriate values of k,,,
and n, will be further studied in Section 3.

The inclusion of curve verification will usually make the
computation more effective. As an example, Fig. 5 gives
the experimental results made on the same image as used
in the experiments of Fig. 4. The above alternative way
is used with n, = 2. As shown in Fig. 5a, the first period
is completed only after nine random trials and the resulting

FIG. 5. Further speedup by adding curve verification into the stepwise implementation of random sampling and converging mapping with
n, = 2: (a) On the image given in Fig. 3(b), the first period is completed after only nine random trials; however, the consequent verification found
less than mp, = 20 pixels within the band of § = 1 of the line specified by the parameter of the bin with scores n,. Thus the second period is
continued without fully resetting the accumulation array. The period completed the first epoch after 108 random trials, and the first line L, is
detected by the bin A with the maximal scores n,. Together, 119 random samplings used 2332 flops. (b) After removing the detected 105 pixels of
L,, Fig. 4(c) is again obtained. On this image, another period completed the second epoch after 90 random samplings with the second line being
found by the bin B with the maximal scores n,. This epoch used 1087 flops. The total computations of this experiment are 2332 + 1087 = 3419
flops which is 3.4 times less than that used in the experiments of Fig. 4, 23.2 times less than that used for forming Fig. 3(b), and 464.0 times less

than that used by the HT.

142

candidate has failed to pass the verification. The first line
is detected on the second period which spent 108 random
trials. Thus, the first epoch consists of two periods which
together spent 117 trials. In Fig. Sb, the third period (or
the second epoch) is completed after 90 trials with the
second line being found. In this experiment, the computa-
tion has been further speeded up by 3.4 times in compari-
son with that in Fig. 4, by 23.2 times in comparison with
the batch implementation of random sampling and con-
verging mapping, and by as much as 464 times in compari-
son with the standard HT.

3.4 The Advantages of Using Other Storage Types

As pointed out in the end of Section 3.1, a storage of
the accumulation array type has the feature of retaining
explicitly all the geometrical neighborhood relations be-
tween the points in the parameters spaces and is thus
suitable for satisfying the requirement of the diverging
mapping used in the standard HT method. However, the
use of this kind of accumulation array has some unfavor-
able features. First, the accumulation array can only rep-
resent a small window of parameter space; if the parame-
ters of some curves fall outside the window, they cannot
be detected. Therefore, one must appropriately predefine
such a window. However, in practice, the location and
the size of such a window is difficult to predefine unless
prior knowledge is available about the curves in an image.
Second, in order to minimize the chance for some curves
to fall outside the window, one usually has to let the
size of the window be quite large. But under a given
quantization rate, a large size of window means a large
N, which will make the computation cost N N"~! of HT
considerably high. Third, for some high resolution image
(e.g., 512 x 512 or more), one would also like to expect
the parameters of detected curves to be as accurate as
possible. In this case, one has to use high resolution on
the parameter space too, and thus the high resolution
quantization will make N, quite large even for a window of
small size. Again the computation increases considerably.

As pointed out in the end of Section 3.1, the use of the
converging mapping provides a potential possibility of
replacing the accumulation array by some other storage
type since the problem of retaining the geometrical neigh-
borhood relations between the parameter points is no
longer of key importance. The simplest way is to use a
storage P of linear list structure to replace the accumula-
tion array, with each element in the list consisting of not
only the scores received by a point in the parameter space
but also explicitly the coordinate values of the point, i.e.,
an element p € P is given by p = [param(p), score(p)].
The biggest advantage of such a replacement is that one
needs not predefine the size and the location of a window
in the parameter space. In fact, now P can accommodate
all the possible curves in an image, in other words, P

XU AND OJA

implicitly represents the infinite parameter space R".
Moreover, param(p) could be stored either using quan-
tized discrete values or the real values under any accu-
racy, thus it is possible to obtain arbitrarily high resolu-
tion in the parameter space for high resolution images
without obviously increasing the size of the storage.®
However, in the case of using the converging mapping
only, the replacement of the accumulation array by a
storage P of linear list structure is not very useful. First,
the size of P will be very large since the exhaustive enu-
meration of C?% n-tuple will put a great many elements in
P. Second, when appending a new element in P, one needs
to check whether there is already an element in P which
is the same as the new one under the given criterion. This
will require considerable searching time if the size of P
is large. Third, after each pixel in the image has been
enumerated, one can not select candidate curves by
choosing the local maxima in P since the geometrical
neighborhood relations between the parameter points are
no longer retained in P. Instead, one can only choose one
global maximal score (or the first several global maximal
scores) in P. As a result, some curves will remain unde-
tected. Although one can detect the remained curves in a
way similar to Risse’s approach discussed above, it means
a further increase of the computation complexity.
Fortunately, the above problems can be solved again
when the converging mapping is cooperatively used with
random sampling, stepwise procedure, and curve verifi-
cation. First, as shown in Section 3.3, because of random
sampling, one can at each accumulation period select one
candidate by choosing the maximum score of P in the
stepwise procedure with the computing costs not increas-
ing but decreasing. Second, the size of P can be drastically
reduced because the random sampling and stepwise pro-
cedure let each epoch only involve a very small portion
of all the possible n-tuples, instead of exhaustively enu-
merating the whole C#% combinations. For example, one
can observe from Figs. 2b, ¢ and Figs. 3c, b that the
number of the occupied bins is considerably reduced after
using random sampling in cooperation of converging
mapping. A more drastic reduction of the number of the
occupied bins can be seen from Figs. 4a, d and Figs.
5a, b due to the further combined use of the stepwise
procedure and curve verification. E.g., in Fig. 5b, there
are only less than 100 bins occupied, while the total num-
ber of bins in the accumulation array is 256 X 256 which
is 655 times larger than the occupied number, and the total

¢ E.g., for the IMBP model, the maximum size of storage P is m, + m,
for any quantization rate. However, for images with large quantization
errors, the resolution rate used in the parameter space does influence
the size of P. A low rate will give a small size because segments of
curves with small differences will be considered as only one curve and
m, + m,, becomes smaller.

RANDOMIZED HOUGH TRANSFORM

number of C}is Cj; = 123,256 which is more than 1232
times larger than the actually occupied number.

Now we are ready to replace the accumulation array by
a storage P of other types. These types have a common
point that an element p € P is given by p = [param(p),
score(p)] which explicitly stores the values of a mapped
parameter point. Different data structures (e.g., linear list,
tree structure, or Hashing table) and accessing methods
could be used according to the situations in real applica-
tions. When an image has low noise levels and small
quantization errors, one can simply let param(p) be real
values stored in a linear list, as used in [2], where we
spent only a storage size around 30 for getting a higher
parameter resolution than the standard HT which used an
accumulation array of 256 x 256 = 65,536. However, for
a noisy image especially with rather large quantization
errors, the way used in [2] is not good since the size of a
line list may increase considerably. As a result, not only
the storage is largely increased but also the search time
for accessing an element in the list becomes large. One

Initialization. Given k,,,, let all the bins in accumulation array A(i,, i, . .

10 for k = 1 to k,,, do

143

solution is to use an ordered tree or other structure for
managing an effective search. The other solutions, which
are more simple and probably better, are given in [12] and
will be briefly introduced in Section 4.1.

4. RHT ALGORITHMS AND AN APPLICATION IN
DOCUMENT PROCESSING

4.1. Several Algorithms for Implementing RHT’

(1) ALGoriTHM RHT.b. This is the basic form of
RHT, which is obtained by simply using random sampling
and converging mapping to replace the roles of exhaustive
enumeration and diverging mapping in the standard HT.
The accumulation array is still used for score accumula-
tion. In comparison with the HT, RHT.b has the advan-
tages of fast computation and more reliable location of
local maxima. As shown in Figs. 2 and 3, RHT.b s suitable
not only for low-noise images but also for images with
strong noise of various types.

., i,) be zero.

20 randomly pick a n-tuple from D;
30 do converging mapping to get its solutions a,i=1,...,r
(r = 1if only one solution; r = 0 if no solution or infinite many solutions.)
40 fori=1tordo
50 quantize a; into a coordinate index iy, iy, . . . , i,;
60 Al Gy yiy) = Al by ooy i) + 13
70 endfor
80 endfor

90 find the coordinates of all the local maxima in A;

100 for each of these maxima do

110 transform its coordinates into a real parameter vector;

120 check whether it represents a true curve by Definition 1 (b); if yes, take it as a solution;
130 endfor

(2) ALcoriTHM RHT.bsa. The only difference from
RHT.b is that it is implemented as a stepwise procedure
with curve verification conducted after each accumulation
period. The accumulation array is still used. Here, *“.bsa”’
is the combination of the first characters in the words

“basic,”’ ‘“‘stepwise,” and ‘‘accumulation array.”’
RHT.bsa has the same advantages as RHT.b, but as
shown in Figs. 4 and 5, these advantages are considerably
enhanced.

Initialization. Given Ky, , n,, kit . Let I = 0, k = 0, ku = 0, stop := false, periodend =
false, epochend = false; and let all the bins in the m-dimensional array A

be zero.
10 repeat until stop = true
12 repeat until epochend = true or stop = true
15 repeat until periodend = true
20 randomly pick a n-tuple from D;

7 If not specially indicated, the symbols and terminologies used in this
subsection have the same meanings as those in Section 2.

144 XU AND OJA
30 do converging mapping to get its solutions a;, i = 1, ... ,r
(r = 1if only one solution; r = 0 if no solution or infinite many solutions.)

40 fori=1tordo
50 quantize a; into a coordinate index i, iy, . . ., i,;;
60 Ay, by o ooy iy) = Al by ooy dy) + 1
62 if AGy, i, ..., 10, = n, then
64 let I, = [ij, by .. o 0l
66 let AGi,, &, . .., I, = 0and periodend = true;
68 endif
70 endfor
72 k=k+1;
74 if k = k,,,, then
76 find the coordinates I, = (i, i,, . . . , i,,) of the global maximum in A;
78 periodend = true
79 endif
80 endrepeat { an accumulation period is finished }.
82 transform I, into a real parameter vector a; according the quantization rate.
84 check whether a, represents a true curve by Definition 1(b); if yes, epochend = true;
90 if epochend = false then ku = ku + 1
91 if ku = ku,,,, then stop = true;
93 periodend = false and k = 0;
94 endrepeat { an epoch is completed };
95 I =1+ 1;if I = m, then stop = true;

(where m, is the total number of true curves in an image.)
96 if stop = false then ;
97 let a; as a solution; remove from D all the pixels falling in the given 8-band of ay;
100 let ku = 0, epochend = false, and all the bins in array A be zero;
102 endif

110 endrepeat { all the true curves have been detected }.

(3) OTHER ALGORITHMS. In Appendix A of this paper,
we also give three other algorithms: RHT.srl, RHT.sql,
and RHT.sqgh. RHT.srl is just our earlier version of RHT
algorithm given in [2]. RHT.srl shares with RHT.bsa two
advantages: fast computation and better reliability in max-
imum finding (i.e., candidate finding). As shown in the
experiments in [2], RHT.srl also has the advantages of
having infinite parameter space, using small storage and
having high resolution in comparison with the standard
HT. However, not as RHT.bsa, RHT.srl generally is not
well suitable for images with strong noise. The reason is
that RHT.srl stores param(p) = a; in real values. In the
case of a noisy image, the size of P will increase, which
results in the increase of both the storage and the search
time of the linear list.

RHT.sql not only retains all the advantages of RHT.srl,
but also avoids its disadvantage of being only suitable for
low-noise images, since RHT.sql also uses a linear list
as the storage (i.e., like RHT.srl) and RHT.sql stores
param(p) = a;in a quantized form (like RHT.bsa). Thus,
as RHT.bsa, RHT.sql is also suitable for images with
strong noise of various types. As a result, RHT.sql com-
bines the advantages of both RHT.srl and RHT.bsa.

RHT.sqh has the advantage that its computing time is

much less than that of RHT.sql, since the linear list is
replaced by a mixture structure of two hash tables and
one linear list. Due to the hash table, the elements in P
can be accessed much faster. However, the minimal size
of P is the size of the two fixed hash tables. In the case of
less noisy images, the minimal size may be larger than the
size of P used by RHT.sql. Thus, in such cases, RHT.sgh
may take up more storage than RHT.sql.

4.2. An Application in Document Processing:
Detecting Lines in Forms

Recently document image analysis has become a popu-
lar and growing research area, and a good survey about
the present state of this area can be found in [16]. Among
various kinds of documents, the form or table (e.g.,
checks, bills, income tax returns, and various application
forms) is an important type. During the process of auto-
matic form analysis, the detection of straight lines plays
an important role in removing the skew and extracting
form items [17]. Here, we give an example of using RHT
for detecting lines in a form image.

Figure 6 shows an image scanned from a form. The
form contains five lines which are distorted and discon-

RANDOMIZED HOUGH TRANSFORM

500+ o
- /
400 L, - '
T B
Y B ry ‘.X,’:EL/‘
300p ™ Sy —L .
‘;-/_ o ey e WA
T LA s
200+ -“"":"» Ly) g'd’x‘ﬁ :Exi
100+ 4
0 L 4 1 L "
0 100 200 300 400 500

FIG. 6. Line detection for form processing—part (1). A form is
scanned into a 512 X 512 binary image with 3826 white pixels. There
are five straight lines which are divided into several segments due to
scanning noise and quantizing errors. In addition, there are also a lot of
pixels produced by the characters and other items of the form. These
pixels act as non-random interferences for the task of line detection.

nected by sensor noises. On this form, the conventional
HT only detected out four lines. Due to the influence of
non-random noise pixels, the middle line (denoted by L,
in Fig. 6 was not detected. The local peak for this line was
not found in the accumulation array of HT since the peak
was buried by the scores contributed from noise pixels.
Here, the polar parameterization was used (see Eq. (1b)
in Section 2.2), and the 256 X 256 accumulation array was
located on the window [0,] X [0, 512V/2] which is the
conventional way of selecting the window for the polar
parameterization. It has taken very long computing times
(about 8,578,712 flops) for the conventional HT to detect
even the other four lines.

In contrast, all the five lines have been detected by
using either RHT.sql or RHT.sqh. For the sake of compar-
ing with the results of the conventional HT, here we give
the experimental results by RHT.sqh (see Appendix A for
details) as an example.

The same quantization rates as used by the HT were
used for RHT.sqh, i.e., A9 = 7/256, Ap = 512V/2/256.
The lengths of Hash Table 1 and Hash Table 2 are both
2000. The obtained results were further given in Fig. 7.
As shown in Figs. 7a and b, the first epoch is completed
by only one accumulation period with line L, in Fig. 6
detected. The epoch spends about 440 random samplings.
Then, each of the following three epochs also contains
only one accumulation period with line L,, L,, Ls detected
in sequel, and each epoch spent about 400 random sam-
plings. Finally, the line L, is detected by the fifth epoch
which consists of eight accumulation periods and it spent
more than 3000 random samplings. The detection of L, is
much harder than the other four, because after removal

145

of pixels of the other four lines, one can see from Fig. 7c
that the pixels of non-random noise take up a major por-
tion of the whole image. While the HT is not able to
find L,, RHT.sqh can still find it after verifying eight
candidates obtained by eight accumulation periods.

RHT.sqh has taken 310,122 flops for detecting the five
lines, and only about 93,600 flops for detecting the first
four lines. Thus, we see that RHT.sqh is 8,578,712/93,600
= 91.6 times (for detecting the four lines L,, Ly, L,, Ls)
or 8,578,712/310,122 = 27.7 times (with the advantage of
being able to find L) faster than the conventional HT.

Figure 7d shows the length of the dynamic linear list.
Its maximum is 26, and its average is 11. This means that
RHT.sqh has taken the storage of 2000 + 2000 + 11 =
4011 in average and 2000 + 2000 + 26 = 4026 in maxi-
mum, while the conventional HT has taken the storage of
256 X 256 = 65536, which is about 16.3 times larger than
that taken by RHT.sqh.

5. QUANTITATIVE ANALYSIS ON STOPPING
PARAMETERS AND COMPLEXITIES OF COMPUTATION

In the sequel, by using the IMBP model given by Defi-
nition 2 of Section 2.1, we make some quantitative analy-
sis on two important issues. One is how to appropriately
select the parameters k., , kit,, , and n, in the RHT algo-
rithms given in Section 4.1. We call them the stopping
parameters of these algorithms since they decide when
the implementation of a RHT algorithm should stop. The
other issue is what are the average complexities of com-
puting times and storages for each of the algorithms given
in Section 4.1.

5.1. The Generalized Bernoulli Trials and the
Implementing Process of RHT Algorithms

The generalized Bernoulli trial (GBT) is a probabilistic
event that has m + 1 possible outcomes: m different types
of “‘successes” Ty, T,, ..., T, with probabilities p,,
P2s - - -5 Py respectively, and one type of ““failure’ 7
with probability p, = 1 — (p; + p, + -+ + p,). A
sequence of identical and mutually independent GBTs
constitute a random process called the generalized Ber-
noulliprocess (GBP) which has some characteristics given
as follows:

(1) In a sequence of n GBTs, let ¢, &,, . . . , £, denote
the numbers of successes for 7, T,, . . ., T,,, respec-
tively. The joint probability distribution of &, &,, . . .,
£, is the multinomial distribution [21]

P =k, &=kyy oo €, =k,)
_ ., Pip% - - - paph “4.2)
T T kR

146 XU AND OJA
5 550 S
a b .
...... - sm
. 450}
4 - R -
£
b : 400
3 ;])
g T 3sop
£ 3 J B
5 g 300
g | g
E 250 f e
£ 2r h 200F
‘ E 150}
1 / - : . . 100 ; . .
0 1000 2000 3000 4000 5000 6000 0 2 4 6 8 10 12
the number of random samplings periods
30 . . - . .
d :
500
(o]
5
£
3m L e TN] é’
5
=
53
5
2001 1 =
100+ i
0 2 4 6 [} 10 12
0 . R . . .
0 100 200 300 400 500 periods

FIG. 7. Line detection for form processing—part (2): (a) the number of detected lines versus the used time. (b) The times spent by each
accumulation period. The first four lines were detected in the first four periods. The fifth line was detected in the twelfth period. (¢) The remaining
parts after removal of pixels of the first detected four lines. (d) The number of the used units in the dynamic linear list by each accumulation period.

The average number is 11.

for each k; = 0,1, ..., n and with constraint 27 k; =
n — k. Its univariate marginal distribution for ¢; is the
binomial distribution (21], i.e.,fori =1, ..., m,

P& = k) = Chph(1 —p)"~k, k;=0,1,...,n,
' (4.b)

with the expectation and variance being

E(¢) = np;, o*&) = np(1 — p). (4.¢)

(2) In an unlimited sequence of GBTs, let n; denote the
total number of trials which precede (and include) the
occurrence of the rth “‘success’ of type T;. Its probability
distribution satisfies the negative Binomial distribution
[21], namely

P(nl = k,) = ;\,__llp;(l - p,')ki_", ki =rr + 1, o e ey
(4.d)
with its expectation and variance being
r 2 1 - pi
EMm) = l—)—, om) =r—s—. (4.e)
i i

We can easily find that each of the simple random trials
in the implementing process of an RHT algorithm is just
a GBT since the event of ‘‘randomly picking » pixels from
D and mapping them by the converging mapping into a
p € P’’® has the probabilities p;, i = 1, ..., m, + m,,

8 I.e., one execution of lines 20 and 30 for each of the algorithms in
Section 4.1.

RANDOMIZED HOUGH TRANSFORM

of having the outcomes O,,i =1, ... ,m, + m,, respec-
tively, and p, = 1 — =%} "» p, of having the outcome 0.
The outcomes O; and O/ have the following interpreta-
tions: (1) fori = 1, ..., m,, O, means ‘‘the n pixels all
come from a true curve ¢;”’; (2) fori = m, + 1, ..., m,
m,,, O; means ‘‘the n pixels all come from a pseudo curve
¢;”’; (3) O/ means *‘the n pixels fail to be mapped into a
p € P since they are non-curve pixels.”’

The whole implementing process of a RHT algorithm
falls into one of two types of combinations of many GBTs
described above. The first type, produced only by RHT.b,
is a stationary GBP which consists of identical and mutu-
ally independent GBTs with the constant probability pa-
rameters given by

_nmp—= 1) (n,—n+1)
PiSNNZTD) - N-n<+1)

and

ml+mm

pr=1- 2} P (5.2)

The second type, produced by the other four algorithms
in Section 4.1, is more complex. It consists of a number
of connected segments of different GBPs. Each segment
corresponds to an epoch. Although each epoch may con-
sist of more than one accumulation period,” the GBTs
within one epoch belong to a same stationary GBP with
their probability parameters remaining unchanged since
no pixel will be removed out of D until a period is com-
pleted. However, after an epoch is finished, the pixels of
the present detected curve will be removed out of D. As
a result, the probability parameters are changed in the
next epoch, which thus produces a different stationary
GBP.

In an IMBP with m, true curves, there will be m, seg-
ments of different stationary GBPs in the whole imple-
menting process of an RHT algorithm. Let epoch(j) de-
note the jth GBP with its probability parameters p¥/’ and
py’ for outcomes O, and O, respectively. We have then

P =0, i=1,...,j—1,

and

° For all the algorithms in Section 4.1 except RHT.b, an epoch corre-
sponds to one execution of the loop from line 12 to line 94, and an
accumulation period corresponds to one execution of the loop from line
15 to line 80.

147

G =1, —n+1)
PEENONO =T - (NO—n+ 1)’
P=j,..,m + m,,

m—j+1 +m,

pr=1- % p

i=1

(5.b)

(5.0

where NV = N — 3/~1 n, is the total number of pixels in
D during epoch(j), with NV = N, In addition, it is as-
sumed that the true curve detected at the end of epoch(j)
is the true curve with the same index j (i.e., ¢;). This does
not lose any generality since we can re-index all the true
curves according to the order in which they are detected.

Before closing Section 5.1, we would like to give some
notes which may be useful for understanding how the
parameters in Eqgs. (5) change with j:

(1) In an IMBP, there may be some pixels which can
be considered as belonging to several curves if they are
located at the intersection points of these curves. For
facilitating later analysis, when we initially count the num-
ber n; of pixels of each curve ¢;, each intersection pixel is
included if ¢, is a pseudo curve, and is not included if ¢, is
atrue curve, although such a pixel will give some positive
contribution to the detection of the true curve. This means
that we chose the most conservative way for analysis, so
that any of the conclusions later obtained will not be
influenced by how to count the intersection pixels.

(2) After epoch(j) is finished, the removal of pixels of
the detected curve c; will not only cause a reduction of
the number of pixels in D (i.e., NV*" = NY — pn), but
also a reduction of the number of pixels of some pseudo
curves since some of the removed pixels may be the inter-
sect pixels of these curves. Thus, the actual values of
p\” for i > m, are smaller than those given by Eq. (5.b).

(3) As j increases, the probability for finding the unde-
tected true curves will increase due to the reduction of
NY. However, for pseudo curves, although the reduction
of N may also increase probabilities p¥, i = m, +
I,..., m,, the reduction of the number of intersect
pixels may decrease them. So, as the net effect they will
not be increased as much as the probabilities for the true
curves.

5.2

We start our analysis on the basic form of RHT algo-
rithm, namely RHT.b. Obviously, its storage complexity
C, is still N (i.e., the same as that spent by the HT), and
its computing time complexity C, is kp,.t,,,, Where N, is
the size (in one dimension) of the accumulation array and
t., is the average computing time for a random trial (i.e.,
one excution of lines 20 and 30). Since ¢,,, is independent
of both N, and N (i.e., the size of an image), we see that
the selection of k,,,, is here the key problem which will

Quantitative Analysis on RHT.b Algorithms

148

not only determine when to stop the algorithm but also
the time complexity C,.

To reduce C,, we naturally want k., to be as small as
possible. However, &, should be larger than some value
such that the accumulated scores of true curves are cer-
tainly greater than those of pseudo curves. Roughly
speaking, it should be possible to find such a value since
it is assumed that the length of any true curve is larger
than any pseudo curve. But what we deal with are k,,
random trials which makes the appropriate value of k
also a random variable, which can only be selected subject
to certain stochastic variations.

From Eq. (4.c), we see that for curve c; the average of
its score, score;, accumulated during &, trials is k,.p;
with p; given by Eq. (5.a). Thus, regardless of the value
of k..., the average scores of true curves will be greater
than those of pseudo curves under the assumption that
the length of any true curve is larger than any pseudo
curve. However, one should remember that this average

koaxPi 18 subject to the standard derivation
Vk,api(1 — p). That is, in a special implementation of
RHT.b, there 1s some probability that the accumulated
score of a true curve may be less than that of some pseudo
curve, which will produce some difficulty for detecting
the true curve. To reduce such kind of probability, we
need to suitably select k,,, in consideration of the stan-
dard derivation Vkq,,p(1 — p).

From probability theory, we know that score; will most
probably vary within the interval

c v kmaxpi(l - pi)’ kmaxpi
t+cV kmaxpi(l - pi)]’ (6a)

Ascore; = [kpaxPi —

where ¢ > 1 is a constant. The larger c¢ is, the more
unlikely it is that score; will fall outside Ascore;.

Since RHT.b is implemented in the batch way, it is not
difficult to see that in an IMBP model the true curve
¢t is most difficult to detect since it has the minimum
number n,,;, of pixels among all the true curves. Denote
by ¢”:,, the pseudo curve that has the maximum number
nrs,. of pixels among all the pseudo curves. Let py,, and

prs. denote the obtained probabilities by replacing n; in
Eq. (5.a) with n,;, and n,, , respectively, and let Ascore-
i and Ascore?s, denote the corresponding intervals ob-
tained by Eq. (6.a). In some conservative sense, we would
like to select k,,,, such that Ascore;, and Ascoref},, are
not overlapping; i.e.,

- pmin) > kmaxpﬁfax
+tcv kmaxp,ﬁax(l - max) (6 b)

kmax Pmin — € kmax pmin(l

and it gives

XU AND OJA

C(V;min(l - pmin) + \/I;ﬁﬂfax(] - pmax))

Vk . > :
max (Pmin — p’r)rfax)

(6.c)

Further from Eq. (5.a), by assuming that n.;, is several
times larger than n%,, , i.e., i, > knbs, with k > 1,'" we
can have approximately

71_pmin,~vC2N"

~ Nmin
kmax >c
Pmin

h
N min

(6.d)

According to the binomial distribution given in Eq.
(4.b), we know that for ¢ > 3 ~ 10 it will be very rare for
score; to fall out of Ascore;. Thus, in practice, we could
let

100) &

min

=(10~

(6.e)

max

In summary, we can conclude that:

For implementing the algorithm RHT.b, the stop-
ping parameter k., can be selected according to
Egs. (6d) and (6€). The storage complexity of RHT.b
is of the order O(N"), and it follows from Eq. (6.¢€)
that the computing time complexity is approximately
of the order O(N"/nl.), where n;, is the minimum
number of pixels of a true curve. Usually, O(N"/

nh..) is considerably smaller than O(N N{~V), the
computing time complexity of the conventional HT,
especially when the relative numbers of pixels of true
curves in an image remain constant with N.

5.3 Quantitative Analysis on RHT.bsa Algorithms

As RHT.b, the storage complexity of RHT.bsa is still
C, = N" since it also use an accumulation array. What
needs to be analyzed are its computing time comlexity C,
and how to select its stopping parameter ku.,,. In the
algorithm RHT.bsa given in Section 4.1, the implementa-
tion is stopped by either line 90 (i.e., by the stopping
parameter ku,,,) or line 95 (i.e., by externally knowing
the total number of true curves). In the sequel, we first
study its time complexity C, by assuming that the imple-
mentation is stopped by line 95 only (i.e., let ku,,,, = *).
Then, we further discuss how to stop the implementation
using Kiy .

The analysis of C, on the implementing process of
RHT.bsa is much more complex than that of RHT.b. As
indicated in Section 5.1, the process of RHT.b is just a
stationary GBP with constant probability parameters
given by Eq. (5.a), while the whole process of RHT.bsa
consists of a number of epochs with each epoch(;) being

10 This is usually true; otherwise it is not reasonable to say that one
curve is a true curve and another is a pseudo curve.

RANDOMIZED HOUGH TRANSFORM

a segment of stationary GBP with probability parameters
given by Egs. (5.b) and (5.c). Furthermore, each epoch(})
again may consist of more than one accumulation periods
(for convenience, here we use period(j, r) to denote the
rth period of epoch(j))."

Let random variables n', n"” denote the total number
of GBTs (i.e., the simple random trials) contained in ep-
och(j) and period (j, r), respectively,'? and let random
variable n{) denote the total number of accumulation peri-
ods in epoch (j). Then, on the average we have

=m2Ewm+2ﬂﬁ
(M

Jj=1
T = E(ng{;)<N -> nk> Lens
where E(.) denotes expectation, ¢,,, is the same as in Sec-
tion 5.2, and ¢, is the computing time used for checking
whether a given pixel belongs to a given curve (i.e.,
whether it falls in the 8-band of a given curve function,
see Section 2.1). Like ¢,,,, tch is independent of both N
and N,. Moreover, (N — 2,_| n)t,, is the total time
needed for checking whether a candidate curve is a true
curve under the condition that there have been already
J — 1 true curves found, and T is the total computing
time spent on verifying candidate curves for detecting the
Jth true curve c;.
It follows from Eq. (7) that the key for estimating C, is
how to estimate E(n'”) and E(n4). For clarity, in the
sequel we divide the task of estimating C, into three steps:

(1) Estimating E(n"”). For a given number k, we can
see that the event “‘n“’ = k> means “‘in the kth GBT one
of outcomes O;,i =1, . . . , m, reaches its n,th success.”
Let random variables ¢, be the scores for O;, and let &, be
a specific value of ¢;. We have

P("'Tm = k)
=3, P(kth GBT— O,)P(in past k — 1 GBTs,
&=n—landVj#i,&=n, - 1)
EZWIP,')E EP(fl— oo Eimr =k,
gl k1’§1+l =k '§m,:

S R

km,)*

""In the algorithm RHT.bsa given in Section 4.1, a period (j, r) is
considered to be completed jointly by line 66 (i.e., there is one score
reaching a given number n,) and by line 78 (i.e., the length of the period
reaches a given limit k,,). We have already discussed the selection of
kmay in Section 5.2. For simplicity, here we only consider the cases that
period (j, r) is completed solely by line 66, i.e., we let k,,,, = = in the
algorithm given in Section 4.1.

12 We sometimes also call n'/',
period (j, r), respectively.

7' the length of epoch(;) and

149

Where ““—’° means “outcomes.” Moreover, &; is fixed
(i.e., k; = n,) and the sums 2 --- X are over all k, < n,
—1 ’kll_ 1k,+]._n,—1 km,—nt
I which satlsfy the constramt Sk, + kf =k - 1.
Each term P(¢, =k, ..., & = ki_,, &=k =n,,
i =kigys oo €y = km)lS descrlbed by the Multmom-
ial Distribution, i.e., eq. (4 a). So we have the distribution
of ' as follows

m, (j)ll

P = k) = Em—n“

i=j ,

ml . (hi=1 st

ik Nk
*Pith p1+ .pl(VJl,) p.(fj)/> (8)
.a
kj! ’ kl 1 k1+l km k

(352

where the sums 2 - -+ 2 are over all ki=n, —1,...,
kiy=n, — 1,k,,=n —1,. -+ ky,, = n, — 1 which
satisfy the constraint 2, k; + kf =k — 1,and pi?, i =
J» ..., m,, are given by Eq (5.b).

Let S, denote the sum X - - - X in the big parentheses of
Eq. (8.a), and let S/ be the same sum but after removing
the constraint . k + k; =k — 1. Then, we have (k —
1 —n)!S, < (k - l = n)IS; = [1 — pV) 1= Asaresult,
we can rewrite Eq. (8.a) into

m,

W k= 1)
P = (j) t .
=k = ZJ k—1—=n)ln>
<2 G p?" (1 = pyF-1m, (8.b)
i=

The upper bound in Eq. (8.b) tends to 0 when k — <.
Thus P(n = k) — 0 when k — =; i.e., epoch(j) has
probability zero to be of infinite length. This means that
each epoch is terminable. Consisting of a finite number of
epochs, the whole RHT process then also has probability
zero to be of infinite length; in other words, the implemen-

-tation process of the RHT process is terminable.

Noting that Cj ,p"(1 — p)*~1=m in Eq. (8.b) has the
same form as that given by Eq. (4.d), we can obtam an
upper bound E(n')) = 3,_, kP(= k) < I i=; (n/pi?).
However, this bound is not so good. In the following, we
will find a tighter upper bound in a different way.

Fori=j, ..., m, let ¥ denote the total number of
trials which precede (but include) the occurrence of the
nth success of O;, and note that n' is the total number
of trials which precede (but include) the occurrence of
the n,th success of anyone of O/, i = j, ..., m,. We
then always have W) = 7\, i =j, ..., m,, or n =
Min{n{”, i = j, ..., m}. Moreover, assuming that

Enmin(j) = Min{EMm(”), i = j,..., m} and EL.(j) =
Min{Em\), i = j, ..., m}, we have

E(”f)(j)) = Emin(j),

oX(mY) < EmV) = E2. (). (9.2)

150

Since each o/ satisfies the negative binomial distribution,
from Egs. (4.d) and (4.e), we have

)2 (1-p)y nf
En") = n = + =L
pi 123

n,

E({) =0 (9.b)

Substituting them into Eq. (9.a) and letting pil, = Max

{P(/) i= 1}’ n(n{z)lx = Max{n, = m’}’ and
i Mm{n,, =1,...,m}it follows from Eq. (5b)
that
n=1 n
E(n) =t =n,H(N—1—Zn)/ﬂ(n%Lx—
Prax 1=0

n,N" n,N'

" 1 (nmm - 1) O<nm1n> (9.C)

o on, +n? N2"
200 () ! ! pA QR S
o()= <(n,+n) — 3
1 p(ﬁ : ' ' H;;OI (nmin - 1)-

max
2 NZH
~0<"’) 9.d)
p

min

(2) Estimating E(n))). After a candidate c, is found in
period (j,), if it is a true curve, then epoch()) finishes
and n) is just r; otherwise period (j, r + 1) will continue.
The key to estimate E(nY) is the probability p{ = P(c, is
atrue curve whenc,isa candidate found during epoch(})),
since the probability P(n$)) =r) is given by pir (1 —

py~! and then we can have

EnY) = 2 rP(n) =r =, p (1 — py~!

= 1/p. (10.a)

Assuming that period(j, r) is completed at its kth GBT
trial, then the probability for a particular curve c¢; being
the candidate ¢, is Cy=/ p"' (1 — pi)*~™. Thus, p}” could
be roughly approx1mated by

o Em, n—l (1)!1,(1 — p([))A n, _ 1
! 2{':".4'"717\ CZ—] p§~”"'(1 _ pt,/))k n 1+ L’
M, + iy
_ 211171 +,l I(IM,(] - pU))I\ & (lOb)
2:"" pt (] — p(/))A n,
Let p), = Max{p!”, i = m, + 1,..., m} pi =

Mm{P‘” i = j,..., m} Since for x > 0,
n(l — x)Fm s monotomcally increasing with x and

pf{,}, is usually very small, we have

XU AND OJA

Em PR (/)n (1

(HNYh—n
i= m,+l mp pm) !

P (1 = pi)* "

L<

m ,(l/p(jf — 1 g:n ()
_ mpUpa = DY (P Z)T (1)
(m, — j + D(1/pG, — 1) 1= pip
Moreover, (1 = (pll, = PiI(1 = pp) ™ = (1 -

P F = (1 + kpll) due to pi, usually being also quite
small according to Eq. (5.b), where kp{, is just the aver-
age score obtained by the shortest true curve. Thus,
kp' =< n,. Then it follows from Eq. (5.b) that

"
m p.\p mp '

L<——F—"—(1+
(m, —Jj+ l)piiqi)n/

n,)

n—1 n,
l—.[I=0(npmax - [)

=(1+n,) Mo i ,
I—[1=0 (nmin - l)

(mr _j + l)

(11.a)

where n,;, is the length of the shortest true curve, i.e.,

N = Min{n;, i = 1, ..., m}and nyp,, is the length of
the longest pseudo curve, i.€., Hymax = Max{n;, i = m, +
Loooom + m,b

Consequently from Egs. (10.a) and (10.b), we approxi-
mately have

Eni)=1+L<1

n—1
1+ n,)mm 1_[[:()(pmax [)
(m,—j+1)]’];’zo'(M — 1)
(l tn)m A —nn

where p,_,, = Mo/ Mpmax Teflects the ratio of the length of
a true curve to the length of a pseudo curve.

(3) Estimating the computing time complexity C,. Fi-
nally, by jointly putting Egs. (9.c) and (11.b) into Eq. (7),
we have

(l + nl)mp.\’ < ZI”IN”
(m, =+ Dpiy] "y

min

N”
+ tmN + 1,00 m)Nm,p s ~ 0(%"———); (12)

min

i.e.. the first term dominates the complexity because obvi-
ously it dominates the second term and we also consider
that the third term is lower than the order of the first term.

To make it more clear, divide the third term into two

RANDOMIZED HOUGH TRANSFORM

factors [z.,(In m,)mpsp,“_’;,A.][pr_”,fg;‘”]. For the first fac-

tor, m,, is bounded by (C{ — X;2; C;) which is of the
order O(N"), and p,_,, is about the same order as n,
since the length of a true curve is usually much larger than
that of a pseudo curve; thus the first factor is about the
same order as the first term in Eq. (12). For the remaining
factor, when n, = 2, usually N is much smaller than
(pi-,,)"" since n = 2 for any curve and p,_,, is about the
same order as n.,. In other words, the second factor
could only reduce the order of the first factor. Therefore,
it concludes the result given by Eq. (12).

The interesting point is that the above three-step analy-
sis has not only produced an estimate on the time com-
plexity C, for RHT.bsa, but it also indicated some hints
for appropriately selecting parameters n, and ku,,,, .

From Eq. (12), one can see that a large n, can reduce
the time complexity of the third term such that the whole
complexity is controlled by the first term. But on the
other hand, a large n, will also proportionally increase the
complexity of the first term, which suggests that n, could
not be too large. According to the above analysis, to let
the first term of Eq. (12) dominate, we can select 1, such
that N < (p,)"". Then it follows that

In N
n(In Ay, = Inngep,)”

n>1+ (13.2)

Furthermore, we know that the average length of
epoch(}) is smaller than that given by Eq. (11.b) and this
length reaches its maximum for detecting the last true
curve (i.e., j = m,). According to this, we could estimate
ku ., such that

(l + nt)mpx l_[:l:_ol(npmax - 1) H'}
(m,=j+ D\ T i =)) I
(13.b)

kit > (3 ~ 10){1 +

In summary, we can conclude:

For implementing the algorithm RHT.bsa, the
storage complexity is of the order O(N"), and it fol-
lows from Eq. (12) that the computing time complex-
ity is lower than an upper bound which is approxi-
mately of the order O(m,n,N"/n",)), and again it is
considerably smaller than the time complexity of the
conventional HT. In addition, parameters n, and
kuy., can be selected according to Egs. (13.a) and
(13.b), respectively.

In Appendix B of this paper, quantitative analyses have
also been made on the other three algorithms given in
Appendix A, i.e., RHT.srl, RHT.sql, and RHT.sqh.
Roughly speaking, the time complexity of each of these
algorithms is bounded by O(m,(n,N"/n".;,)*) which is simi-

151

lar to that of RHT.b or RHT.bsa. The storage complexity
for RHT.srl and RHT.sql is bounded by O(n,N"/n",)
which is usually considerably smaller than O(N")—the
storage complexity of RHT.b or RHT.bsa. The storage
complexity for RHT.sqh is the order of O(N,), which,
as shown in the example given in Section 4.2, is also

considerably smaller than O(N?).

6. SUMMARY

The earlier version of the randomized Hough transform
(RHT) was a heuristic curve detection approach based on
some experimental results [2]. It was proposed by the
present authors, inspired by our efforts of using learning
techniques of neural networks for curve detection [1, 20].
In this paper, the basic ideas of RHT have been further
developed into a more systematic and theoretically sup-
ported new method for curve detection. The fundamental
framework and the main components of this method have
been elaborated. The deep mechanisms behind the advan-
tages of RHT have been exposed by both theoretical anal-
ysis and experimental demonstrations. The main differ-
ences between RHT and some related techniques have
also been elucidated. In comparison with the conventional
Hough transform (HT), it has been shown that the RHT
has advantages of fast speed, small storage, infinite pa-
rameter space, and high resolution. These advantages are
due to the consistent combinations of random sampling,
converging mapping, score (or evidence) accumulation,
stepwise implementation and the appropriate selection of
accumulator structure, especially the first two of which
play key roles responsible for the effectiveness and nov-
elty of RHT.

This paper has also proposed several improved algo-
rithms for implementing RHT for the curve detection
problems in noisy images. They were tested by experi-
ments on images with strong random noise, quantization
errors as well as non-random interference pixels. The
results of these experiments as well as an application
example in document analysis have shown that the advan-
tages of RHT are quite robust under these situations.
Based on modeling the algorithms by the generalized Ber-
noulli process, they were analyzed mathematically to esti-
mate their computational complexities and to decide some
important parameters for their implementations. It was
shown that RHT can have the time and/or storage com-
plexity considerably smaller than the time and storage
complexity of HT.

Some further extensions of RHT are possible. Here, we
briefly mention two interesting ones. One is to consider
the gradient information at each pixel, when using gray
level images. This may further speed up the computations.
However, how to handle the influence of noise in estimat-
ing gradients has to be carefully studied. The other exten-

152

sion is to generalize the basic ideas of RHT to generalized
Hough transform (GHT) to obtain the GRHT method for
effectively detecting arbitrary shapes. For example, using
the transform formulae proposed by [3],

a; = x; — (y, — wpay sin (a3) + (x, — v;)ay cos (as)

a, = y; — (x, — vyay sin (a;) + (y, — wyay cos (az).

we can randomly pick a pixel (x;, y;) from the binary
picture and use each point (w;, v;) of a given arbitrary
shape to accumulate the array defined on the (a,, a,, a;,
a,) parameter space. Then we find local maxima to get
the translation, scaling, and rotation parameters of the

XU AND OJA

detected shapes. This and some improved versions of the
GRHT will be reported elsewhere.

APPENDIX A: ALGORITHMS RHT.srl, RHT.sql, AND
RHT.sqh

(1) ALcoriTHM RHT.srl. The main difference be-
tween RHT.srl and RHT.bsa lies in that in RHT.srl a
storage P of the simple line list replaces the role of the
accumulation array in RHT.bsa. A candidate a; is stored
in P as an element p € P, p = [param(p), score(p)] with
param(p) = a; being directly real values. Here, ““.srl’’ is
the combination of the first characters in words ‘‘step-
wise,”” ‘‘real values,”” and ‘‘line list.”

Initialization. Given k., n,, ku,,,. Let I = 0, k = 0, ku = 0, stop := false, periodend = false, epochend

= false; and P = null.
10 repeat until stop = true

12 repeat until epochend = true or stop = true
15 repeat until periodend = true
20 randomly pick a n-tuple from D;
30 do converging mapping to get its solutions a;,, i = 1, ..., r
(r = 1if only one solution; r = 0 if no solution or infinite many solutions.)
40 fori=1tor do
50 if there is an p € P such that its param(p) = a;
55 then
57 score(p) = score(p) + 1;
59 if score(p) = n, then
61 let a; = a; and periodend = true;
62 remove p from P;
63 endif
65 else
67 a new element [a;, 1] is added into P;
69 endelse
70 endfor
72 k=k+ 1
74 if kK = k., then
76 find among P a p such that its score(p) is the largest one;
78 let a; = param(p), periodend = true
79 endif
80 endrepeat { an accumulation period is finished }.
84 check whether a; represents a true curve by Definition 1(b); if yes, epochend = true;
90 if epochend = false then ku = ku + 1
91 if ku = ku,,,, then stop = true;
93 periodend = false and k = 0;
94 endrepeat { an epoch is completed };
95 I =1+ 1;if I = m, then stop = true;
(where m, is the total number of true curves in an image.)
96 if stop = false then
97 let a; as a solution; remove from D all the pixels falling in the given 8-band of a;
100 let ku = 0, epochend = false, and P = null;
102 endif
110 endrepeat { all the true curves have been detected }.

RANDOMIZED HOUGH TRANSFORM

(2) ALoriTHM RHT.sql. RHT.sql is obtained by
adding the following extra line into RHT .srl between lines
40 and 50:

45 let a; = round(a;/A) * A;

Where A is a given quantization rate. That is, instead of
directly storing its real values, we store the quantized
values of a;in P as param(p). Here, ‘*.sql’’ is the combina-
tion of the first characters in words ‘‘stepwise,’” ‘‘quan-
tized values,”” and ‘‘line list.”’

The key advantage of this modification is that RHT.sql
not only retains all the advantages of RHT.srl, but it also
avoids its disadvantage of being only suitable for low-
noise images. Like RHT.bsa, where 4, is stored implicitly
after being quantized into the coordinates of accumulation
array, RHT.sql also stores a; in a quantized form. Thus,
as RHT.bsa, RHT.sql is also suitable for images with
strong noise of various types. As a result, RHT.sql com-
bines the advantages of both RHT.srl and RHT .bsa.

(3) ALgoriTHM RHT.sqh. RHT.sqh has the same
pseudo program codes as RHT.sql given above except
that in RHT.sqh the structure of P is a mixture of two
hash tables and one linear list (see Fig. 8) instead of only
one simple linear list as used in RHT.sql. Here, ‘‘.sqh”™
is the combination of the first characters in words “‘step-
wise,”” ‘‘quantized values,”” and ‘‘hash table.”’

The size of both the two hash tables we used here is
N,,. The size of the linear list is dynamic. It starts from
zero and increases as some elements are stored in the list.
When line 50 is implemented, first a key derived from the
quantized a; is used to access a unit of Hash Table 1. If
the unit is unoccupied, then store this a; in it; if the unit
is occupied by a p with param(p) = a;, then let score(p)
= score(p) + 1; otherwise, another key is derived from

ai

keyl=hash1(ai/p)

r dynamic line list |

FIG. 8. The structure of P for algorithm RHT.sqh. It consists of two
hash tables of size N, and a dynamic linear list. First, Table 1 is accessed
by keyl. If it does not succeed, Table 2 is accessed by key2. If it still
does not succeed, the dynamic linear list is accessed by enumeration.

153

the first key and the quantized a; and then used to access
a unit of Hash Table 2 in the same way as accessing a unit
of Hash Table 1. If there is still no unit for accommodating
a;, then one further accesses the linear list from its first
element in the same way as used in RHT.sql. There are
several ways to design hashing functions for keys, see
[12] for details.

APPENDIX B: QUANTITATIVE ANALYSIS ON
ALGORITHMS RHT.srl, RHT.sql, AND RHT.sqh

(1) ALgoriTHM RHT.srl. Asindicated in Section4.1,
the key difference from RHT.srl to RHT.bsa lies in that
the accumulation array is replaced by a dynamic linear
list P. Due to this difference, both the storage and time
complexities of RHT.srl are also different from those of
RHT.bsa.

First, the storage complexity is no longer N, but the
length £; of the dynamic list. £; is a random variable,
hence we use E(¢;) for describing the storage complexity
in the average sense. In the implementation of RHT.srl,
we have & = 7 (as in Section 5.3, it is the length of
epoch(j)) for each epoch(}), since in the worst case each
trial of epoch(j) produces a different point in the parame-
ter space and thus needs an element of P for storing
it. Consequently, we have E(£;) = E(n") for epoch(}).
Moreover, because the list is reset to null after each epoch
finishes, for the whole implementing process it follows
from Eq. (9.¢) that

E(¢;) = Max;E(n')

Nﬂ n
< [)~o<”’N > (B1)

n
l_[]=0 (nmin

min
In addition, for an IMBP model, the maximum number of
the different points mapped in the parameter space are
m, + m,;, which also gives an upper bound for ¢, . By
combining the bound into Eq. (B1), we further have

E(¢;) <Min {m, +m,,, _H’%T)}
Nin —

=0

~ Min {O(m, +m), o<"r’f")} (B2)

N min

Second, we also need to modify the time complexity
given in Eq. (7) into

m, I",

C,= > EM)t,, + t,,) + > TY,
=1 Jj=1

J

(B3)

where ¢,,, is the average time for searching the dynamic
list P at each trial. When P is searched by the simple

154 XU AND OJA

enumeration, ¢, is about the same order of E(¢)), i.e., t,,,
~ O(E(E)t With ¢, being the computing time for
comparing two given parameter points. As a result, from
Egs. (7), (12), and (B2), we see that the time complexity
of RHT.srl will increase by a multiplying factor O(E(&;)),
and in the worst case the complexity will come up to

N" 2
¢,~o(m (%)),

(2) ALcoriTHM RHT.sql. RHT.sql is basically the
same as RHT.srl except that each parameter point is
stored after quantization to achieve tolerance for noise.
The storage and time complexities of RHT.sql are the
same as those of RHT.srl given by Eqgs. (B2) and (B4).

(3) ALcoriTHM RHT.sqh. The use of hash tables for
replacing the linear list as P is the key feature of RHT.sqh.
For an appropriately designed hashing function, the aver-
age search time ¢,,, used in hash tables is a constant and
independent of the size of hash tables (e.g., see [18, 19]).
Thus the disadvantage of RHT.srl and RHT.sql caused
by t,,, has been avoided, and the computing time complex-
ity is no longer given by Eq. (B4), but again given by Eq.
(12); i.e., it is the same as that of RHT.bsa. The storage
complexity of RHT.sqh is also different from that given
by Eq. (B2). When the length N, of hash tables in Fig. 6
is appropriately selected, its storage complexity is approx-
imately 2N, ; i.e., the order of O(N,), which, as shown in
the example given in Section 4.2, is usually considerably
smaller than N7 .

We can observe that RHT.sqh has combined the advan-
tage of RHT.bsa on the time complexity and the advantage
of RHT.srl and RHT.sql on the storage complexity. This
favorable feature makes RHT.sqh preferable in applica-
tions having constraints on both time and storage com-
plexities.

(B4)

ACKNOWLEDGMENTS

The authors thank Mr. Pekka Kultanen, Dept. Information Technol-
ogy, Lappeenranta University of Technology, for discussions on the
early versions of the RHT method, and Mr. Xinming Yu, Dept. Com-
puter Science, Concordia University, for suggesting the possibility of
using a hash table to replace the linear list as the storage structure P.
The authors also thank the reviewers’ comments which inspired many
improvements on the earlier manuscript of this paper.

REFERENCES

1. L. Xu and E. Oja, Extended Self-Organizing Map for Curve Detec-
tion, Research Report No. 16, Dept. of Information Technology,
Lappeenranta University of Technology, Sept. 1989.

2. L. Xu, E. Oja, and P. Kultanen, A new curve detection methods:
Randomized Hough transform (RHT), Pattern Recognit. Lett. 11(5),
1990, 331-338.

3. I. lllingworth and J. Kittler, A survey of the Hough transform,
Comput. Vision Graphics Image Process. 43, 1988, 221-238.

4. J. Illingworth and J. Kittler, The adaptive Hough transform, /EEE
Trans. Pattern Anal. Mach. Intell. 9, 1987, 690-698.

5. T. Risse, Hough transformation for line recognition: Complexity
of evidence accumulation and cluster detection, Comput. Vision
Graphics Image Process. 46, 1989, 327-345.

6. P. V. C. Hough, Method and Means for Recognizing Complex
Patterns, U.S. Patent 3069654, Dec. 18, 1962.

7. A. Rosenfeld, Picture Processing by Computer, Academic Press,
New York, 1969.

8. R. O. Duda and P. E. Hart, Use of the Hough transform to detect
lines and curves in pictures, Comm. Assoc. Comput. Mach. 15(1),
1972, 11-15.

9. C.D. Kimme, D. H. Ballard, and J. Sklansky, Finding circles by an
array of accumulators, Comm. Assoc. Comput. Mach. 18(2), 1975,
120-122.

10. P. M. Merlin and D. J. Farber, A parallel mechanism for detecting
curves in pictures, IEEE Trans. Comput. C-24, 1975, 96-98.

11. D. H. Ballard, Generalizing the Hough transform to detect arbitrary
shapes, Pattern Recognit. 13(2), 1981, 111-122.

12. L. Xu et al., Improved RHT Algorithms for Detecting Curves in
Noisy Images, Technical Report, Dept. of Computer Science, Con-
cordia University, March 1991.

13. S. Tsuji and F. Matsumoto, Detection of elliptic and linear edges by
searching two parameter spaces, in Proceedings of 5th IJCAI, Vol.
2, 1977, pp. 700-705.

14. M. A. Fischler and R. C. Bolles, Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography, Comm. Assoc. Comput. Mach. 24, 1981,
381-395.

1S. M. A. Fischler and O. Firschein, Parallel guessing: A strategy for
high-speed computation, Pattern Recognit. 20, 1987, 257-263.

16. S.N. Srihari, Document image understanding, in Proceedings, IEEE
Comp. Soc. Fall Joint Computer Conf., 1986, pp. 87-96.

17. S. C. Hinds et al., A document skew detection method using run-
length encoding and the Hough transform, in Proceedings, 10th
ICPR, Vol. 1, 1990, pp. 464-468.

18. E. Horowitz and S. Sahni, Fundamentals of Data Structures, Pit-
man, New York/London 1976.

19. D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting
and Searching, Addison-Wesley, Reading, MA, 1973.

20. L. Xu, E. Oja, and C. Y. Suen, Modified Hebbian learning for curve
and surface fitting, Neural Networks 5, 1992, 393-409.

21. M. Dwass, Probability and Statistics, Chap. 6, Benjamin, New
York, 1970.

22. W. E. L. Grimson and D. P. Huttenlocher, On the sensitivity of
the Hough transform for object recognition, IEEE Trans. Pattern
Recognit. Mach. Intell. PAMI-12, 1990, 255-274.

23. W. E. L. Grimson, Object Recognition by Computer: The Role
of Geometric Constraints, Chap. 11, MIT Press, Cambridge, MA,
1990.

~)

