
2002 Special Issue

BYY harmony learning, structural RPCL,

and topological self-organizing on mixture modelsq

Lei Xu*

Department of Computer Science and Engineering, Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China

Abstract

The Bayesian Ying-Yang (BYY) harmony learning acts as a general statistical learning framework, featured by not only new

regularization techniques for parameter learning but also a new mechanism that implements model selection either automatically during

parameter learning or via a new class of model selection criteria used after parameter learning. In this paper, further advances on BYY

harmony learning by considering modular inner representations are presented in three parts. One consists of results on unsupervised mixture

models, ranging from Gaussian mixture based Mean Square Error (MSE) clustering, elliptic clustering, subspace clustering to NonGaussian

mixture based clustering not only with each cluster represented via either Bernoulli–Gaussian mixtures or independent real factor models,

but also with independent component analysis implicitly made on each cluster. The second consists of results on supervised mixture-of-

experts (ME) models, including Gaussian ME, Radial Basis Function nets, and Kernel regressions. The third consists of two strategies for

extending the above structural mixtures into self-organized topological maps. All these advances are introduced with details on three issues,

namely, (a) adaptive learning algorithms, especially elliptic, subspace, and structural rival penalized competitive learning algorithms, with

model selection made automatically during learning; (b) model selection criteria for being used after parameter learning, and (c) how these

learning algorithms and criteria are obtained from typical special cases of BYY harmony learning. q 2002 Elsevier Science Ltd. All rights

reserved.

Keywords: BYY system; Harmony learning; Normalization; Data-smoothing; Model selection; Clustering; Elliptic and structural RPCL; Gaussian mixture;

NonGaussain mixture; ICA; Factor analysis; LMSER; Topological map; Mixture-of-experts; RBF net; Kernel regression

1. Introduction

Statistical learning is a process that an intelligent system

estimates or learns the underlying distribution together with

dependence structures among the world X it observes. Such

a learning consists of two key subtasks. First, we need an

appropriate structure for the intelligent system to accom-

modate the dependence structures among the world X:

Second, based on a set {xt}
N
t¼1 of samples from the world X;

we need to decide not only an appropriate scale for this

structure but also all the unknown parameters in this

structure.

Though the observation world in reality may have

various complicated dependence structures, our attention

can be focused on certain simplified specific structures in

performing different learning tasks. Moreover, we can also

decompose a complicated task into a number of tasks on

much simplified small worlds. A number of typical

structures have been reviewed and discussed recently (Xu,

2002b). Among them, a widely used structure is finite

mixture that consists a finite number of individual models

such that an observation x comes from a specific individual

model qðxl‘Þ with a prior probability a‘ (McLachlan &

Basford, 1988; Redner & Walker, 1984). Particularly, it

becomes the widely used Gaussian mixture when qðxl‘Þ is

simply a Gaussian. Moreover, finite mixture has also been

extended to supervised learning. Typical examples include

the popular mixture expert (ME) model (Jacobs, Jordan,

Nowlan, & Hinton, 1991; Jordan & Jacobs, 1994; Jordan &

Xu, 1995) and its alternative model (Xu, 1998a; Xu, Jordan,

& Hinton, 1995) as well as the normalized radial basis

function (RBF) nets (Moody & Darken, 1989; Nowlan,

1990; Xu, 1998a; Xu, Krzyzak, & Yuille, 1994).

The task of learning on a finite mixture is usually made

via Maximum Likelihood (ML) that can be effectively

implemented by the Expectation–Maximization (EM)

algorithm (Dempster, Laird, & Rubin, 1977; Redner &

Walker, 1984). The ML learning works well on a large size

set {xt}
N
t¼1 of samples. However, a key challenge to all the

learning tasks is that learning is usually made on a finite size

N of samples but our ambition is to get the underlying

0893-6080/02/$ - see front matter q 2002 Elsevier Science Ltd. All rights reserved.

PII: S0 89 3 -6 08 0 (0 2) 00 0 84 -9

Neural Networks 15 (2002) 1125–1151

www.elsevier.com/locate/neunet

q The work described in this paper was fully supported by a grant from

the Research Grant Council of the Hong Kong SAR (Project No.:

CUHK4336/02E).
* Tel.: þ852-2609-8423; fax: þ852-2603-5024.

E-mail address: lxu@cse.cuhk.edu.hk (L. Xu).

http://www.elsevier.com/locate/neunet

distribution such that we can apply it to all or as many as

possible new coming samples from X: That is, we expect

that a learned system has its generalization ability as good as

possible.

In past decades, many efforts have been made towards

this critical challenge. On one hand, a number of model

selection criteria have been developed to evaluate a family

of structures with different scales such that a best one is

selected. Typical examples include the VC dimension based

learning theory (Vapnik, 1995), AIC (Akaike, 1974) as well

as its extensions (Bozdogan, 1987; Bozdogan & Ramirez,

1988; Cavanaugh, 1997; Sugiura, 1978), cross-validation

(Rivals & Personnaz, 1999; Stone, 1974, 1978). On the

other hand, a number of theories for regularization have

been proposed to impose constraints on parameters in a

given structure of a large scale such that it becomes

effectively equivalent to reducing the scale of the structure

to an appropriate level. Typical examples include Tikhonov-

type regularization theory (Girosi, Jones, & Poggio, 1995;

Tikhonov & Arsenin, 1977), Bayesian theory (Schwarz,

1978; Neath & Cavanaugh, 1997; Mackey, 1992), the

Minimum Message Length (MML) theory (Wallace &

Boulton, 1968; Wallace & Dowe, 1999), and the Minimum

Description Length (MDL) theory (Hinton & Zemel, 1994;

Rissanen, 1986, 1999).

Firstly proposed in 1995 (Xu, 1995; Xu, 1996) and

systematically developed in past years, the BYY harmony

learning acts as a general statistical learning framework not

only for understanding several existing typical learning

models, but also for tackling the above key challenge with a

new learning mechanism that makes model selection

implemented either in parallel automatically during para-

meter learning or subsequently after parameter learning via

a new class of model selection criteria obtained from this

mechanism. Also, this BYY harmony learning has moti-

vated three types of regularization, namely a data smoothing

technique that provides a new solution on the hyper-

parameter in a Tikinov-like regularization (Tikhonov &

Arsenin, 1977), a normalization with a new conscience de-

learning mechanism that closely relates to the Rival

Penalized Competitive Learning (RPCL) (Xu, Krzyzak, &

Oja, 1993), and a structural regularization by imposing

certain structural constraints via designing a specific

forward structure in a BYY system.

Specifically, the BYY harmony learning in different

specific cases results in various specific learning algorithms

as well as the detailed forms for implementing regulariz-

ation and model selection, covering three main statistical

learning paradigms.

First, new results are obtained on several major

unsupervised learning tasks, including: (a) new criteria for

selecting the number of clusters in the k-means clustering

and its various extensions that base on Gaussian mixture,

together with adaptive EM-like algorithms (Xu, 1997,

2001b); (b) an adaptive algorithm for Gaussian factor

analysis and a criterion for determining the dimension of

principal subspace (Xu, 1998b); (c) a learned parametric

model for Independent Component Analysis (ICA) that

works on sources mixed with super-Gaussian and sub-

Gaussian (Xu, Cheung, & Amari, 1998); (d) adaptive

algorithms for independent binary factor analysis and

independent real factor analysis (or noisy ICA), together

with the corresponding criteria for the number of indepen-

dent factors (Xu, 1998b, 2000, 2001a); as well as (e) several

extensions of LMSER learning and the corresponding

criteria for the number of hidden units (Xu, 1993, 1998b,

2000, 2001a).

Second, we obtain not only new understanding on three

major supervised learning models, namely three layer

forward net with back-propagation learning, Mixture-of-

Experts (ME) model (Jacobs et al., 1991; Jordan & Jacobs,

1994; Jordan & Xu, 1995) and its alternative model (Xu,

1998a; Xu et al., 1995), as well as normalized RBF nets

(Moody & Darken, 1989; Nowlan, 1990; Xu et al., 1994)

and its extensions (Xu, 1998a), but also new adaptive

algorithms for learning and new criteria for deciding the

number of hidden units, experts, and basis functions (Xu,

1998a, 2001b).

Third, the BYY harmony learning has also been extended

to act as a general state space approach for modeling data

that has temporal relationship among samples, which

provides not only a unified point of view on Kalman filter,

Hidden Markov model (HMM), ICA and Blind Source

Separation (BSS) with extensions, but also several new

results such as higher order HMM, independent HMM for

binary BSS, temporal ICA and temporal factor analysis for

noisy real BSS, with adaptive algorithms for implemen-

tation and criteria for selecting the number of states or

sources (Xu, 2000).

In this paper, further advances on the BYY harmony

learning are obtained by considering modular inner

representations, which leads to mixture models with

different structures. Specifically, we start at Gaussian

mixture and Gaussian ME in Section 3, including not only

unsupervised tasks of Mean Square Error (MSE) clustering,

elliptic clustering, subspace clustering but also supervised

tasks of Gaussian ME, RBF nets, and Kernel regressions.

Not only previous results are reviewed from a unified

perspective, but also elliptic RPCL and structural RPCL

algorithms are presented as special cases of the BYY

harmony learning. Model selection on both the number of

clusters and the dimensions of subspaces is made either

automatically during learning or alternatively by the

corresponding criteria obtained from the BYY harmony

principle.

Then, Section 4 further goes beyond Gaussians with new

results from three aspects. First, a nonGaussian structural

RPCL clustering is made via Bernoulli–Gaussian mixtures,

with the number of clusters and the polyhedral structure

of each cluster determined either automatically during

learning or after learning by a given criterion. Moreover, a

local LMSER is obtained for not only acting as a fast

L. Xu / Neural Networks 15 (2002) 1125–11511126

implementation of such a structural clustering but also

implementing a competitive Principal ICA (P-ICA) on these

clusters. Second, all the results are further extended to

clusters of nonGaussian represented via independent real

factor models. Third, typical algorithms for ICA and

competitive ICA are summarized from the perspective of

the BYY harmony learning on a F-architecture, in

comparison with P-ICA as well as competitive P-ICA.

Finally, before concluding in Section 6, two strategies

are discussed in Section 5 such that the above structural

mixtures are extended into self-organized topological maps

for tasks of both supervised learning and unsupervised

learning.

2. BYY system and harmony learning

2.1. BYY system, harmony learning, and regularization

techniques

2.1.1. BYY system and harmony principle

As shown in Fig. 1(a), we consider a world X with each

object in observation represented by a stochastic notation

x [X: Corresponding to each x; there is an inner

representation y [Y in the representation domain Y of a

learning system. We consider the joint distribution of x; y;

which can be understood from two complement

perspectives.

On one hand, we can interpret that each x is generated (or

reconstructed/decoded) from an invisible inner represen-

tation y; that may in a form of symbol, integral, binary code,

and real vectors according to the natures of learning tasks,

via a backward path distribution qðxlyÞ or a generative

model by

qðxÞ ¼
ð

qðxlyÞqðyÞdy: ð1Þ

That is, x is generated from an inner distribution qðyÞ in a

structure that is designed according to the learning tasks.

On the other hand, we can interpret that each x is mapped

(or encoded/recognized) into an invisible inner represen-

tation y via a forward path distribution pðylxÞ or a

representative model by

pðyÞ ¼
ð

pðylxÞpðxÞdx; ð2Þ

which matches the inner density qðyÞ in a pre-specified

structure.

The two perspectives reflect the two types of Bayesian

decomposition of the joint density qðxlyÞqðyÞ ¼ qðx; yÞ ¼

pðx; yÞ ¼ pðxÞpðylxÞ on X £ Y : Without any constraints, the

two decompositions should be theoretically identical.

However, in a real consideration, the four components

pðylxÞ; pðxÞ; qðxlyÞ; qðyÞ should be subject to certain

structural constraints. Thus, we usually have two different

but complementary Bayesian representations:

pðx; yÞ ¼ pðylxÞpðxÞ; qðx; yÞ ¼ qðxlyÞqðyÞ; ð3Þ

which, as discussed in the original paper (Xu, 1996),

compliments to the famous Chinese ancient Ying-Yang

philosophy with pðx; yÞ called Yang machine that consists

of the observation space (or called Yang space) by pðxÞ and

the forward pathway (or called Yang pathway) by pðylxÞ;
and with qðx; yÞ called Ying machine that consists of the

invisible state space (or Ying space) by qðyÞ and the Ying

(or backward) pathway by qðxlyÞ: Such a pair of Ying-Yang

models is called Bayesian Ying-Yang (BYY) system.

The task of learning on a BYY system consists of

specifying all the aspects of the system.

First, on a set {xt}
N
t¼1 of samples from the observed world

X; the distribution pðxÞ can be obtained by a nonparametric

Parzen window PDF estimate (Devroye, Györfi, & Lugosi,

1996):

phx
ðxÞ ¼

1

N

XN
t¼1

G
�
xlxt; h

2
xI
�
; ð4Þ

where and throughout this paper, Gðxlm;SÞ denotes a

Gaussian density with mean vector m and covariance matrix

S: Particularly, when hx ¼ 0; phx
ðxÞ becomes the empirical

density:

p0ðxÞ ¼
1

N

XN
t¼1

dðx 2 xtÞ;

dðuÞ ¼
lim

dVu!0
1=dVu; for u ¼ 0;

0; otherwise;

8<
:

ð5Þ

where dVu is the infinitesimal volume at u ¼ 0 in the space

of u. This dðuÞ is usually referred as the Kronecker function.

Fig. 1. Bayesian Ying-Yang system and three architectures.

L. Xu / Neural Networks 15 (2002) 1125–1151 1127

Second, we need to design the structure of each of other

three components pðylxÞ; qðxlyÞ; qðyÞ:

Specifically, the structure of qðyÞ depends on the

considered learning tasks, which is closely related to the

complexity of the world X that we observe. In this paper, we

consider a modular world X ¼ {X;L} that consists of a

number of individual objects to observe, with L denoting a

set of labels and each ‘ [L denoting an object. In this case,

each x ¼ {x; ‘} contains a feature vector x ¼ ½xð1Þ;…; xðdÞ�T

observed from the object ‘; subject to a joint underlying

distribution pðxÞ ¼ pðx;‘Þ: Correspondingly, we consider a

representation domain Y ¼ {Y ;L}; subject to a parametric

structure of pðyÞ ¼ pðy;‘Þ that describes the vector y and the

label ‘ jointly. This pðyÞ is specified by three ingredients.

One is a set k that consists of the scales k, {m‘} of the

representation domain Y; where k is the number of labels in

L, and m‘ is the dimension of either a binary or real vector y.

The other ingredient is the function form of pðyÞ which is

usually pre-specified according to a specific learning task.

Another ingredient consists of a set uy of parameters in this

given function form.

Moreover, we need to design the structures of pðylxÞ;
qðxlyÞ that specify the mapping capacity of x ! y and y ! x;

respectively. Each of the two can be either parametric or

structure free. We say pðulvÞ is structural free in the sense

that pðulvÞ can be any function that satisfies
Ð

pðulvÞ ¼ 1;

pðulvÞ $ 0: A structure-free distribution is actually specified

via learning. Given its function form, a parametric

pðulv; uulvÞ is featured by a set uulv of unknown parameters.

Coordinately, the nature of a BYY system is featured by

the structure of qðyÞ for describing the representation

domain Y; and the architecture of a BYY system is featured

by a combination of the specific structures of pðylxÞ; qðxlyÞ:
Discarding a useless architecture that both pðylxÞ; qðxlyÞ are

structure-free, a meaningful BYY architecture can be one of

the three choices given in Fig. 1(b) namely, the B-, F-, and

BI-architecture.

In a narrow sense, our learning task includes two subtasks.

One is parameter learning for determining the value of u that

consists of all the unknown parameters in pðylxÞ; qðxlyÞ; qðyÞ

as well as hx (if any). The other subtask is selecting the

representation scales k ¼ {k; {m‘}}; which is called model

selection since a collection of specific BYY systems with

different such scales corresponds to a family of specific models

that share a same system configuration but in different scales.

The fundamental learning principle is to make the Ying

machine and Yang machine be best harmony in a twofold

sense:

† The difference between the two Bayesian representations

in Eq. (3) should be minimized.

† The resulting BYY system should be of the least

complexity.

2.1.2. Kullback divergence, harmony measure, and

regularization techniques

To implement the above harmony learning principle, we

need to formalize it mathematically. One possible measure is

the well known Kullback divergence

DKðpkqÞ ¼
ð

pðuÞln
pðuÞ

qðuÞ
du $ 0;

with DKðpkqÞ ¼ 0; iff pðuÞ ¼ qðuÞ;

ð6Þ

which is applicable to both the cases that p, q are discrete and

continuous densities. The minimization of Kullback diver-

gence does implement the above first point well, and thus this

is why it has been used in the early stage of the BYY system

(Xu, 1996, 1997, 1998b). However, it is not able to implement

the least complexity nature. In other words, the Kullback

divergence can only be used for a partial implementation. We

need a measure that implements both of the above two points.

We consider the following cross-entropy

HðpkqÞ ¼
XN
t¼1

pt ln qt; ð7Þ

where both pðuÞ; qðuÞ are discrete densities in the form

qðuÞ ¼
XN
t¼1

qtdðu 2 utÞ;
XN
t¼1

qt ¼ 1: ð8Þ

The maximization of HðpkqÞ has two interesting natures:

† Matching nature with p fixed, maxq HðpkqÞ pushes q

towards

qt ¼ pt; for all t: ð9Þ

† Least complexity nature maxp HðpkqÞwith q fixed pushes p

towards its simplest form

pðuÞ ¼ dðu 2 utÞ; or pt ¼ �dt;t; with t ¼ arg max
t

qt;

ð10Þ

where and throughout this paper, �dj; jp denotes

�dj; jp ¼
1; j ¼ jp;

0; otherwise:

(
ð11Þ

As discussed in Xu (2001a), Eq. (10) is a kind of the least

complexity from the statistical perspective. In other words, the

maximization of the functional HðpkqÞ indeed implements the

above harmony learning principle mathematically.

Moreover, as shown in Xu (2001a), either a discrete or

continuous density qðuÞ can be represented in the form of

Eq. (8) via the following normalization:

q̂t ¼ qðutÞ=zq; zq ¼
XN
t¼1

qðutÞ ð12Þ

based on a given set {ut}
N
t¼1 of samples.

Putting Eq. (12) into Eq. (7), it follows that we can

L. Xu / Neural Networks 15 (2002) 1125–11511128

further get a general form of the harmony measure (Xu,

2001a):

HðpkqÞ ¼
ð

pðuÞln qðuÞdu 2 ln zq; ð13Þ

which degenerates to Eq. (7) when qðuÞ; pðuÞ are discrete as

in Eq. (8). Particularly, when pðuÞ is given by its empirical

density in the form of Eq. (5), a crude approximation zq ¼ 1

will make HðpkqÞ become the likelihood

LðuÞ ¼
XN
t¼1

ln qðutÞ: ð14Þ

That is, the harmony learning and the ML learning are

equivalent in this case.

We further consider Eq. (13) with the normalization

term zq in Eq. (12). It follows from pðuÞ given by Eq. (5)

and qðuÞ by Eq. (12) with u in the place of x that

HðpkqÞ ¼ LðuÞ2 ln
XN
t¼1

qðutÞ: ð15Þ

By comparing the gradients:

7uLðuÞ ¼ GdðgtÞlgt¼1=N ;

7uHðpkqÞ ¼ GdðgtÞlgt¼ð1=NÞ2~qðut luÞ;

GdðgtÞ ¼
X

t

gt7u ln qðutluÞ;

~qðutluÞ ¼ qðutluÞ=
X
t

qðutluÞ;

ð16Þ

we see that the log-normalization term ln zq causes a

conscience de-learning made on the ML learning, which

is thus referred as normalization learning, in a sense that

the degree of de-learning on learning ut is proportional to

the likelihood that qðuluÞ fits ut: That is, more better it is

fitted, more conscience it makes during learning, which

actually provides a new regularization technique that

prevents qðuluÞ to over-fit a data set of a finite size.

Alternatively, considering pðuÞ given by a Parzen

window estimate Eq. (4) with u in the place of x, we can

also approximate zq under a weak constraint
PN

t¼1 pðutÞ <PN
t¼1 qðutÞ; and thus leads to a regularized learning as shown

by Eqs. (28) and (33) in (Xu, 2001a). That is, Eq. (13)

becomes

HðpkqÞ ¼ ~LSðuhÞ þ 0:5k ln
�
2ph2

�
þ ln N 2 JHðh; kÞ;

JHðh; kÞ ¼ ln

"XN
t¼1

XN
t¼1

exp

2 0:5

kut 2 utk
2

h2

!#
;

~LSðuhÞ ¼
ð

phðuÞln qðuÞdu < LðuÞ þ 0:5h2pq;

pq ¼
1

N

X
t

Tr

"
›2 ln qðuluÞ
›u ›uT

#
u¼ut

:

ð17Þ

~LSðuhÞ regularizes the ML learning by smoothing each

likelihood ln qðutÞ in the near-neighbor of ut; which is

referred as data smoothing. It can also be observed that the

role h2 is equivalent to the hyper-parameter in Tikhonov-

type regularization (Bishop, 1995). What is new here is that

the other terms in HðpkqÞ balance ~LSðuhÞ such that an

appropriate h can be learned together with u.

We return to the Kullback divergence equation (6). When

both pðuÞ; qðuÞ are discrete densities in the form of Eq. (8),

from Eq. (6) we can directly get

DKðpkqÞ ¼
XN
t¼1

pt ln
pt

qt

¼ 2Ep 2 HðpkqÞ;

Ep ¼ 2
XN
t¼1

pt ln pt:

ð18Þ

In help of the form in Eq. (12) for both p, q, similar to Eq.

(13) we can get

DKðpkqÞ ¼
XN
t¼1

pðutÞ

zp

ln
pðutÞ=zp

qðutÞ=zq

<
ð

pðuÞln
pðuÞ=zp

qðuÞ=zq

du;

or

DKðpkqÞ ¼ 2HðpkqÞ2 Ep; Ep ¼ 2
ð

pðuÞln pðuÞdu þ ln zp:

ð19Þ

Obviously, DKðpkqÞ returns back to Eq. (6) when zq ¼ zp or

we can at least approximately have zq ¼ zp.

Moreover, we have two observations. First, Eq. (6) is

directly applicable to the cases that both pðuÞ; qðuÞ are

discrete densities and that both pðuÞ; qðuÞ are continuous

densities. Second, min DKðpkqÞ is different from

max HðpkqÞ in that it also maximizes the entropy Ep of

pðuÞ; which prevents pðuÞ towards the form by Eq. (10). This

explains why Eq. (18) does not have the least complexity

nature.

However, Eq. (6) is not directly applicable to the cases

that pðuÞ contains d densities. Thus, we cannot assume with

pðuÞ ¼ p0ðuÞ given by the empirical estimate Eq. (5) and

qðuÞ by a continuous parametric model, since it will involve

an infinite term ln duð0Þ that makes min DKðpkqÞ mean-

ingless, where and throughout the paper, we denote duð0Þ ¼

dðuÞlu¼0:

In contrast, it follows from pðutÞ=zp ¼ 1=N that DKðpkqÞ
in Eq. (19) becomes

DKðpkqÞ ¼ 2HðpkqÞ þ ln N; ð20Þ

with HðpkqÞ given by Eq. (15). In this case, min DKðpkqÞ
becomes equivalent to max HðpkqÞ in its normalization

implementation or equivalently the regularized ML learn-

ing. Moreover, considering zq ¼ 1; we will again lead to the

ML learning Eq. (14).

Generally, it follows from Eqs. (18) and (19) that

min DKðpkqÞ and max HðpkqÞ become equivalent when Ep is

L. Xu / Neural Networks 15 (2002) 1125–1151 1129

a constant that does not relate to learning, which happens in

the following typical situations:

(a) pðuÞ ¼ dðu 2 upÞ with up unknown. In this case, Ep ¼

0 and thus up is decided via learning with up ¼

arg maxu qðuÞ:

(b) pðuÞ is completely known and thus Ep is a fixed

constant, e.g., the above discussed pðuÞ ¼ p0ðuÞ by Eq.

(5) is such a case.

(c) Either pðuÞ ¼ Gðulup; h2IÞ with up known but h2 . 0

unknown or pðuÞ given by a Parzen window estimate

Eq. (4). In this case, considering zp ¼ zq approxi-

mately, we can rewrite DKðpkqÞ into

DKðpkqÞ ¼
ð

pðuÞln qðuÞdu 2 ZqðhÞ;

ZqðhÞ ¼ 2
ð

pðuÞln pðuÞdu;

ð21Þ

which has a same format as in Eq. (13), with ZqðhÞ

taking a similar role as ln zq: It further leads to the same

form as in Eq. (17) when pðuÞ is given by Eq. (4),

except that the term JHðh; kÞ is replaced by

JKðh; kÞ ¼
1

N

XN
t¼1

ln
XN
t¼1

exp 20:5
kut 2 utk

2

h2

 !" #
; ð22Þ

it can be observed that the difference JHðh; kÞ2

JKðh; kÞ approaches zero when h is small enough. So,

acting as two types of the regularized ML, learning by

the harmony principle and Kullback principle are not

exactly the same but becomes approximately equiva-

lent when the smoothing parameter h is small enough.

(d) A combination of all or any two of the above items (a),

(b) and (c).

The fact that maxu

Ð
p0ðuÞln qðuÞdu leads to the ML

learning is well known in the literature. The above discussed

relations between min DKðpkqÞ and max HðpkqÞ are not

surprising too. What is new here is that a general zq

introduces a regularization to the ML learning via either a

de-learning or a Tikhonov-type. But there is no need to

make model selection since pðuÞ is usually fixed by either

Eqs. (4) or (5). This explains why the least complexity

nature Eq. (10) is regarded as being useless in the

conventional literature. In the sequel, however, we will

show that this nature does make model selection possible in

learning on the BYY system.

2.1.3. BYY harmony learning

By putting pðuÞ ¼ pðx; yÞ ¼ pðylxÞpðxÞ; qðuÞ ¼ qðx; yÞ ¼

qðxlyÞqðyÞ into Eq. (13), we have

HðpkqÞ ¼
ð

pðylxÞpðxÞln½qðxlyÞqðyÞ�dx dy 2 ln zq; ð23Þ

where only pðxÞ is fixed at a nonparametric estimate by Eqs.

(4) or (5), but pðylxÞ is not. In this case, the least complexity

nature by Eq. (10) will push pðylxÞ into its least complexity

during learning, e.g. in a B-architecture, pðylxÞ is free and

thus determined by maxpðylxÞ HðpkqÞ; resulting in

pðylxÞ ¼ dðy 2 ŷÞ; ŷ ¼ arg max
y

½qðxlyÞqðyÞ� ð24Þ

In turn, the matching nature of harmony learning will further

push qðxlyÞ and qðyÞ towards their corresponding least

complexity forms. In a BI-architecture, the learning will

similarly push pðylxÞ into its least complexity form, e.g.

pðylxÞ ¼ dðy 2 f ðx;WylxÞÞ (Xu, 2001a), where f ðx;WylxÞ is a

deterministic forward mapping.

This salient feature can be further understood from

an information transfer perspective. As discussed (Xu,

2002a), the BYY harmony learning shares the common

sprit of the MML (Wallace & Boulton, 1968; Wallace

& Dowe, 1999) or the MDL (Hinton & Zemel, 1994;

Rissanen, 1986, 1999), but with two key differences.

First, the BYY harmony learning maps x to y and then

code y for transmission while the MML/MDL approach

uses a model pðxluÞ to directly code x: Second, the

BYY harmony learning uses ln z21
q to avoid the

implementing difficulty of the MML/MDL approach on

requiring a known prior density pðuÞ for encoding

parameter set u:

Mathematically, the implementation of the harmony

learning is the following optimization

max
u;k

Hðu; kÞ; Hðu; kÞ ¼ HðpkqÞ; ð25Þ

which is a combined task of continuous optimization for

parameter learning and discrete optimization for model

selection, both under a same cost function Hðu;kÞ:

In literature, existing model selection criteria are only

used for selecting models after parameter learning, but not

applicable to parameter learning. Instead, parameter learn-

ing has to be made under a different criterion, usually under

the ML criterion. However, it is well known that ML is not

good on model selection, especially for a small size of

training samples.

Of course, problem (25) can also be implemented in such

a two-phase style as follows:

† In the first phase, we enumerate k ¼ {k; {m‘}} from

small values incrementally. At each specific k, {m‘}; we

perform parameter learning for a best value up by

max
u

HðuÞ; HðuÞ ¼ Hðu;kÞ: ð26Þ

For simplicity, we can make Eq. (26) under the following

L. Xu / Neural Networks 15 (2002) 1125–11511130

constraint

a‘ ¼ 1=k;
ð
ðy 2 my;‘Þðy 2 my;‘Þ

Tqðyl‘Þdy ¼ b0I;

my;‘ ¼
ð

yqðyl‘Þdy: ð27Þ

where b0 . 0 is a given constant. For example, b0 ¼

0:25 when y comes from Bernoulli and b0 ¼ 1 when y

comes from Gaussian.

† In the second phase, with the result up obtained from Eq.

(26), we select a best kp; {mp
‘} by

min
k; m‘f g

Jðk; {m‘}Þ; Jðk; {m‘}Þ ¼ 2Hðup; kÞ: ð28Þ

If there are more than one solutions so that Jðk; {m‘}Þ gets a

same minimum, we take the one with the smallest value on

k. If still more than one solutions, we take ones with smallest

values of {m‘}:

Being different from the conventional approaches,

Eqs. (26) and (28) share the same cost function. This

feature makes it possible to simultaneously implement

parameter learning and model selection in parallel.

Actually, the least complexity nature equation (10)

makes us possible to implement parameter learning with

automatic model selection, e.g. in a B-architecture, Eq.

(10) will lead to Eq. (24) that makes not only the

integrals over y disappear but also u take a specific

value such that k ¼ {k; {m‘}} are effectively reduced to

appropriate scales.

To get a further insight, we consider

qðyÞ ¼ qðy; ‘Þ ¼ qðyl‘Þqð‘Þ;

qð‘Þ ¼
Xk

j¼1

adð‘2 jÞ; a‘ $ 0;
Xk

‘¼1

a‘ ¼ 1:
ð29Þ

It is obvious that a‘ ¼ 0 for some ‘ implies that k is reduced

by one. Also, we observe that the form of

qðyl‘Þ ¼ d
�
yðjÞ 2 c0

�
qðy2l‘Þ;

with y ¼ ½y2; yðjÞ�T and c0 being a constant; ð30Þ

implies that the dimension for yðjÞ can be removed and thus

m‘ is reduced by one. Therefore, a value of u with these two

types of settings is equivalent to forcing k; {m‘} effectively

to be reduced to appropriate scales.

With Eq. (24) put into Eq. (23), we can further observe

that the on-line implementation of max HðpkqÞ is equivalent

to maximizing ln qðxly;‘Þ; ln qðyl‘Þ and ln a‘: Specifically,

maximizing ln a‘ leads to that

each extra a‘ is pushed towards zero: ð31Þ

and maximizing ln qðyl‘Þ leads to that

qðyðjÞl‘Þ on each extra dimension is pushed towards

d
�
yðjÞ 2 c0

�
:

ð32Þ

Therefore, fixing the scales of k large enough, we

implement Eq. (26) with the least complexity nature by

Eq. (10) automatically implying model selection during

learning.

The detailed implementation depends on the detailed

forms of HðpkqÞ that are different for different architectures

of a BYY system.

2.2. Three typical architectures

2.2.1. B-architecture

It consists of a Ying machine qðx; yÞ ¼ pðy;‘lxÞpðxÞ and

a Yang machine qðx; yÞ ¼ qðxly;‘Þqðyl‘Þqð‘Þ: The feature is

that pðylxÞ ¼ pðy;‘lxÞ ¼ pðylx;‘Þpð‘lxÞ is structure-free

and thus indirectly specified via learning in help of the

structures of qðyl‘Þ; qð‘Þ and qðxly; ‘Þ:
From the harmony learning Eq. (25), we find that Eq.

(24) takes the following detailed form

pðylx; ‘Þ ¼ dðy 2 y‘ðxÞÞ; pð‘lxÞ ¼ dð‘2 ‘ðxÞÞ;

y‘ðxÞ ¼ arg min
y

dð‘; x; yÞ;

‘ðxÞ ¼ arg min
‘

dð‘; x; y‘ðxÞÞ;

dð‘; x; yÞ ¼ 2ln½qðxly;‘Þqðyl‘Þqð‘Þ� þ ln zq:

ð33Þ

Further substituting it into Eq. (23) with pðxÞ given by Eq.

(4) we get

HðpkqÞ ¼
1

N

XN
t¼1

X
‘

ptð‘ÞHðxt; yt;‘Þ2 ln zq; yt;‘ ¼ y‘ðxtÞ;

ptð‘Þ ¼ �d‘;‘t
; ‘t ¼ ‘ðxtÞ: ð34Þ

Specifically, with pðxÞ ¼ p0ðxÞ given by Eq. (5), it is similar

to Eq. (15) that Hðxt; yt;‘Þ and zq have the following detailed

form

Hðxt; yt;‘Þ ¼ ln½qðxtlyt;‘Þqðyt;‘l‘Þqð‘Þ�;

zq ¼ zN
q ¼

X
t;‘[Lt

qðxtlyt;‘;‘Þqðyt;‘l‘Þqð‘Þ;
ð35Þ

with the normalization term zq introducing a de-learning,

which is hereafter referred as normalization learning.

Particularly, this regularization disappears by setting zq ¼

1; which is referred as empirical learning.

Usually, Lt takes a set in the following four typical

L. Xu / Neural Networks 15 (2002) 1125–1151 1131

choices:

Actually, choices (a), (b), and (c) are, respectively, equal

to the special cases of choice (d) with nt ¼ 1; 2; k;

respectively.

Moreover, with pðxÞ ¼ phx
ðxÞ by Eq. (4) and a

mild assumption that
P

t;‘[Lt
qðxtlyt;‘;‘Þqðyt;‘l‘Þqð‘Þ ¼P

t;‘[Lt
phx

ðxtÞqðyt;‘l‘Þqð‘Þ; it is similar to Eq. (17) that

Hðxt; yt;‘Þ and zq have the following detailed form

Hðxt; yt;‘Þ ¼
ð

G
�
xlxt; h

2
xI
�
ln½qðxlyt;‘; ‘Þqðyt;‘l‘Þqð‘Þ�dx

< ln½qðxtlyt;‘Þqðyt;‘l‘Þqð‘Þ� þ 0:5h2
x Tr

�
Px

xly;‘
�
;

zq ¼ zhN
x
¼

X
t;‘[Lt

phx
ðxtÞqðyt;‘l‘Þqð‘Þ;

Px
xly;‘ ¼

›2 ln qðxly;‘Þ
›x›xT

: ð37Þ

In general, the Hessian matrix Px
xly;‘ maybe a function of

either or both of x, y. In the rest of this paper, we consider a

typical case that

qðxly; ‘Þ ¼ GðxlA‘y þ c‘;S‘Þ; and thus Px
xly;‘ ¼ 2S21

‘ :

ð38Þ

It follows from Eqs. (33), (35) and (37) that zq in

miny dð‘; x; yÞ and min‘ dð‘; x; y‘ðxÞÞ has no actual effect

on a particular outcome of the minimization, since zq does

not vary with ‘; x; y: However, keeping ln zq as a part of

dð‘; x; yÞ is conceptually useful. Since qð‘Þ is a d density and

either or both of qðxly;‘Þ; qðyl‘Þ may be d density, the first

term of dð‘; x; yÞ will contain an infinite term 2ln dð0Þ:

Correspondingly, ln zq will also contain a term ln dð0Þ to

cancel the infinite term.

Based on Eqs. (34), (35) and (37), the harmony parameter

learning equation (26) can be implemented by an adaptive

algorithm as shown Table 1, which can be used for

implementing either parameter learning with automatic

model selection via Step 3 or only parameter learning by

skipping Step 3 with model selection made after learning by

Eq. (28). Also, instead of Step 6, we can alternatively let hx

start at an initial value and then gradually reduce to zero, in

analog to the procedure of simulated annealing (Kirkpatrick,

Gelatt, & Vecchi, 1983).

2.2.2. BI-architecture

In implementing the learning by Table 1, the task of

getting yt;‘ ¼ y‘ðxtÞ by Eq. (33) is still quite compu-

tational expensive since it is an optimization problem

that should be made as each sample xt comes. This

problem, together with the problem of local minimum

by Eq. (24), can be solved by considering pðy;‘lxÞ ¼
pðylx;‘Þpð‘lxÞ in an appropriate parametric structure.

Several typical cases are discussed as follows.

(a) Deterministic pðylx;‘Þ model. A structure

pðylx;‘Þ; that shares the least complexity nature of

Eq. (24) but is easy to compute yt for each xt; is a

deterministic model

pðylx;‘Þ ¼ dðy 2 y‘ðxÞÞ; y‘ðxÞ ¼ f‘ðxluylx;‘Þ: ð39Þ

Substituting it in Eq. (23), with pð‘lxÞ being structure-

free, we can get the rest of Eq. (33) again.

Thus, we have HðpkqÞ in the same format as in Eqs. (34),

(35) and (37), except two modifications in Table 1. First,

yt;‘ ¼ y‘ðxtÞ is now given by Eq. (39). Second, the

parameter uylx;‘ should also be updated, for which Step

5(c) of Table 1 is modified into:

Step 5ðcÞ : tnew ¼ told þ 1;

unew
ylx;‘ ¼ uold

ylx;‘ þ gt;‘7uylx;‘
½ln qðylðxtÞl‘Þþ ln qðxtlylðxtÞ;‘Þ�;

subject to ylðxtÞ ¼ f‘ðxluylx;‘t
Þ: ð40Þ

(b) Noisy pðylx; ‘Þ model. The deterministic equation

(39) does solving the problem of computing integrals

because of the direct mapping y‘ðxÞ ¼ f‘ðxluylx;‘Þ: But it

has no consideration on regularizing the WTA compe-

tition Eq. (24). When y is from a continuous density, it

is similar to Eq. (4) that another measure for regulariz-

ing the WTA competition would be

pðylx;‘Þ ¼ G
�
yly‘ðxÞ; h

2
yI
�
; y‘ðxÞ ¼ f‘ðxluylx;‘Þ; ð41Þ

with h2
y acting as another smoothing parameter. In this

Lt ¼

a unique ‘t ¼ ‘ðxtÞ or equivalently ‘t ¼ arg min
‘

dð‘; xt; yt;‘Þ; ðaÞ;

‘t and ‘
r
t ¼ arg min

‘–‘t

dð‘; xt; yt;‘Þ; ðbÞ;

{1; 2;…; k}; ðcÞ;

nt values of ‘ that correspond the first nt smallest values of dð‘; xt; yt;‘Þ; ðdÞ:

ð36Þ

8>>>>>><
>>>>>>:

L. Xu / Neural Networks 15 (2002) 1125–11511132

Table 1

An adaptive learning procedure for B-architecture

Set zqðtÞ ¼ 0; a‘ ¼ 1=k; t ¼ 1: uyl‘ denotes parameters in qðyl‘Þ: Also qðxly; ‘Þ ¼ GðxlA‘y þ c‘;S‘Þ

Step 1 yt;‘ ¼ y‘ðxtÞ and ‘t ¼ ‘ðxtÞ by Eq. (33), et;‘ ¼ xt 2 A‘yt;‘ 2 c‘

Step 2

zqðtÞ ¼ zqðt 2 1Þ þ

X
‘[Lt

Gðet;‘l0;S‘Þqðyt;‘l‘Þa‘; ðaÞ for normalization learning;

X
‘[Lt

phx
ðxtÞqðyt;‘l‘Þa‘; ðbÞ for data smoothing learning

8>>><
>>>:

ptð‘Þ ¼ �d‘;‘t
; gt;‘ ¼ g0

ptð‘Þ

t
2 Iðl [LtÞg

d
t;‘

� �

Ið‘ [LtÞ ¼
1 for ‘ [Lt;

0; otherwise

(
gd

t;‘ ¼

Gðet;‘l0;S‘Þqðyt;‘l‘Þa‘

zqðtÞ
; ðaÞ for normalization learning;

phx
ðxtÞqðyt;‘l‘Þa‘

zqðtÞ
; ðbÞ for data smoothing learning;

0; ðcÞ for empirical learning

8>>>>>><
>>>>>>:

Note g0 . 0 is a constant step size that may be different for updating different sets of parameters.

Step 3 Skip this step for the two-phase style implementation, otherwise update.

anew
‘ ¼

e ~anew
‘

Xk

j¼1

e ~anew
j

; ~a
new
‘ ¼ ~a

old
‘ þ gt;‘

1 2 aold
‘ ; ‘ ¼ ‘t;

2aold
‘ otherwise

8<
:

If anew
‘ ! 0; we discard the corresponding cluster ‘ according to Eq. (31).

Step 4 unew
yl‘ ¼ uold

yl‘ þ gt;‘7uyl‘
ln qðyt;‘l‘Þ

(which is subject to the constraint Eq. (27) for the two-phase style implementation)

Step 5(a) cnew
‘ ¼ cold

‘ þ gt;‘et;‘; Anew
‘ ¼ Aold

‘ þ gt;‘et;‘yT
t;‘; et;‘ is given in Step 1:

Step 5(b) Snew
‘ ¼ Snew

‘ Snew T
‘ ; Snew

‘ ¼ Sold
‘ þ gt;‘Gold

S‘
Sold
‘ ; GS‘

¼ S21
‘

�
et;‘eT

t;‘ þ h2
x I
�
S21

‘ 2 S21
‘

Step 5(c) tnew ¼ told þ 1

Note (a) The updating direction for A‘; c‘ comes from the gradient direction multiplied by a positive definite matrix S‘:

(b) The updating on S‘ guarantees that it keeps a positive definite matrix even for the case gt;‘ , 0

Step 6 Set hx ¼ 0; unless for data-smoothing learning, we update hnew
x ¼ hold

x þ g0gxðhxÞ

gxðhxÞ ¼
d

hx

2 hxp
x new
q 2

dh2 new
x;0

h3
x

; with px
q ¼

Xk

‘¼1

a‘Tr
�
S21

‘

�

h2
x;0 ¼

1

d

X
t;t0

pt;t0 kxt 2 xt0 k
2
; pt;t0 ¼

X
‘[Lt

exp 20:5
kxt 2 xt0 k

2

h2
x

 !
qðyt;‘l‘Þqð‘Þ

zqðtÞ

L. Xu / Neural Networks 15 (2002) 1125–1151 1133

lxu
Pencil

lxu
Pencil

lxu
Line

case, Hðxt; yt;‘Þ in Eq. (37) should be modified into

Hðxt; yt;‘Þ < ln½qðxtlyt;‘; ‘Þqðyt;‘l‘Þqð‘Þ� þ 0:5h2
x Tr

�
Px

xly;‘
�

þ 0:5h2
y Tr

�
P

y

xly;‘ þP
y
y;‘

�
;

P
y

xly;‘ ¼
›2ln qðxly;‘Þ

›y›yT
¼ 2AT

‘S
21
‘ A‘;

P
y
y;‘ ¼

›2ln qðyl‘Þ
›y›yT

;

zq ¼ zp ¼
X

t;‘[Lt

phx
ðxtÞG

�
yt;‘lyt;‘; h

2
yI
�
qð‘Þ

¼
X

t

phx
ðxtÞ

X
t;‘[Lt

qð‘Þ�
2ph2

y

�0:5m‘
: ð42Þ

That is, we got an extra term 0:5h2
y Tr½P

y

xly;‘ þP
y
y;‘� and

have a new zq:

With Eq. (42) taking the place of Eq. (37), Table 1

should be modified as described in Table 2. Again,

instead of Step 6, we can alternatively let hx; hy starting

at an initial value and then gradually reducing to zero in

analog to the simulated annealing procedure.

(c) Bayesian pð‘lxÞ model. Instead of being free

and then decided by Eq. (33), pð‘lxÞ can be alter-

natively a parametric structure in the following

Bayesian inverse

pð‘lxtÞ ¼
Xk

j¼1

ptð jÞdð‘2 jÞ;

ptð‘Þ ¼
qðxtlyt;‘;‘Þqðyt;‘l‘Þa‘X
‘

qðxtlyt;‘;‘Þqðyt;‘l‘Þa‘

:

ð43Þ

Again, we have HðpkqÞ in the same format as in

Eqs. (34), (35) and (37), and we can still implement

learning as in Table 1. The only exception is that ptð‘Þ

is now given by Eq. (43) such that the WTA

competition on ‘t is now relaxed into the soft

weighting by this ptð‘Þ:

2.2.3. F-architecture

Instead of modeling how xt is generated by an

appropriate model in either a B-architecture or a BI-

architecture, the task of a F-architecture is mapping

xt to a pre-specified representation form with the

scales k ¼ {{m‘}; k} fixed. Thus, model selection is

no longer needed, and we only consider parameter

learning.

Putting pðxÞ ¼ p0ðxÞ and pðylx; ‘Þ given by Eq. (39) into

Eq. (23), we get

Hðp; qÞ ¼
1

N

XN
t¼1

X
‘

ð
dðy 2 f‘ðxtluylx;‘ÞÞptð‘Þ

 ln½qðxtly; ‘Þqðyl‘Þa‘�dy2ln zq

¼
ðX

‘

pðy; ‘Þ
XN
t¼1

dðy 2 f‘ðxtluylx;‘ÞÞ
ptð‘Þ

N
=pðy;‘Þ

 ln½qðxtly; ‘Þqðyl‘Þa‘�dy 2 ln zq: ð44Þ

When zq is irrelevant to qðxtly;‘Þ; making max Hðp; qÞ with

Table 2

Modifications on adaptive learning procedure for BI-architecture

Table 1 is implemented with the following modifications:

(a) Step 2 is simplified into gt;‘ ¼ g0ðptð‘Þ=tÞ

(b) In Step 5(a), update Anew
‘ ¼ Aold

‘ þ gt;‘ðet;‘yT
t;‘ 2 Aold

‘ Þ

In Step 5(b), GS‘
is given by GS‘

¼ S21
‘ ½et;‘eT

t;‘ þ h2
xI þ h2

yAT
‘A‘�S

21
‘ 2 S21

‘

(c) Step 5(c) is modified consisting of tnew ¼ told þ 1 and unew
ylx;‘ ¼ uold

ylx;‘ þ gt;‘7uylx;‘
½ln qðy‘ðxtÞl‘Þ þ ln qðxtly‘ðxtÞ;‘Þ þ 0:5h2

yTr½P
y
y;‘��; subject to y‘ðxtÞ ¼

f‘t
ðxluylx;‘t

Þ

(d) Step 6 is replaced by hnew
x ¼ hold

x þ g0gxðhxÞ; gxðhxÞ ¼ ðd=hxÞ2 hxp
x new
q 2 ðdh2 new

x;0 =h3
xÞ

px
q ¼

Xk

‘¼1

a‘Tr
�
S21

‘

�
; h2

x;0 ¼
1

d

X
t;t0

pt;t0 kxt 2 xt0 k
2
; pt;t0 ¼

exp

�
2 0:5

kxt 2 xt0 k
2

h2
x

� X
‘[Lt

qð‘Þ�
2ph2

y

�m‘

zq

hnew
y ¼ hold

y þ g0gyðhyÞ; gyðhyÞ ¼ 2hyp
y new
q 2

X
t;‘[Lt

phx
ðxtÞ

m‘qð‘Þ�
2ph2

y

�m‘

hyzq

; py
q ¼

Xk

‘¼1

a‘Tr
�
AT

‘S
21
‘ A‘

�

L. Xu / Neural Networks 15 (2002) 1125–11511134

respect to qðxtly;‘Þ results in

qðxtly;‘Þ ¼ dðy 2 f‘ðxtluylx;‘ÞÞ
ptð‘Þ

N
=pðy; ‘Þ;

pðy;‘Þ ¼
1

N

XN
t¼1

dðy 2 f‘ðxtluylx;‘ÞÞptð‘Þ;

Hðp; qÞ ¼ �Hðp; qÞ þ D 2 H‘ 2 ln zq 2 ln N;

H‘ ¼ 2
1

N

XN
t¼1

X
‘

ptð‘Þln ptð‘Þ;

�Hðp; qÞ ¼
ðX

‘

pðy;‘Þln
qðyl‘Þa‘

pðy; ‘Þ
dy

¼
1

N

XN
t¼1

X
‘

ptð‘Þ
ð
dðy

2 f‘ðxtluylx;‘ÞÞln
qðyl‘Þa‘

pðyl‘Þlpð‘Þ
dy;

D ¼
1

N

XN
t¼1

X
‘

ð
dðy 2 f‘ðxtluylx;‘ÞÞptð‘Þln dðy

2 f‘ðxtluylx;‘ÞÞdy

¼ ln dyð0Þ: ð45Þ

Where we have pðy; ‘Þ ¼ pðyl‘Þpð‘Þ with

pð‘Þ ¼
ð

pðy; ‘Þdy ¼
X

j

bjdð‘2 jÞ; b‘ ¼
1

N

XN
t¼1

ptð‘Þ

ð46Þ

and pðyl‘Þ ¼ pðy;‘Þ=pð‘Þ: More concisely, by definition we

also have pðyl‘Þ ¼
Ð
dðy 2 f‘ðxluylx;‘ÞÞp0ðxÞdx ¼ ð1=NÞ
PN

t¼1 ptðyl‘Þ and ptðyl‘Þ ¼ limhx!0

Ð
dðy 2 f‘ðxluylx;‘Þ

Gðxlxt; h
2
xIÞdx: In other words, ptðyl‘Þ can be regarded as

obtained from limhx!0 Gðxlxt; h
2
xIÞ via a mapping y ¼

f‘ðxluylx;‘Þ in a neighbor of each xt: Approximately, we

consider the linear part y 2 yt;‘ ¼ W‘ðxtÞðx 2 xtÞ of the

mapping with

W‘ðxÞ ¼
›f‘ðxluylx;‘Þ

›xT
; yt;‘ ¼ f‘ðxtluylx;‘Þ: ð47Þ

Thus, we get that y comes from a Gaussian ptðyl‘Þ ¼
limhx!0 Gðylyt;‘;W‘ðxtÞW

T
‘ ðxtÞh

2
xIÞ and

pðyl‘Þ ¼ lim
hx!0

1

N

XN
t¼1

G
�
ylyt;‘;W‘ðxtÞW

T
‘ ðxtÞh

2
xI
�
: ð48Þ

Also, when yt;‘ ¼ f‘ðxtluylx;‘Þ is one-to-one for t ¼ 1;…;N;

it follows from y0 ¼ ½W‘ðxtÞW
T
‘ ðxtÞ�

20:5y that

pðyt;‘l‘Þ ¼ lim
hx!0

G
�
y0t;‘ly0t;‘; h2

xI
�

NjW‘ðxtÞW
T
‘ ðxtÞj

0:5
¼

dyð0Þ

NjW‘ðxtÞW
T
‘ ðxtÞj

0:5
:

ð49Þ

Putting Eqs. (48) and (49) into �Hðp; qÞ in Eq. (45), we get

�Hðp; qÞ ¼
1

N

XN
t¼1

X
‘

ptð‘Þf0:5 lnjW‘ðxtÞW
T
‘ ðxtÞj þ ln qðyt;‘l‘Þg

2 ln dyð0Þ þ ln N 2
X
‘

b‘ ln
b‘

a‘

;

Hðp; qÞ ¼
1

N

XN
t¼1

X
‘

ptð‘Þf0:5 lnjW‘ðxtÞW
T
‘ ðxtÞj þ ln qðyt;‘l‘Þg

þ
1

N

XN
t¼1

X
‘

ptð‘Þln ptð‘Þ2
X
‘

b‘ ln
b‘

a‘

2 ln zq: ð50Þ

When zq is irrelevant to qð‘Þ; making max Hðp; qÞ with

respect to a‘ and ptð‘Þ, we have

Instead of the above WTA competition on ‘t; ptð‘Þ can also

be given by the Bayesian inverse as follows

ptð‘Þ ¼
jW‘ðxtÞW

T
‘ ðxtÞj

0:5qðyt;‘l‘ÞP
‘jW‘ðxtÞW

T
‘ ðxtÞj

0:5qðyt;‘l‘Þ
: ð52Þ

In addition to Eq. (51), we can also get an alternative

formulation via simply setting qðxly;‘Þ ¼ p0ðxÞ such that

the harmony learning equation (23) in normalization

a‘ ¼ b‘ ¼
1

N

XN
t¼1

ptð‘Þ; ptð‘Þ ¼ �d‘;‘t
; ‘t ¼ arg max

‘

�
jW‘ðxtÞW

T
‘ ðxtÞj

0:5qðyt;‘l‘Þ
�
;

Hðp; qÞ ¼
1

N

XN
t¼1

X
‘

ptð‘Þln
�
jW‘ðxtÞW

T
‘ ðxtÞj

0:5qðyt;‘l‘Þ
�
2 ln zq;

zq ¼

8><
>:

1; for empirical learning;X
t;‘[Lt

jW‘ðxtÞW
T
‘ ðxtÞj

0:5qðyt;‘l‘Þ; for normalization learning: ð51Þ

L. Xu / Neural Networks 15 (2002) 1125–1151 1135

implementation leads to

max Hðp; qÞ;

Hðp; qÞ ¼
1

N

XN
t¼1

X
‘

ptð‘Þln½qðyt;‘l‘Þa‘�2 ln zq;

ptð‘Þ ¼ �d‘;‘t
; ‘t ¼ arg max

‘
½qðyt;‘l‘Þa‘�;

zq ¼
XN
t¼1

X
‘[Lt

qðyt;‘l‘Þa‘:

ð53Þ

Here, we cannot simply set zq ¼ 1 otherwise Hðp; qÞ can be

arbitrarily large by rescaling the components of yt;‘ ¼

f‘ðxtluylx;‘Þ when y is real. With zq given in Eq. (53), a

rescaling effect of the first term of Hðp; qÞ is balanced by

the corresponding rescaling effect of 2ln zq such that the

value of Hðp; qÞ remains invariant to a rescaling of y.

However, we can set zq ¼ 1 by making max Hðp; qÞ subject

to the following constraint

yt;‘ has a unit variance on each of its components:

Finally, instead of the WTA competition in Eq. (53), ptð‘Þ

can again be given by the Bayesian inverse equation (43). In

this case, it is simplified into

ptð‘Þ ¼ qðyt;‘l‘Þa‘=
X
‘

qðyt;‘l‘Þa‘: ð55Þ

2.3. Least divergence versus best harmony

2.3.1. Best harmony vs. least Kullback divergence

Putting pðuÞ ¼ pðylx;‘Þpð‘lxÞpðxÞ; qðuÞ ¼ qðxly; ‘Þqðyl‘Þ
qð‘Þ into Eq. (6), we have

min
u

DKðuÞ;

DKðuÞ ¼ DKðpkqÞ

¼
X
‘

ð
pðylx;‘Þpð‘lxÞpðxÞln

pðylx;‘Þpð‘lxÞpðxÞ
qðxly; ‘Þqðyl‘Þqð‘Þ

dx dy:

ð56Þ

As discussed in Section 2.1.2, the relation between

min DKðpkqÞ and max HðpkqÞ closely depends on the

structure of the Yang machine pðuÞ ¼ pðylx;‘Þpð‘lxÞpðxÞ;
which further depends on the combination of the structure of

each of pðylx;‘Þ; pð‘lxÞ; and pðxÞ: Specifically, min DKðpkqÞ
and max HðpkqÞ become equivalent or very close on special

situations that are featured by the following structures of

pðylx; ‘Þ; pð‘lxÞ; and pðxÞ :

† Similar to the combination of cases (a) and (b) discussed

at the end of Section 2.1.2, we have Ep ¼

2
Ð

pðuÞln pðuÞdu þ ln zp ¼ ln N; when pðxÞ ¼ p0ðxÞ by

Eq. (5), pðylx;‘Þ by Eq. (39), and pð‘lxÞ ¼ dð‘2 ‘tÞ

with unknown ‘t: In this case, we get Eq. (20) again. That

is, min DKðpkqÞ becomes equivalent to max HðpkqÞ:
† With pðxÞ ¼ phx

ðxÞ by Eq. (4) in the above case, we

encounter a combination of cases (a), (b), and (c) as

discussed at the end of Section 2.1.2 and get Eq. (21)

with

ZqðhÞ ¼ 2
ð

phx
ðxÞln phx

ðxÞdx

¼ 0:5 ln h2
x

2
1

N

XN
t¼1

ln
XN
t¼1

exp 20:5
kxt 2 xtk

2

h2
x

 !" #
: ð57Þ

Moreover, if pðylx;‘Þ is also replaced by Eq. (41), we

encounter another combination of cases (a), (b), and (c) and

get Eq. (21) again but with

ZqðhÞ ¼ 2
X
‘

ð
pðylx;‘Þpð‘lxÞpðxÞln pðylx; ‘Þdx dy

2
ð

phx
ðxÞln phx

ðxÞdx

¼ 0:5 ln
�
2ph2

y

� X
‘

m‘

!
þ 0:5 ln h2

x

2
1

N

XN
t¼1

ln

"XN
t¼1

exp

2 0:5

kxt 2 xtk
2

h2
x

!#
: ð58Þ

In both the cases, min DKðpkqÞ and max HðpkqÞ are very

close, with ZqðhÞ taking a similar role as ln zq:

The above discussed situation should not be a surprise to

us because the design of Eq. (39) or (41) has already

enforced the least complexity nature equation (24) of the

harmony learning.

However, such types of equivalence do not apply

generally. Recalling the previous discussion made after

Eq. (6), the minimization of the Kullback divergence does

have the matching nature by Eq. (9) but have not the least

complexity nature by Eq. (10). In order to have both the

natures, we can combine the use of minimizing the Kullback

divergence for parameter learning and the use of maximiz-

ing the harmony measure for model selection. That is, we

implement learning in a two-phase style that consists of

making parameter learning by Eq. (56) and model selection

by Eq. (28).

Further insights can be obtained on a B-architecture with

pðxÞ given by the empirical density equation (5). Making

min DKðuÞ with respect to a structure free pðy; ‘lxÞ results in

L. Xu / Neural Networks 15 (2002) 1125–11511136

pðy;‘lxÞ ¼
qðxly; ‘Þqðyl‘Þa‘X

‘

ð
qðxly; ‘Þqðyl‘Þa‘dy

; ð59Þ

which, instead of the WTA-d density in Eq. (33), can

compensate the local minimum effect due to the WTA

competition by Eq. (24). This acts as a regularization to its

counterpart harmony parameter learning.

Substituting Eq. (59) in Eq. (56), it follows that

min DKðpkqÞ becomes equivalent to the ML learning on

the marginal density in Eq. (1). Even on a Bi-architecture

with pðylx; ‘Þ given by Eq. (39) but pð‘lxÞ being free,

min DKðpkqÞ becomes equivalent to the ML learning

on
P

‘ qðxlf‘ðxluylx;‘Þ;‘Þqðf‘ðxluylx;‘Þl‘Þa‘ since making

min DKðuÞ with respect to pð‘lxÞ results in pð‘lxÞ given by

Eq. (43).

As studied in (Xu, 1996, 1997, 1998b, 2000), from Eq.

(56) we are easily lead to the EM algorithm for implement-

ing the above ML learning. Here in this paper, one new

thing that comes from the learning Eq. (56) with pðxÞ by Eq.

(4) is a Tikhonov-like regularization due to the role of

smoothing parameter hx: Another new thing is that model

selection can be made by Eq. (28) in help of the harmony

principle, which is a key feature that is not shared by only

using the Kullback divergence for parameter learning.

Sharing the conventional two-phase style of “firstly ML

parameter learning and subsequently model selection by a

given criterion”, we also encounter the problem of extensive

computations on implementing Eq. (56) repeatedly by

enumerating a large number of different scales k ¼

{k; {m‘}}: Moreover, in computing pðy; ‘lxÞ by Eq. (59)

we cannot avoid to compute the integral over y, which

makes the EM algorithm usually difficult to implement,

except for three computable special cases, namely, (a)

qðyl‘Þ is a discrete density, (b) qðyl‘Þ is Bernoulli for a

binary vector y, and (c) qðyl‘Þ is Gaussian.

In contrast, the best harmony learning by Table 1 has

no such difficulty since the integral over y has been

removed for Eqs. (34), (35) and (37), and the local

minimum effect of Eq. (24) is compensated by either

normalization learning or data-smoothing learning in the

cases of a small size of samples. More interestingly,

model selection is made automatically during the

learning by Step 3 in Table 1.

In addition to the above discussed two phase style of

combing the use of best harmony and least divergence,

for those cases that pðy;‘lxÞ is computable we can also

combine the two in parallel by replacing HðuÞ in Eq.

(26) with

HKðuÞ ¼ HðuÞ2 lDKðuÞ ð60Þ

with l . 0 gradually reducing towards zero from a

given initial value.

2.3.2. f-divergence and f-harmony

The Kullback divergence is a special case of the

f-divergence

Df ðp; qÞ ¼
XN
t¼1

ptf
qt

pt

� �
; with f ð1Þ ¼ 0;

d2f ðuÞ

d2u
. 0 on ½0;1�;

ð61Þ

at f ðxÞ ¼ 2ln x: The f-divergence was firstly studied by

Csiszar in 1967 and a nice introduction can be found in

Devroye et al. (1996). Similar to Eq. (18), it has the

matching nature that Df ðp; qÞ $ 0 and Df ðp; qÞ ¼ 0 if and

only if pt ¼ qt. However, it does not have the least

complexity nature by Eq. (10). As discussed in Xu (1997),

an appropriate function f will make learning become more

robust on a set of samples with some outliers.

Moreover, it is similar to Eq. (19) that we have

Df ðpkqÞ ¼
ð

pðuÞf
qðuÞ=zq

pðuÞ=zp

 !
du; zq ¼

XN
t¼1

qðutÞ;

zp ¼
XN
t¼1

pðutÞ:

ð62Þ

Correspondingly, we can also extend the harmony measure

equation (7) into

Hf ðpkqÞ ¼ 2
XN
t¼1

ptf ðqtÞ; Hf ðpkqÞ ¼ 2
ð

pðuÞf
qðuÞ

zq

 !
du:

ð63Þ

Similar to Eq. (7), maximizing Hf ðpkqÞ has the least

complexity nature by Eq. (10) but unfortunately with the

matching nature by Eq. (9) lost.

To implement both the two natures for harmony learning,

we can combine the use of minimizing the f-divergence

for parameter learning and maximizing the f-harmony

measure for model selection. Specifically, putting

pðuÞ ¼ pðylx;‘Þpð‘lxÞpðxÞ; qðuÞ ¼ qðxly;‘Þqðyl‘Þqð‘Þ into

Eqs. (62) and (63), we implement

min
u

Df ðuÞ; Df ðuÞ ¼ Df ðpkqÞ: ð64Þ

With the obtained result up; we select a best kp; {mp
‘} by

min
k;fm‘g

Jðk; {m‘}Þ; Jðk; {m‘}Þ ¼ 2Hf ðu
p
; kÞ;

Hf ðu
p
; kÞ ¼ Hf ðpkqÞ:

ð65Þ

3. Gaussian mixture and Gaussian mixture-of-experts

In this section, we focus on the B-architecture with

Gaussian components, i.e.

qðxly; ‘Þ ¼ GðxlA‘y þ c‘;S‘Þ as in Eq: ð38Þ;

qðyl‘Þ ¼ Gðylm‘;L‘Þ:

ð66Þ

In this case, the B-architecture with pðy; ‘lxÞ being structure

L. Xu / Neural Networks 15 (2002) 1125–1151 1137

free or the BI-architecture with pðy;‘lxÞ being Gaussian

are actually equivalent since they lead to the same

solution via either the harmony learning or the Kullback

learning. In the following, we consider a number of

typical special cases.

3.1. MSE clustering, cluster number selection, and RPCL

learning

When qðyl‘Þ ¼ dðyÞ; S‘ ¼ s2I; we can get several

interesting special results from Eqs. (34) and (35).

First, max Hðp; qÞ with Hðxt; yt;‘Þ by Eq. (37) becomes

equivalent to making

min s2
; s2 ¼ s2 þ h2

x ; s2 ¼
1

N

XN
t¼1

X
‘

ptð‘Þket;‘k
2
;

et;‘ ¼ xt 2 c‘; ptð‘Þ ¼ �d‘;‘t
; ð67Þ

‘t ¼ arg min
‘

0:5
ket;‘k

2

s2
2 ln a‘

" #
:

Particularly, when a‘ ¼ 1=k; ‘t is given by the minimum

distance WTA competition

‘t ¼ arg min
‘

kxt 2 c‘k
2
; ð68Þ

and Eq. (67) becomes equivalent to exactly the classical

MSE clustering or VQ problem (Makhoul, Rpucos, & Gish,

1985). In this special case, the adaptive learning procedure

in Table 1 will degenerate to the well known KMEAN

algorithm (Xu, 1997, 2001b). However, this is not simply

just a revisit of an old story, but provides the following two

new results.

(a) Smoothed k-selection criterion. We can estimate hx

by Step 6 in Table 1 and then get a smoothed k-selection

criterion JðkÞ; given by Item (1,2) in Table 3 for selecting k

together with the use of the KMEAN algorithm. When hx ¼

0; it returns to Item (1,1) that was obtained firstly in Xu

(1997) from max Hðp; qÞ with zq ¼ 1; i.e. empirical

learning. The smoothed one in Item (1,2) provides an

improvement on Item (1,1), especially in the cases of a

small size of samples, in help of a term h2
x =s

2 that prevents

s2 becoming too small, which would cause over-fitting. As

the number of samples increases, the role of the extra term

reduces as hx reduces.

(b) Nonuniform KMEAN clustering and k-selection

criteria. When a‘ – 1=k; i.e. the population of each cluster

is not equal, the WTA competition in Eq. (67) becomes

different from Eq. (68) via biasing to a larger a‘: Such a

biasing is scaled by the value of s2: Thus, we get a

nonuniform KMEAN algorithm by which s2 is computed as

in Eq. (67). Moreover, a‘ is initialized at 1=k and then

updated as follows

anew
‘ ¼

aold
‘ þ g0

1 þ g0

; ‘ ¼ ‘t;

aold
‘

1 þ g0

; otherwise;

8>>><
>>>:

where g0 . 0 is a small constant step size:

ð69Þ

Correspondingly, we also get its k-selection criterion in

Table 3.

The biasing role of a‘ enhances the competition in favor

to large clusters such that clusters can be automatically

selected by discarding those a‘ being zero or too small.

However, this enhanced competition may also cause the

‘dead unit’ problem (Xu et al., 1993), especially in the case

of a small size of samples. Interestingly, the role of h2
x

prevents s2 becoming too small and thus the biasing role of

qð‘Þ is balanced to avoid the ‘dead unit’ problem.

Second, the normalization learning with max Hðp; qÞ via

Eq. (35) can be implemented by the adaptive learning

procedure in Table 1, which is now simplified into:

Step 1 : ptð‘Þ by Eq: ð67Þ; update

zqðtÞ ¼ zqðt 2 1Þ þ
X
‘[Lt

a‘Gðxtlc‘;s
2
‘IÞ;

Step 2 : gt;‘ ¼ g0

�
ptð‘Þ

tnew
2 Ið‘ [LtÞg

d
t;‘

�
;

gd
t;‘ ¼ a‘Gðxtlc‘;s

2
‘IÞ=zqðtÞ;

Step 3 : the same as Step 3 in Table 1;

Step 4 : cnew
‘ ¼ cold

‘ þ gt;‘ðxt 2 cold
‘ Þ;

snew
‘ ¼ sold

‘ þ gt;‘s
old
‘ ðkxt 2 cold

‘ k2 2 s2old
‘ Þ: ð70Þ

Corresponding to the four special cases of Lt in Eq. (36), we

can get new results as follows:

(a) Conscience competitive learning. For Lt of case (a) in

Eq. (36), we have

gt;‘ ¼

g0

ptð‘Þ

t
2

gfgdXt
t¼1

X
‘[Lt

a‘Gðxtlc‘;SÞ

0
BBBB@

1
CCCCA; for ‘ ¼ ‘t;

gf ¼ a‘t
; gd ¼ Gðxtlc‘t

;SÞ;

0; otherwise;

8>>>>>>>>><
>>>>>>>>>:

ð71Þ

For each xt; only the parameters of the winner ‘t will be

updated. Particularly, the updating on c‘ would return to a

simple competitive learning if gt;‘ would become irrelevant

L. Xu / Neural Networks 15 (2002) 1125–11511138

Table 3

Model selection criteria Mink JðkÞ or Mink;m Jðk;mÞ on Gaussian mixture and Gaussian mixture of experts

Empirical learning Data smoothing learning Normalization learning

MSE Clustering

(a) k-means JðkÞ ¼ 0:5d ln s2 þ ln k JðkÞ ¼ 0:5d ln s2 þ
0:5dh2

x

s2
þ ln k JðkÞ ¼ ln zp; zp ¼

XN
t¼1

Xk

l¼1

exp 20:5
kxt 2 mlk

2

s2

 !

(b) Nonuniform k-means JðkÞ ¼ 0:5d ln s2
2
Xk

l¼1

al ln al JðkÞ ¼ 0:5d ln s2 þ
0:5dh2

x

s2
2
Xk

l¼1

al ln al JðkÞ ¼ ln
XN
t¼1

Xk

l¼1

alexp 20:5
kxt 2 mlk

2

s2

 !()
2
Xk

l¼1

al ln al

Elliptic clustering and

Gaussian mixture
JðkÞ ¼ 0:5

Xk

l¼1

al lnlSll2
Xk

l¼1

al ln al JðkÞ ¼ 0:5
Xk

l¼1

al lnlSll

2
Xk

l¼1

al lnal þ 0:5h2
xTr

�
S21

l

�
JðkÞ ¼ 0:5

Xk

l¼1

al lnlSll2
Xk

l¼1

al ln al þ ln zq;

zq ¼
XN
t¼1

Xk

l¼1

alGðxtlcl;SlÞ

Subspace clustering JðkÞ ¼ 0:5
Xk

l¼1

al

�
d ln s2

l 2 2 ln al

þ ml½1 þ lnð2pÞ�
�

Jðk; {ml}Þ ¼ 0:5
Xk

l¼1

al

(
d

ln s2

l þ
h2

x

s2
l

!

þ ml½1 þ lnð2pÞ�2 2 ln al

)
Jðk; {ml}Þ ¼ ln zq þ 0:5d

Xk

l¼1

al ln s2
l

þ 0:5
Xk

l¼1

al{ml½1 þ lnð2pÞ�2 2 ln al};

zq ¼
XN
t¼1

Xk

l¼1

alexp 20:5
kxt 2 Alyt 2 clk

2

s2

 !
=ð2pÞ0:5ml ðs2

l Þ
0:5d

Gaussian ME JðkÞ ¼ 2
Xk

l¼1

al ln al

þ 0:5
Xk

l¼1

al

�
d ln s2

l þ lnlLll
�

JðkÞ ¼ 0:5
Xk

l¼1

al

�
d ln s2

l þ lnlLll
�

2
Xk

l¼1

al ln al þ 0:5h2
yTr

�
L21

l

�
JðkÞ ¼ 0:5

Xk

l¼1

al

�
d ln s2

l þ lnlLll
�

2
Xk

l¼1

a1 ln al þ ln zq;

zq ¼
XN
t¼1

Xk

l¼1

alGðxtlAlyt þ cl;SlÞGðytlml;LlÞ

RBF nets Directly use the above J(k) of Gaussian ME but with

al ¼ lLll
0:5
=
Pk

l¼1 lLll
0:5

Note: J(k) in a specific block at the ith row and jth column is referred by Item (i, j).

L
.

X
u

/
N

eu
ra

l
N

etw
o

rks
1

5
(2

0
0

2
)

1
1

2
5

–
1

1
5

1
1

1
3

9

lxu
Pencil

lxu
Pencil

lxu
Pencil

lxu
Pencil

lxu
Pencil

lxu
Pencil

lxu
Pencil

lxu
Pencil

lxu
Pencil

to ‘: However, gt;‘ does relate to ‘ via gf ; gd; which leads to

two types of conscience competitive learning. Specifically,

when a‘ ¼ 1=k; gt;‘ relates to ‘ only via gd in a way that the

smaller is the distance kxt 2 c‘t
k2; the larger is the gd; and

thus the weaker is the learning strength gt;‘: That is, a de-

learning is introduced by the winner’s conscience, based on

its winning degree (i.e. the likelihood or equivalently the

distance kxt 2 c‘t
k2). In other words, we get a likelihood

sensitive competitive learning (LSCL), which includes the

distance sensitive competitive learning (DSCL) as a special

case. Moreover, when a‘ – 1=k; gt;‘ relates to ‘ via both gd

and gf such that the de-learning rate also depends on the

proportion or frequency gf ¼ a‘t
of winning by ‘t: That is,

the more it gets winning, and the more conscience will be

introduced, which provides an alternative to the frequency

sensitive competitive learning (FSCL) (Ahalt, Krishna-

murty, Chen, & Melton, 1990), where the conscience is

imposed during the competition for ‘t; instead of during

learning. Therefore, via updating gt;‘ as in Eq. (70), the

updating cnew
‘ ¼ cold

‘ þ gt;‘ðxt 2 cold
‘ Þ acts as a conscience

competitive learning that includes FSCL and DSCL as

special cases.

(b) Generalized RPCL. For Lt of case (b) in Eq. (36), we

have

gt;‘ ¼

g0

1

t
2

gfgd

zq

 !
; for ‘ ¼ ‘t;

2g0

gfgd

zq

; for ‘ ¼ ‘r;

0; otherwise:

8>>>>>><
>>>>>>:

ð72Þ

In this case, the updating cnew
‘ ¼ cold

‘ þ gt;‘ðxt 2 cold
‘ Þ

becomes conceptually equivalent to the RPCL that was

previously proposed in Xu et al. (1993). As reviewed in Xu

(2001a,b), RPCL has been shown to be an effective

clustering algorithm in many applications, featured by that

The number of clusters is determined with extra units

driven far away automatically: ð73Þ

Here we see that this feature can be explained by the least

complexity nature of the harmony learning, with the

following new results:

† Eq. (72) provides a reasonable solution for the learning

rate and de-learning rate that are used in Eq. (70).

However, they were set heuristically in the original

RPCL (Xu et al., 1993).

† A cluster can also be discarded when a‘ ! 0; which is

easier to check than checking whether its corresponding

mean vector has been driven far away as in Xu et al.

(1993).

† Attempting to explain RPCL via heuristically modifying

the EM algorithm into adaptive algorithms, it was found

in Xu (1995) that the main behavior of RPCL is shared by

a spectrum of RPCL variants via various combinations of

competing and penalizing. Similarly, we can get from

Eq. (70) a wide spectrum of RPCL algorithms in the case

(d) of Lt; with solutions for the learning rates and de-

learning rates.

In companion with the harmony learning, we can also get

the k-selection criterion in Item (1,3) of Table 3, which can

be used not only after various cases of RPCL learning, but

also as an alternative to Item (1,2).

3.2. Elliptic clustering, cluster number selection, and

elliptic RPCL

The MSE clustering is limited to data that consists of

spherical clusters with a same S‘ ¼ s2I: It can be further

extended to clusters with more complicated shapes by

considering different case of S‘ :

† Spherical clustering. Spherical clusters of different

radius are considered with S‘ ¼ s2
‘I that may be

different for different ‘:

† Elliptic clustering. Various elliptic clusters are con-

sidered with a general covariance matrix S‘ that may be

different for different ‘:

Clearly, a spherical clustering is a special case of elliptic

clustering. So, we only consider elliptic clustering from both

the data smoothing and normalization perspectives.

From the data smoothing perspective, max Hðp; qÞ with

Hðxt; yt;‘Þ by Eq. (37) leads to

ptð‘Þ ¼ �d‘;‘t
;‘t ¼ arg min

‘

�
0:5ðxt 2 c‘Þ

TS21
‘ ðxt 2 c‘Þ

þ 0:5 lnlS‘l2 ln a‘

�
: ð74Þ

Alternatively, making Kullback learning by Eq. (56), we get

ptð‘Þ ¼ a‘Gðxtlc‘;S‘Þ=
Xk

‘¼1

a‘Gðxtlc‘;S‘Þ: ð75Þ

Subsequently, we update parameters either in batch by

a‘ ¼
1

N

XN
t¼1

ptð‘Þ; c‘ ¼
1

Na‘

XN
t¼1

ptð‘Þxt;

S‘ ¼ h2
xI þ

1

Na‘

XN
t¼1

ptð‘Þðxt 2 c‘Þðxt 2 c‘Þ
T

ð76Þ

or adaptively by

a‘ updated by Eq: ð69Þ; et;‘ ¼ xt 2 cold
‘ ;

cnew
‘ ¼ cold

‘ þ g0ptð‘Þet;‘;

Snew
‘ ¼ ½1 2 g0ptð‘Þ�S

old
‘ þ g0ptð‘Þ

�
h2

xI þ et;‘eT
t;‘

�
:

ð77Þ

In both the case, empirical learning is included as a special

L. Xu / Neural Networks 15 (2002) 1125–11511140

case with hx ¼ 0: Generally, we can estimate hx by Step 6 in

Table 1.

Particularly, we can get the following new results for

elliptic clustering:

(a) The smoothed EM algorithm, the hard-cut EM

algorithm, and the smoothed hard-cut EM algorithm.

When hx ¼ 0; we get the popular EM algorithm on Gaussian

mixture with Eq. (75) as its E-step and Eq. (76) as its M-

step, and also get the hard-cut EM algorithm with its E-step

given not by Eq. (75) but by Eq. (74) (Xu, 1997). When

hx . 0 is estimated at Step 6 in Table 1, we are further lead

to either a smoothed EM algorithm or a smoothed hard-cut

EM algorithm, which are more suitable to the cases of a

small size of high dimensional samples. Moreover, for the

smoothed hard-cut EM algorithm, the nature by Eq. (31)

will be in action during learning with automatic model

selection.

(b) The k-selection criterion and its smoothed version.

Also, we can make the above learning with a‘ ¼ 1=k fixed,

and then select k by using the criterion given in Item (3,2) of

Table 3, which is an improvement on the criterion Item (3,1)

that was previously obtained in Xu (1997).

From the normalization perspective, it follows from

Table 1 that the adaptive algorithm in Eq. (70) is modified

with not only Gðxtlc‘;s
2
‘IÞ in Steps 1 and 2 replaced by its

general case Gðxtlc‘;S‘IÞ but also the updating on s2
‘ in

Step 4 replaced by Step (b) with et;‘ ¼ xt 2 cold
‘ : Now, h2

x .

0 takes a role that avoids S‘ becoming singular.

Similar to the discussion made in Section 3.1, we can get

further insights by considering the special cases of Lt in Eq.

(36) as follows:

(a) Conscience competitive learning. For Lt of the case (a),

an elliptic clustering is made by a conscience

competitive learning that includes FSCL, LSCL, and

DSCL as special cases.

(b) Elliptic RPCL and variants. For Lt of the case (b), we

get an elliptic RPCL algorithm with a solution for the

learning rate and de-learning rate by Eq. (70), and with

automatic model selection featured by Eqs. (31) and

(73). Moreover, we can get a wide spectrum of elliptic

RPCL variants from Lt of the case (c) and the case (d).

(c) We can also get the k-selection criterion for elliptic

clustering in Item (3,3) of Table 3.

3.3. Subspace clustering, structural RPCL, and dimension

determination

In the above elliptic clustering, it needs to compute each

covariance matrix S‘; which not only is expensive in

computational cost, but also does not work well in the cases

of a small size of high dimensional samples since S‘ may

become singular. This motivates to represent each cluster

via a linear subspace instead of directly using S‘: With this

consideration, the local PCA learning has been proposed in

Tipping and Bishop (1999) and Xu (1995). In this

subsection, we re-elaborate it from the perspective of

BYY system and harmony learning.

One way is to consider the decomposition (Xu, 2001b)

S‘ ¼ fT
‘D2

‘f‘ þ s2
‘I; f‘f

T
‘ ¼ I;

D‘ is a m‘ £ m‘ diagonal matrix:

ð78Þ

We modify Step 5 (b) in Table 1 such that S‘ is updated

within the constraint equation (78).

First, considering to maximize ln Gðxlc‘;SÞ with respect

to D‘; s‘ via the variational analysis, it follows from

2Tr½GS‘
fT

‘dD‘D‘f‘� and 2Tr½GS‘
s‘ds‘� that dD‘ ¼

diag½f‘GS‘
fT

‘�D‘ and ds‘ ¼ s‘Tr½GS‘
�; with

GS‘
¼ S21

‘ ðxt 2 c‘Þðxt 2 c‘Þ
TS21

‘ 2 S21
‘ ð79Þ

Second, it follows from f‘f
T
‘ ¼ I that the solution of

df‘f
T
‘ þ f‘df

T
‘ ¼ 0 must satisfy

df‘ ¼ Zf‘ þ W
�
I 2 fT

‘f‘

�
;

W is any m £ d matrix and Z ¼ 2Z is an asymmetric matrix:

ð80Þ

Similarly, to maximize ln Gðxlc‘;SÞ with respect to f‘;

it follows from Eq. (80) and Tr½GS‘
ðdfT

‘D‘f‘ þ

fT
‘D‘df‘Þ� ¼ 2Tr½GS‘

fT
‘D‘df‘� that maximizing

Tr½GS‘
fT

‘D‘Zf‘� and Tr½GS‘
fT

‘D‘WðI 2 fT
‘f‘Þ� results

in

Z ¼ D‘f‘GS‘
fT

‘ 2 f‘GS‘
fT

‘D‘;

W ¼ D‘f‘GS‘

�
I 2 fT

‘f‘

�
;

df‘ ¼

8>>><
>>>:

W
�
I 2 fT

‘f‘

�
¼ W ; ðaÞ;

Zf‘; ðbÞ;

Zf‘ þ W ; ðcÞ:

ð81Þ

That is, under the constraint f‘f
T
‘ ¼ I; we can use anyone

of the above three choices of df‘ as the updating direction

of f‘: Therefore, the updating on S‘ is replaced by

fnew
‘ ¼ fold

‘ þ gt;‘df‘; snew
‘ ¼ sold

‘ þ gt;‘ds‘;

ds‘ ¼ s‘Tr½GS‘
�; Dnew

‘ ¼ Dold
‘ þ gt;‘dD‘;

dD‘ ¼ diag
�
f‘GS‘

fT
‘

�
D‘;

ð82Þ

which seeks the subspace spanned by f‘ and the

corresponding variance structure by D2
‘ and s‘:

During learning, automatic selection on clusters is in

action, with not only the features of Eq. (73) and of Eq. (31),

but also a new feature that s‘ of an extra cluster will also be

pushed towards zero due to the nature by Eq. (32) because

s‘ ¼ 0 if and only if the ‘-th cluster becomes a d density,

which equivalently implies the corresponding a‘ ¼ 0

except for a rare case that there are certain samples exactly

located at c‘: Therefore, at Step 3 in Table 1 we may also

L. Xu / Neural Networks 15 (2002) 1125–1151 1141

use either of the following two strategies:

(a) If both snew
‘ ! 0; anew

‘ ! 0; we discard the correspond-

ing cluster ‘:

(b) If either of snew
‘ ! 0; anew

‘ ! 0 happens, we discard the

corresponding cluster ‘:

In the above discussion, the dimension m‘ of the subspace

(equivalently the dimension of D‘) are assumed to be given. If

it is unknown, we can also solve it. Specifically, considering a

B-architecture with Eq. (66) in the following special case

qðxly; ‘Þ ¼ G
�
xlA‘y þ c‘;s

2
‘I
�
;

qðyl‘Þ ¼ Gðylm‘; IÞ; subject to

A‘ ¼ fT
‘D‘; f‘;D‘ as in Eq: ð78Þ;

ð83Þ

we can obtain criteria given by the 4th row of Table 3 for

deciding both the number of clusters and the dimension of

subspaces.

Moreover, for each ‘ we have qðxl‘Þ ¼
Ð

GðxlA‘y þ

c‘;s
2
‘IÞGðylm‘; IÞdy ¼ Gðxlc‘;S‘Þ with S‘ being same as in

Eq. (78). That is, a Gaussian Gðxlc‘;S‘Þ is represented via a

factor analysis model. From this perspective, we can

implement learning by the adaptive learning procedure in

Table 1 at the special case of Eq. (83), which leads to the

following simplified form:

Step 1 : yt;‘ ¼
�
s2

‘I þ AT
‘A‘

�21
AT

‘xt þ m‘;

tnew ¼ told þ 1; et;‘ ¼ xt 2 A‘yt;‘ 2 c‘;

e
y
t;‘ ¼ yt 2 mold

‘ ;

‘t ¼ arg min
‘

"
0:5

ln s2

‘ þ
ket;‘k

2

s2
‘

þ key
t;‘k

2

!
2 ln a‘

#
;

Step 2 :

Same as Step 2 in Table 1 with Eq: ð83Þ inserted;

Step 3 : Same as Step 3 in Table 1;

Step 4 : mnew
‘ ¼ mold

‘ þ gt;‘e
y
t;‘;

Step 5 : cnew
‘ ¼ cold

‘ þ gt;‘et;‘;

Dnew
‘ ¼ Dold

‘ þ gt;‘ diag
�
f‘S

21
‘ et;‘yT

t;‘

�
;

fnew
‘ ¼ fold

‘ þ gt;‘df‘;

snew
‘ ¼ sold

‘ þ gt;‘s
old
‘

�
ket;‘k

2
þ h2

x 2 s2old
‘

�
;

Step 6 : same as in Table 1: ð84Þ

Specifically, df‘ is obtained in a way similar to Eq. (80). That

is, we can get

df‘ ¼

8>><
>>:

W ; ðaÞ;

Zf‘; ðbÞ;

Zf‘ þ W ; ðcÞ;

Z ¼ D‘yt;‘eT
t;‘S

21
‘ fT

‘ 2 f‘S
21
‘ et;‘yT

t;‘D‘;

W ¼ D‘yt;‘eT
t;‘S

21
‘

�
I 2 fT

‘f‘

�
:

ð85Þ

3.4. Gaussian ME and RBF nets

Next, we further make learning on a B-architecture with

a set of paired samples {yt; xt}; instead of a set of samples

for x only, i.e. we consider supervised learning.

Specifically, from Eq. (66) we can get

qðxlyÞ ¼
Xk

‘¼1

G
�
xlA‘y þ c‘;s

2
‘

�
pð‘lyÞ;

pð‘lyÞ ¼
Gðylm‘;L‘Þa‘Xk

‘¼1

Gðylm‘;L‘Þa‘

;
ð86Þ

which is a typical case of the alternative mixture-of-expert

model (Xu, 1998a; Xu et al., 1995) for mapping y ! x: On

the average, we have the regression EðxlyÞ ¼
Pk

‘¼1 pð‘lyÞ

ðA‘y þ c‘Þ weighted by the gate pð‘lyÞ:

From Eq. (66) and noticing that yt is already known for

each xt; it follows from Table 1 that we can get the following

adaptive algorithm:

Step 1 :

‘t ¼ arg min
‘

"
0:5

ln s2

‘ þ
ket;‘k

2

s2
‘

þ lnlL‘lþ e
yT
t L21

‘ e
y
t

!

2ln a‘

#
;

et;‘ ¼ xt 2 A‘yt 2 c‘; e
y
t ¼ yt 2 mold

‘ ;

Step 2 : Same as in Table 1 with Eq: ð86Þ inserted;

Step 3 : Same as in Table 1;

Step 4 : mnew
‘ ¼ mold

‘ þ gt;‘e
y
t ; Lnew

‘ ¼ Gnew
‘ Gnew T

‘ ;

Gnew
‘ ¼ Gold

‘ þ gt;‘Gold
S‘

Sold
‘ ;

GS‘
¼ L21

‘ e
y old
t e

y old T
t L21

‘ 2 L21
‘ ;

L. Xu / Neural Networks 15 (2002) 1125–11511142

Step 5 : Anew
‘ ¼ Aold

‘ þ gt;‘eold
t;‘ yT

t ;

cnew
‘ ¼ cold

‘ þ gt;‘eold
t;‘ ;

snew
‘ ¼ sold

‘ þ gt;‘s
old
‘

�
keold

t;‘ k
2
þ h2

x 2 s2old
‘

�
;

Step 6 : same as in Table 1; ð87Þ

which actually acts as a general RPCL learning algorithm.

Specifically, Step 1 implements the coordinated compe-

tition (Xu, 1998a), which has different simplified forms for

specific qðxly; ‘Þ and qðy;‘Þ: For the case of Eq. (83), Step 1

becomes equivalent to a class of the shortest distance

competition in various specific forms (Xu, 1998a).

Again, we can get different variants of the supervised

learning for different choices of Lt in Eq. (36). We can

also further modify the updating on L‘ via the

orthogonal subspaces in a way similar to Eqs. (81) and

(82).

Moreover, similar to RPCL clustering, model selection

on an appropriate number of experts/basis-functions is

made automatically during learning with k initialized at a

large enough value. Furthermore, we can get criteria

from Eq. (28) for selecting k, as given by Items (5,2) in

Table 3, which are improved variants of Item (5,1),

previously proposed for RBF net with empirical learning

(Xu, 1998a).

Next, we consider a special case of Eq. (86) with the

following constraint

a‘ ¼

ffiffiffiffiffiffi
lL‘l

q
=
Xk

r¼1

ffiffiffiffiffi
lLrl

q
: ð88Þ

It follows from Eq. (86) that

EðxlyÞ ¼

Xk

‘¼1

ðA‘y þ c‘Þe
20:5ðy2m‘Þ

TL21
‘

ðy2m‘Þ

X
‘

e20:5ðy2m‘Þ
TL21

‘
ðy2m‘Þ

; ð89Þ

which is exactly the Extended Normalized Gaussian RBF

net (Xu, 1998a). Particularly, when A‘ ¼ 0 it reduces

into the normalized RBF nets (Moody & Darken, 1989;

Nowlan, 1990; Xu, 1998a; Xu et al., 1994).

In this case, the learning can be implemented again by

Eq. (87) with Step 3 replaced with Eq. (88).

3.5. Parzen window density, kernel regression, and support

vectors

Given a set of samples {xt}
N
t¼1; we consider a very special

case of Eq. (66) with

k ¼ N; A‘ ¼ 0; c‘ ¼ x‘;

qðyl‘Þ ¼ dðyÞ; S‘ ¼ l2
‘I:

ð90Þ

In this case, learning is made only on a‘ and l‘; which can

be implemented either from the normalization learning

perspective directly by Eq. (70) under the constraints (90) or

from the data smoothing perspective by the following

algorithm

Step 1 : ptð‘Þ given by Eq: ð67Þ with s2
‘ ¼ l2

‘;

Step 2 : update a‘ by Eq: ð69Þ;

Step 3 : lnew ¼ lold þ gt;‘l
old
�
kxt 2 c‘k

2
þ h2

x 2 l2old
�
;

Step 4 : update hx by Step 6 in Table 1: ð91Þ

Substituting Eq. (90) in Eq. (66), it follows that qðxÞ ¼PN
t¼1 atGðxlxt;l

2IÞ: Particularly, we have

† When a‘ ¼ 1=N; qðxÞ ¼ ð1=NÞ
PN

t¼1 Gðxlxt;l
2IÞ becomes

exactly the Parzen window density equation (4). But

what is new here is that the smoothing parameter l is also

estimated during learning.

† When a‘ is unknown and estimated during learning

by either Eq. (70) or (91), we can get a subset LSV ¼

{t : with each element at – 0 or at . 10 with 10

being a pre-specified small number}; and approxi-

mately we have qðxÞ ¼
P

t[LSV
atGðxlxt;l

2IÞ; i.e. qðxÞ

can be estimated on a set of support vectors {xt : t [
LSV }:

Similarly, we also consider a special case of the RBF

network equation (89) by adding a set of constraints that

include (a) k ¼ N and m‘ ¼ mt ¼ yt; (b) L‘ ¼ l2I; and (c)

A‘ ¼ 0 and c‘ ¼ ct ¼ xt; resulting in

EðxlyÞ ¼

X
‘[L

x‘a‘e20:5ky2y‘k
2
=l2

X
t[L

ate
20:5ky2ytk

2
=l2

; ð92Þ

which also brings us to three interesting cases:

† When a‘ ¼ 1=N; as previously pointed out in Xu et al.

(1994), it is actually Gaussian kernel regression that has

been widely studied in the literature of statistics

(Devroye et al., 1996). In contrast to RBF nets, the

most salient feature of kernel regression is that there is no

unknown parameters except that the smoothing par-

ameter l2 needs to be pre-specified. Though many

studies have been made in literature on getting the

smoothing parameter l2; there are only theoretical upper

bounds and how to estimating a best l2 still remains a

challenge problem. Considering Eq. (87) in this special

case, we have x‘ ¼ xt and qðxtlyt; ‘Þ ¼ Gðxtlxt;s
2IÞ ¼ 1

with the role of s2 simply ignorable. Thus, the problem

degenerates to estimate the smoothing parameter l of the

parzen window density qðyÞ on the set {yt}
N
t¼1; which can

be solved in the way same as the case of qðxÞ ¼ ð1=NÞ
PN
t¼1 Gðxlxt;l

2IÞ:

† When a‘ is unknown, again we will get a support vector

L. Xu / Neural Networks 15 (2002) 1125–1151 1143

set LSV via learning in the way same as the case of qðxÞ ¼P
t[LSV

atGðxlxt; l
2IÞ: Then, we have

EðxlyÞ ¼

X
‘[LSVM

x‘a‘e20:5ky2y‘k
2
=l2

X
t[LSVM

ate
20:5ky2ytk

2
=l2

: ð93Þ

† We can also take the role of s2 in consideration for an

given appropriate s2: Setting t ¼ 1; we can update at

and l2 by

Step 1 : tnew ¼ told þ 1;

randomly taking a sample 1t from Gð1tl0;s2IÞ;

ð94Þ

Step 2 : ptð‘Þ ¼ �d‘;‘t
;

‘t ¼ arg min
‘

"
k1tk

2

s2
þ

kyt 2 y‘k
2

l2
2 ln a‘

#
;

Step 3 : update a‘ by Eq: ð69Þ;

Step 4 :

lnew ¼ lold þ
g0

tnew
lold

�
kyt 2 y‘k

2
þ h2

y 2 l2old
�
;

Step 5 : update hy in the way same as updating hx

by Step 6 in Table 1:

After learning, we again get a regression by either Eq. (92)

or (93). The variance s2 takes a role similar to the

smoothing parameter hy: However, the value of s2 needs

to be pre-given but not able to be learned since we only have

one output sample xt that corresponds to an input sample yt:

In contrast, hy can be learned via the way similar to Step 6 in

Table 1. Also, we can simply set hy ¼ 0 and discard Step 5

to make an empirical implementation.

4. NonGaussian mixture and mixture of independent

mapping

We further go beyond Gaussian mixture, with either or

both of qðxly;‘Þ and qðyl‘Þ being nonGaussian.

4.1. Bernoulli–Gaussian mixtures and structural clustering

We start to consider a B-architecture with

qðxly; ‘Þ ¼ G
�
xlA‘y þ c‘;s

2
‘I
�
;

qðyl‘Þ ¼
Ym‘

j¼1

�
q‘; jdðy

ðjÞÞ þ ð1 2 q‘; jÞdð1 2 yðjÞÞ
�
:

ð95Þ

From which we get a finite mixture qðxÞ ¼
P

‘ qðxl‘Þqð‘Þ
with each qðxl‘Þ ¼

P
y qðxly; ‘Þqðyl‘Þ itself consisting of

2m‘ Gaussians mixed by qðyl‘Þ:
To get an insight on the organization of such a qðxl‘Þ; we

consider the geometry of A‘y þ c‘: We start at a m‘

dimensional hypercubic in the Rd space of x, with 2m‘

vertices and each straight edge being a unit length. We can

rotate it arbitrarily and locate it anywhere. Moreover, we

also allow any deformation caused by extending or

shrinking the lengths of the straight edges. Thus, by

relocations, rotations, and such deformations, we can get a

family of polyhedra and each polyhedra retains the same

topology of the original m‘ dimensional hypercubic. We

call it a hypercubic-induced polyhedra. Thus, qðxl‘Þ
actually represents an organized cluster that consists of

2m‘ Gaussians of zero mean and covariance s2
‘I; located at

each vertex of such a hypercubic-induced polyhedra. So, the

task of learning is a structural clustering problem that seeks

clusters in every hypercubic-induced polyhedra.

Learning on the B-architecture Eq. (95) can be

implemented as a special case of the adaptive learning

procedure in Table 1. Specifically, a structure-free pðy; ‘lxÞ
is still determined by Eq. (33) with

dð‘; x; yÞ ¼ 0:5
kx 2 A‘y 2 c‘k

2

s2
‘

þ 0:5 ln s2
‘ 2 ln a‘

2
Xm‘

j¼1

�
yðjÞ ln q‘; j þ ð1 2 yðjÞÞlnð1 2 q‘; jÞ

�
: ð96Þ

With Eqs. (95) and (96) in Table 1, Step 4 takes the

following detail form:

Step 4 : qnew
‘; j ¼ bnew 2

‘; j ;

bnew
‘; j ¼ bold

‘; j þ gt;‘bold
‘; jðy

ðjÞ
t 2 qold

‘; jÞ;

if either qnew
‘; j ! 0 or qnew

‘; j ! 1; discard the jth dimension

according to Eq: ð32Þ: ð97Þ

Moreover, it follows from Eq. (38) that px
xly;‘ ¼ 20:5s22

‘ I:

Thus, the updating on S in Step 5 (b) is now simplified into

snew
‘ ¼ sold

‘ þ gt;‘s
old
‘ ðket;‘k

2
þ h2

x 2 s2old
‘ Þ: During learn-

ing, not only automatic selection on clusters is in action

via Step 3, but also automatic determination on each

dimension m‘ will be made via the above Step 4.

Alternatively, it follows from Eq. (28) that we can make

model selection by the criterion given in Item 2.2 or Item 2.3

in Table 4, even simply by Item 2.1 for a large size of

samples.

4.2. Structural clustering, local LMSER, and competitive

P-ICA

As discussed in Section 2.2.2, the task of getting yt;‘ by

L. Xu / Neural Networks 15 (2002) 1125–11511144

miny dð‘; x; yÞ is a quadratic discrete optimization problem

that should be made for each sample xt: This computing cost

can be very expensive. In a BI-architecture, this cost can be

avoided when pðylx; ‘Þ is given by a special case of Eq. (39)

as follows

y‘ðxÞ ¼ sðŷ‘Þ; ŷ‘ ¼ W‘x þ d‘; sðrÞ ¼ 1=ð1 þ e2brÞ: ð98Þ

Here and thereafter, for a vector u ¼ ½uð1Þ;…; uðmÞ�T and any

scalar function sðrÞ; we use the notation

sðuÞ ¼ ½sðuð1ÞÞ;…; sðuðmÞÞ�T: ð99Þ

In this case, we get yt;‘ ¼ y‘ðxtÞ and put it into Table 1,

which is implemented with Eq. (97) added in. Particularly,

Step 5(c) in Eq. (40) takes the following detailed form

Step 5ðcÞ : tnew ¼ told þ 1;

e‘ ¼ Aold T
‘ et;‘ þ sold 2

‘ fy; et;‘ ¼ xt 2 A‘yt 2 c‘;

Wnew
‘ ¼ Wold

‘ þ gt;‘Dsðŷ‘Þe‘xT
t ;

dnew
‘ ¼ dold

‘ þ gt;‘Dsðŷ‘Þe‘;

Dsðŷ‘Þ ¼ diag
�
s0
�
ŷð1Þ‘

�
;…; s0

�
ŷðmÞ
‘

��
; s0ðrÞ ¼

dsðrÞ

dr
;

ŷ‘ ¼ W‘x þ d‘; ð100Þ

where fy is the correcting term that comes from the part of

qðyl‘Þ; given as follows

fy ¼ ln
q‘;1

1 2 q‘;1

;…; ln
q‘;m

1 2 q‘;m

" #T

: ð101Þ

To get a further insight, we consider Eq. (96) at the special

case that k ¼ 1 and qj ¼ q‘; j ¼ 0:5; c ¼ c‘ ¼ 0; d ¼ d‘ ¼

0; hx ¼ 0: It follows that empirical harmony learning

becomes equivalent to minimize

s2 ¼
1

N

XN
t¼1

kxt 2 AsðWxtÞk
2
; ð102Þ

which is referred as auto-association learning via three layer

net and can be trained in the same way of training a three

layer net by the Back-propagation technique (Rumelhart,

Hinton, & Williams, 1986). Under the constraint that A ¼

WT; it further becomes the Least Mean Square Error

Reconstruction (LMSER) learning. The LMSER learning

was firstly proposed in Xu (1993) with not only both a batch

and an adaptive gradient algorithm provided, but also a

finding that a sigmoid nonlinearity sðrÞ leads to an automatic

breaking on the symmetry of the components in the

subspace. Three years later, the LMSER learning and

its adaptive algorithm given in Xu (1993) have been

directly adopted to implement ICA with promising results

under the name of nonlinear PCA (Karhunen & Joutsensalo,

1994).

Why LMSER performs such an ICA task can also been

understood from the perspective of Eqs. (95) and (98). From

Eq. (95), each bit of y is expected to take value 1 with

probability qj; independent from other bits. Moreover, it

follows from Eq. (98) that each mapping from sðŷ‘Þ to y has

no cross-talk among components. Thus, the independence of

y among components means the independence of ŷ ¼ Wx;

i.e. it attempts to implement ICA. One key feature of this

ICA is that the observation noise is considered via

minimizing s2; so it provides a solution to the noisy ICA

problem.

From the BI-architecture Eqs. (95) and (98) with the

learning algorithm in Eq. (100), the original LMSER

learning is further extended with the following new results:

(a) Criterion for hidden unit number and automatic

selection. From Eq. (28) that we get model selection

criterion given by the choice (b) of Item 2.2 or of Item

2.3 in Table 4, even simply by the choice (a) of Item

2.1 for a large size of samples.

(b) ICA that works on both super-Gaussian and sub-

Gaussian sources. Instead of fixing qj ¼ q‘; j ¼ 0:5 as

the case in Eq. (102), making learning with qj updated

via Eq. (97) will let qj to adapt the distribution of y such

that the above discussed ICA works on the observation

x that not only contains noise but also is generated from

y of either or both of super-Gaussian and sub-Gaussian

sources. Thus, it not only acts as an alternative of the

LPM-ICA (Xu et al., 1998) with a much simplified

computation, but also makes sources selected auto-

matically during learning.

(c) Local LMSER for structural clustering and competitive

ICA. With k . 1; on one hand, we get a local LMSER

learning that approximately implements the above

Bernoulli–Gaussian mixtures with a structural cluster-

ing. On the other hand, the above discussed ICA is

made locally on each cluster of data via competition

equation (33), i.e. ‘t ¼ arg min‘ dð‘; xt; y‘ðxtÞÞ: In

other words, it implements a competitive ICA, with

the number k selected either automatically during

learning or via the criteria given by the second row of

Table 4.

4.3. Independent factorized NonGaussians and local

nonGaussian LMSER

Next, we consider that y consists of real independent

components as follows:

qðyl‘Þ ¼
Ym‘

j¼1

q
�
yðjÞluðjÞ‘

�
; ð103Þ

where each qðyðjÞluðjÞ‘ Þ is a nonGaussian scalar density, e.g. it

can be modeled either by a finite mixture as in (Xu et al.,

L. Xu / Neural Networks 15 (2002) 1125–1151 1145

Table 4

Model selection criteria Mink;m Jðk;mÞ on nonGaussian mixture

Empirical learning Data smoothing learning Normalization learning

General form J0ðk; {ml}Þ ¼ 0:5d
Xk

l¼1

al ln s2
l

2
Xk

l¼1

alðln al þ qlÞ

Jðk; {ml}Þ ¼ J0ðk; {ml}Þ

þ 0:5dh2
x

Xk

l¼1

al

s2
l

Jðk; {ml}Þ ¼ ln zq þ J0ðk; {ml}Þ;

zq ¼
XN
t¼1

Xk

l¼1

alG
�
xtlAlyt þ cl;s

2
l I
�
q
�
ytlu

y
l

�

Gaussian–Bernoulli mixture ql ¼
Xml

j¼1

ql; j ln ql; j

þ
Xml

j¼1

ð1 2 ql; jÞlnð1 2 ql; jÞ

ql ¼
Xml

j¼1

q1; j ln ql; j

þ
Xml

j¼1

ð1 2 ql; jÞlnð1 2 ql; jÞ

q ytlu
y
l

� �
¼
Yml

j¼1

q
y
ðjÞ
t

l; j ð1 2 ql; jÞ
y
ðjÞ
t

Special cases

(a) Uniform J0 ðk; {ml}Þ

¼ ln k þ
0:5

k

Xk

l¼1

�
d ln s2

l þ 2ml ln 2
�

Jðk; {ml}Þ ¼ J0ðk; {ml}Þ

þ
0:5dh2

x

k

Xk

l¼1

1=s2
l

Jðk; {ml}Þ ¼ J0ðk; {ml}Þ

2 ln k þ ln zq; zq

¼
XN
t¼1

Xk

l¼1

exp 20:5
kxt 2 Alyt 2 clk

2

s2

 !
=2mlsd

l

(b) k ¼ 1 J0ðmÞ ¼ 0:5d ln s2 þ m ln 2 JðmÞ ¼ J0ðmÞ þ
0:5dh2

x

s2 JðmÞ ¼ ln
XN
t¼1

exp 20:5
kxt 2 Ayt 2 ck2

s2

 !()

Mixture of independent factor models ql ¼
1

N

XN
t¼1

Xml

j¼1

ln q
�
y
ðjÞ
t luðjÞl

�
ql ¼

1

N

XN
t¼1

Xml

j¼1

ln q
�
y
ðjÞ
t luðjÞl

�
q
�
ytlu

y
l

�
¼
Yml

j¼1

q
�
y
ðjÞ
t luðjÞl

�

Special cases

(a) Uniform J0ðk; {ml}Þ ¼
0:5d

k

Xk

l¼1

ln s2
l

þ ln k 2
1

k

Xk

l¼1

ql

Jðk; {ml}Þ ¼ J0ðk; {ml}Þ

þ
0:5

k

Xk

l¼1

dh2
x

s2
l

Jðk; {ml}Þ ¼ ln zq þ
0:5d

k

Xk

l¼1

ln s2
l 2

1

k

Xk

l¼1

ql; zq

¼
XN
t¼1

Xk

l¼1

G
�
xtlAlyt þ cl;s

2
l I
�Yml

j¼1

q
�
y
ðjÞ
t luðjÞl

�

(b) k ¼ 1 J0ðmÞ ¼ 0:5d ln s2

2
1

N

XN
t¼1

ln q
�
y
ðjÞ
t luðjÞ

� JðmÞ ¼ J0ðmÞ þ
0:5dh2

x

s2 JðmÞ ¼ 2
1

N

XN
t¼1

ln q
�
y
ðjÞ
t luðjÞ

�

þ ln

"XN
t¼1

exp

2 0:5

kxt 2 Ayt 2 ck2

s2

!Yml

j¼1

q
�
y
ðjÞ
t luðjÞ

�#

Note: J(k) in a specific block at the ith row and jth column is referred by Item (i, j).

L
.

X
u

/
N

eu
ra

l
N

etw
o

rks
1

5
(2

0
0

2
)

1
1

2
5

–
1

1
5

1
1

1
4

6

1998) or via higher order statistics by an expansion

q
�
yðjÞluðjÞ‘

�
¼ GðyðjÞl0; 1Þ

�
1 þ b3h3ðy

ðjÞÞ=6 þ b4h4ðy
ðjÞÞ=24

�
;

ð104Þ

where b3; b4 are unknown coefficients, and h3; h4 are

Hermite polynomials.

With qðxly;‘Þ still given in Eq. (95), we have that

qðxl‘Þ ¼
Ð

GðxlA‘y þ c‘;s
2
‘IÞqðyl‘Þdy represents a non-

Gaussian density via independent factors via a linear

model A‘y þ c‘: Then, qðxÞ ¼
P

‘ a‘qðxl‘Þ models all the

samples via a mixture of nonGaussian densities with each

represented via an independent factor model.

Again, such a mixture can be implemented as a special

case of the adaptive learning procedure in Table 1, with

pðyl‘; xÞ and pð‘lxÞ still given by Eq. (33) but with

dð‘; x; yÞ ¼ 0:5
kx 2 A‘y 2 c‘k

2

s2
‘

þ 0:5 ln s2
‘ 2 ln a‘

2
Xm‘

j¼1

ln q
�
yðjÞluðjÞ‘

�
: ð105Þ

In this case, the problem of y‘ðxÞ ¼ arg miny dð‘; x; yÞ is

usually a nonlinear continuous optimization problem. We

can solve it by anyone of the classic continuous optimiz-

ation iterative algorithms. When qðyðjÞluðjÞ‘ Þ is given by a

Gaussian mixture, two types of iterative techniques are

given in Table 2 of Xu (2001a) for solving y‘ðxÞ by

approximately regarding 7ydð‘; x; yÞ ¼ 0 as a linear

equation. Generally, we can denote all these iterative

algorithms by the following iterative operator

ynew
‘ ðxtÞ ¼ ITER

�
yold
‘ ðxtÞ

�
: ð106Þ

Then, learning is implemented by the adaptive learning

procedure in Table 1, with yt;‘ obtained in Step 1 in help of

repeating Eq. (106) for a number of iterations, and with Step

4 made in a way similar to that given in Table 3(C) of Xu

(2001a).

Again, the computing cost can be reduced in a BI-architecture

with pðylx;‘Þ given by a deterministic mapping y‘ðxÞ ¼

sðW‘x þ d‘Þ: Similar to Section 4.2, we can update y‘ðxÞ ¼

sðW‘x þ d‘Þ by Eq. (100) but with Eq. (101) replaced by

fy ¼

"
› ln q

�
yð1Þluð1Þ‘

�
›yð1Þ

;…;
› ln q

�
yðm‘Þluðm‘Þ

‘

�
›yðm‘Þ

#T

: ð107Þ

Particularly, at the special case that k ¼ 1 and c ¼ c‘ ¼ 0; d ¼

d‘ ¼ 0; hx ¼ 0; we are lead to an extension of LMSER that not

only minimizes the reconstruction error in Eq. (102), but also

maximizes the following regularized likelihood

1

N

XN
t¼1

Xm
j¼1

ln q
�
y
ðjÞ
t luðjÞ

�
2 ln zq;

zq ¼
XN
t¼1

G
�
xtlAyt;s

2I
�Ym

j¼1

q
�
y
ðjÞ
t luðjÞ

�
;

ð108Þ

for y to fit the product of independent densities in Eq. (103).

On one hand, we can interpret that such an extension

implements a nonGaussian independent LMSER via mini-

mizing the reconstruction error in Eq. (102) with a

regularization by Eq. (108) that enforces the inner

representation y coming from a product of independent

nonGaussian densities in Eq. (103). On the other hand, from

the reason similar to what discussed in Section 4.2, ŷ ¼ Wx

implements a ICA task, since the maximization of Eq. (108)

enforces y to be independent among its components and f ðŷÞ

in the form of Eq. (99) will not introduce any cross-talk

among components.

In comparison with that in Section 4.2, this ICA works on

observation x that is generated from real independent sources.

This point can be further understood at the special case f ðrÞ ¼

r: On one hand, the reconstruction error in Eq. (102) is

minimized when W spans a m-dimensional principal subspace

in the space of x, in a sense that the error in Eq. (102) is the

average residual between x and its orthogonal projection on

this principal subspace. On the other hand, the maximization

of Eq. (108) searches W that make ŷ ¼ Wx to become

independent. As a result, we are lead to a W that either satisfies

or trades off both the purposes.

In the cases of k . 1; implemented by Table 1 with Step

4 by Eq. (97) and Step 5 by Eq. (100), a general BI-

architecture by Eq. (39) with y‘ðxÞ ¼ f ðW‘x þ d‘Þ acts as

both a localized nonGaussian LMSER for modeling a

mixture of nonGaussian densities and a competitive ICA on

x generated from real independent sources.

Again, from Eq. (28) we can make model selection by the

criteria given by the last three rows of Table 4.

4.4. Mixture of independent mappings: competitive ICA

versus P-ICA

The role of the above discussed competitive ICA can also

be understood as mapping samples of x into k clusters with

each cluster in a representation of least redundant, i.e. in the

form of independent components. Moreover, these clusters

are described by a mixture of independent densities qðyl‘Þ in

Eq. (103).

Similarly, a F-architecture in Section 2.2.3 also performs

such a role. Putting qðyl‘Þ from Eq. (103) in Eq. (51), we

start at a special case k ¼ 1 and zq ¼ 1: In this case, Eq. (51)

is simplified into

Hðp; qÞ ¼
1

N

XN
t¼1

�
0:5 lnjWðxtÞW

TðxtÞj þ ln qðytÞ
�
; ð109Þ

which is exactly the cost function that leads to the nonlinear

LPM-ICA algorithm (or particularly the LPM-ICA algor-

ithm at the special case f ðrÞ ¼ r) (Xu, Yang, & Amari,

1996; Xu, 1998b; Xu et al., 1998). Moreover, when W is full

rank and the function form of qðyÞ is pre-specified,

it becomes simply JðWÞ ¼ ð1=NÞ
PN

t¼1 ½0:5 lnlWWTlþ
ln qðWxtÞ�; which is the well known cost obtained from

several perspectives (Amari, Cichocki, & Yang, 1996; Bell

& Sejnowski, 1995; Gaeta & Lacounme, 1990).

L. Xu / Neural Networks 15 (2002) 1125–1151 1147

Particularly, with f(r) by Eq. (98) and q(y) by Eq.

(95), we have

WðxÞ ¼ lWWTl0:5
Yk

j¼1

qs

�
yðjÞ
�

with qsðrÞ ¼ dsðrÞ=dr.

Then, it follows from Eq. (109) that

Hðp; qÞ ¼ 0:5 lnlWWTl

þ
1

N

XN
t¼1

Xk

j¼1

�
ln qsðy

ð jÞ
t Þ þ �y

ð jÞ
t ln qj þ ð1 2 �y

ð jÞ
t Þln ð1 2 qjÞ

�
;

where y ¼ Wx and �y ¼ sðyÞ. Then, we make max Hðp; qÞ

with not only W updated by the following natural gradient

ascent:

Wnew ¼ Wold þ gtðI þ fyyTÞWold
;

q0
sðrÞ ¼

dqsðrÞ

dr
¼

d2sðrÞ

dr2
;

fy ¼

"
q0

sðy
ð1ÞÞ þ qsðy

ð1ÞÞln
qnew

1

1 2 qnew
1

;…;

q0
sðy

ðkÞÞ þ qsðy
ðkÞÞln

qnew
k

1 2 qnew
k

#

but also qj updated as in Eq. (97) in order to be applicable to

the cases that consist of both super-Gaussian and sub-

Gaussian sources, since

kj ¼ E
�
�y
ð jÞ 2 qj

�4
23

�
E
�
�y
ð jÞ 2 qj

�2�2
$ 0

if

qj .
3 þ

ffiffi
3

p

6
or qj ,

3 2
ffiffi
3

p

6
;

and kj , 0

if

3 þ
ffiffi
3

p

6
$ qj $

3 2
ffiffi
3

p

6
:

In a general case with k . 1; as shortly discussed in Xu

(2001a), Eq. (51) leads to a competitive ICA algorithm that

implements a nonlinear ICA (or simply ICA for f ðrÞ ¼ r) at

different locations, which map samples separately to

different clusters in a mixture of independent densities

qðyl‘Þ: Moreover, ptð‘Þ can also be given by the soft

weighting via Eq. (52), instead of giving by a WTA

competition equation (51).

All these types of ICA learning can be implemented by

simplifying the adaptive learning procedure in Table 1. For

implementing Eq. (51), we get

Step 1 : ŷ‘ ¼ W‘x þ d‘; yt ¼ f ðŷ‘t
Þ;

tnew ¼ told þ 1;

Step 2ðaÞ : Get ptð‘Þ by either Eq :ð51Þ for best

harmony or Eq: ð52Þ for least Kullback divergence;

Step 2ðbÞ : zqðtÞ ¼ zqðt 2 1Þ

þ
X
‘[Lt

""W‘ðxtÞW
T
‘ ðxtÞ

""0:5qðyt;‘l‘Þ;

gt;‘ ¼ g0

�
ptð‘Þ

tnew
2 Ið‘ [LtÞg

d
t;‘

�
;

gd
t;‘ ¼

""W‘ðxtÞW
T
‘ ðxtÞ

""0:5qðyt;‘l‘Þ
zqðtÞ

;

Step 3 : Same as in Table 1;

Step 4 : Same as in Table 1 with a detailed example

given in Table 3ðCÞ of Xu ð2001aÞ;

Step 5 : dnew
‘t

¼ dold
‘t

þ gt;‘Dsðŷ‘Þfy;

Wnew
‘t

¼ Wold
‘t

þ gt;‘

8<
:
�
I þ Dsðŷ‘Þf

y
�
Wold

‘t
xt

�T�
Wold

‘t
; ðaÞ

Dsðŷ‘Þf
yxT

t ; ðbÞ;

ð110Þ

where Dsðŷ‘Þ and fy are same as in Eq. (100). On updating

W, the choice (a) comes from implementing Eq. (51), while

the choice (b) comes from implementing Eq. (53). The

former is an extension of Eq. (74) in Xu (2001a) and the

latter provides another type of ICA learning algorithm that

actually implementing a nonlinear Hebbian rule in help of a

conscience control via gt;‘:

We further compare the above F-architecture based

competitive ICA with those competitive ICA implementations

by the local LMSER in Sections 4.2 and 4.3. On one hand, one

advantage here is saving computing cost on the Ying passage

qðxly;‘Þ: This can be observed by considering a BI-

architecture at the special case s2 ¼ 0 and qðxly; ‘Þ ¼
dxðx 2 xðyÞÞ: In this case, there is no need to consider the

reconstruction error. We only need to consider Eq. (108) where

zq ¼ dxð0Þz
y
q; z

y
q ¼

PN
t¼1

Qm
j¼1 qðy

ðjÞ
t luðjÞÞ and ln dxð0Þ cancels

its counterpart 2lndxð0Þ that comes from the reconstruction

error. As a result, Eq. (108) becomes equivalent to the harmony

learning on the F-architecture given in Eq. (53).

On the other hand, such a connection also reveals one key

advantage of the competitive ICA implementations by the

local LMSER in Sections 4.2 and 4.3, where a reconstruction

is generated from yt via the Ying passage to best fit the current

L. Xu / Neural Networks 15 (2002) 1125–11511148

observation xt: For this best reconstruction, the mapping from

xt to yt must retain the main information about xt: This is a

feature similar to that of PCA. Actually, LMSER by Eq. (102)

indeed implements PCA when sðrÞ ¼ r: It is why LMSER is

also called nonlinear PCA for a nonlinear sðrÞ:Alternatively, it

may be better to be called principal ICA (P-ICA) (Xu, 2001a)

since it retains the principal information about xt; in an analog

to PCA. This nature makes it not only possible to consider

noise in observation and but also make the concept of model

selection meaningful.

Unfortunately, the two advantages disappear in the above

F-architecture based competitive ICA. Without the Ying

passage, there is no concept on which components of y or

what kind of y contains the main information of x since it is

only required that qðyl‘Þ is independent among components.

As a result, not only noise was not taken into consideration,

but also we are not able to determine what is an appropriate

dimension for y.

However, during learning by Eq. (110), automatic

selection on the cluster number k is still workable

via its learning rule on a‘: Also, we can simply set

a‘ ¼ 1=k and select k by Eq. (28) with Hðp; qÞ given by

Eq. (51).

5. BYY harmony topological self-organizing

5.1. Two computational strategies for topological self-

organizing

Up to now, we have discussed BYY harmony learning on

several types of finite mixture models qðxl‘Þqð‘Þ; x [X;

‘ [L; with L ¼ {1;…; k} being a nonstructural set. That is,

topological relation among individual models has been not

considered yet.

We further consider the cases that L has a given regular

d-dimensional lattice topology (e.g. 2D or 3D lattice). Since

the label ‘ associated with the observed x is invisible, the

dependence structures across different objects are not

recoverable. Alternatively, we re-establish a dependence

structure according to a general belief that objects locating

topologically in a small neighborhood N‘ should be same or

similar to each other. For a knot ‘ on this lattice, its

neighborhood N‘ consists of 2d knots that are directly

connected to ‘:

Given a criterion or measure to judge whether two

objects are same or similar, a direct placement of all the

objects on such a d-dimensional lattice topology is

computationally a NP hard problem. Interestingly, a good

approximate solution for this problem is provided by

biological brain dynamics of self-organization (von der

Malsburg, 1973), featured by a Mexican hat type inter-

action, namely, neurons in near neighborhood excite each

other with learning, while neurons far away inhibit each

other with de-learning.

Computationally, such a dynamic process can be

simplified by certain heuristic strategies. In the following,

we consider two typical ones.

(1) One member wins, a family gains. That is, as long as

one member wins in the WTA competition, all the members

of a family gain regardless whether other members are

strong or not. This direction is initialized by a simple and

clever technique, i.e., the well known Kohonen self-

organizing map (Kohonen, 1982, 1995), that is

‘t ¼ arg min
‘

kxt 2 c‘k
2
;

cnew
‘ ¼ cold

‘ þ g0

�
xt 2 cold

‘

�
; ;‘ [N‘t

; ð111Þ

where N‘t
is a given neighborhood of ‘t: In the

literatures, a great number of studies have been made

on extending Eq. (111). For examples, the Euclidean

distance kxt 2 c‘k
2

has been extended to various other

distances, ranging from subspace distance to symbolic

distance (Kohonen, 2001).

Here, we attempt to summarize all the existing studies as

special cases of the following general formulation:

Step 1 : ‘t ¼ max
‘

½qðxl‘Þqð‘Þ�;

Step 2 : to increase qðxl‘Þqð‘Þ; ;‘ [N‘t

via updating their parameters:

ð112Þ

E.g. when qðxl‘Þ ¼ Gðxlc‘;s
2IÞ and qð‘Þ ¼

P
j[L

1
k
dð‘2 jÞ;

Eq. (112) returns back to Eq. (111).

(2) Strongers gain and then teaming together. That

is, a number of strongers are picked as winners who not

only gain learning but also are teamed together such

that they become the neighbors to each other. More

specifically, we have

Step 1 : Let Nw to consist of every ‘ [L that

corresponds to each of the first 2m þ 1 largest ones

ðe:g: 4 þ 1 or 8 þ 1Þ of qðxl‘Þqð‘Þ;

Step 2 : Increase qðxl‘Þ; qð‘Þ; ;‘ [Nw

via updating their parameters;

Step 3 : Locate ;‘ [Nw according to their values of

qðxl‘Þqð‘Þ in such a way that the largest locates at ‘t;

and every other ‘ [Nw that was not in the

neighborhood of ‘t is exchanged with a neighbor of ‘t

that does not belong to Nw: ð113Þ

The second strategy is new in the literature. It can

speed up self-organization, especially in the early stage

of learning. Also, we can combine the first and the

L. Xu / Neural Networks 15 (2002) 1125–1151 1149

second strategies by using the second in the early stage

and subsequently switching to the first.

5.2. BYY harmony topological self-organizing

Following a deriving line similar to that used in

developing temporal BYY harmony learning in Xu

(2000), we can obtain a more theoretically justified

approach for implementing BYY harmony topological

self-organizing, in help of considering x ¼ {x; ‘}; ‘ [L

on a lattice L and introduce a Markovian property that x

located at ‘t relates only to those knots in a small

neighborhood of ‘t:

However, for simplicity and easy implementation, we

would rather adopt the above two strategies to make BYY

harmony topological self-organization. Particularly, the first

strategy is easy to be added to those learning algorithms

introduced in the previous sections.

The key point is to make the following modification, i.e.

ptð‘Þ ¼ d‘;‘t
¼

1; ‘ ¼ ‘t;

0; otherwise;

(

is replaced with ptð‘Þ ¼
1; ;‘ [N‘t

;

0; otherwise;

(
ð114Þ

where N‘t
is a given small neighbor of ‘t: For a lattice L, N‘t

usually consists of 2m neighbors (e.g. four or eight

neighbors) of ‘t: All the other parts in the previous learning

algorithms remain unchanged, with topological self-

organizing implemented during learning.

Several typical topics are listed as follows:

† Elliptic RPCL map. With Eq. (114) used in Section 3.2,

the elliptic RPCL learning will also organize those

elliptic clusters topologically in a map;

† Structural RPCL based subspace map. With Eq. (114)

used in Section 3.3, by using Eq. (84) we can get learned

subspaces to be organized topologically in a map;

† Gaussian ME map and RBF net map. With Eq. (114)

used in Section 3.4 and especially in Eq. (87);

† LMSER map. With Eq. (114) used in Section 4.2;

† NonGaussian LMSER map. With Eq. (114) used in

Section 4.3;

† ICA map. With Eq. (114) used in Section 4.4.

The features of these topological self-organizing maps

can be understood from two perspectives. On one hand,

inheriting the advantages of the classical Kohonen map, the

establishment of topological structure not only further

regularizes learning via interaction among neighbors but

also makes a fast retrieval of the desired object feasible

since the similarity among neighbors acts as an associative

key for searching, which are much preferred when applying

these learnings for data-mining. Moreover, the performance

is more robust in a sense that some damage part are

recoverable from its neighbors. On the other hand, being

different from the Kohonen map, not only it has been

extended to using various types of models as a unit on the

map, but also it combines the advantages of BYY harmony

learning, particularly the mechanism of conscience learning

and automatic model selection, as described in the previous

sections, into topological self-organization.

6. Conclusions

Fundamentals of BYY learning have been systemically

elaborated, and new advances are obtained on BYY systems

with modular inner representations. New results are

obtained on not only Gaussian mixture based MSE

clustering, elliptic clustering, subspace clustering but also

nonGaussian mixture based clustering with each cluster

represented via either Bernoulli–Gaussian mixtures or

independent real factor models. Moreover, typical algor-

ithms for ICA and competitive ICA are summarized from

the perspective of BYY harmony learning, with a

comparison made on the P-ICA and competitive P-ICA.

Furthermore, new results are obtained on Gaussian ME,

RBF net, and Kernel regression. Even further, two strategies

are presented for extending all these mixture models into

self-organized topological maps. All these results include

not only adaptive learning algorithms with model selection

automatically made during learning but also model selection

criteria for being used in a two phase style learning.

Acknowledgments

The author would like to express thanks to the reviewers

for their comments that improve the original manuscript.

References

Ahalt, S. C., Krishnamurty, A. K., Chen, P., & Melton, D. E. (1990).

Competitive learning algorithms for vector quantization. Neural

Networks, 3, 277–291.

Akaike, H. (1974). A new look at the statistical model identification. IEEE

Transactions on Automatic Control, 19, 714–723.

Amari, S.-I., Cichocki, A., & Yang, H. H. (1996). A new learning algorithm

for blind separation of sources. In D. S. Touretzky, et al. (Eds.),

Advances in neural information processing, (Vol. 8) (pp. 757–763).

Cambridge: MIT Press.

Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization

approach to blind separation and blind de-convolution. Neural

Computation, 7, 1129–1159.

Bishop, C. M. (1995). Training with noise is equivalent to Tikhonov

regularization. Neural Computation, 7, 108–116.

Bozdogan, H. (1987). Model selection and Akaike’s information criterion:

The general theory and its analytical extension. Psychometrika, 52,

345–370.

Bozdogan, H., & Ramirez, D. E. (1988). FACAIC: Model selection

algorithm for the orthogonal factor model using AIC and FACAIC.

Psychometrika, 53(3), 407–415.

L. Xu / Neural Networks 15 (2002) 1125–11511150

Cavanaugh, J. E. (1997). Unifying the derivations for the Akaike and

corrected Akaike information criteria. Statistics and Probability

Letters, 33, 201–208.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum-likelihood

from incomplete data via the EM algorithm. Journal of Royal Statistical

Society B, 39, 1–38.

Devroye, L., Györfi, L., & Lugosi, G. (1996). A probability theory of

pattern recognition. Berlin: Springer.

Gaeta, M., & Lacounme, J.-L. (1990). Source separation without a priori

knowledge: The maximum likelihood solution. Proceedings of

EUSIPCO90, 621–624.

Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural

architectures. Neural Computation, 7, 219–269.

Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description

length and Helmholtz free energy. Advances in NIPS, 6, 3–10.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991).

Adaptive mixtures of local experts. Neural Computation, 3, 79–87.

Jordan, M. I., & Jacobs, R. A. (1994). Hierarchical mixtures of experts and

the EM algorithm. Neural Computation, 6, 181–214.

Jordan, M. I., & Xu, L. (1995). Convergence results for the EM approach to

mixtures of experts. Neural Networks, 8, 1409–1431.

Karhunen, J., & Joutsensalo, J. (1994). Representation and separation of

signals using nonlinear PCA type Learning. Neural Networks, 7, 113–

127.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by

simulated annealing. Science, 220, 671–680.

Kohonen, T. (1982). Self-organized formation of topologically correct

feature maps. Biological Cybernetics, 43, 59–69.

Kohonen, T. (1995). Self-organizing maps. Berlin: Springer.

Kohonen, T. (2001). Mining and mapping biochemical data from the

internet. Plenary talk, IJCNN01, Washington DC, 1–19 July, 2001.

Mackey, D. J. C. (1992). A practical Bayesian framework for back-

propagation. Neural Computation, 4, 448–472.

Makhoul, J., Rpucos, S., & Gish, H. (1985). Vector quantization in speech

coding. Proceedings of IEEE, 73, 1551–1558.

von der Malsburg, Ch. (1973). Self-organization of orientation sensitive

cells in the striate cortex. Kybernetik, 14, 85–100.

McLachlan, G. J., & Basford, K. E. (1988). Mixture models: Inference and

application to clustering. New York: Dekker.

Moody, J., & Darken, J. (1989). Fast learning in networks of locally-tuned

processing units. Neural Computation, 1, 281–294.

Neath, A. A., & Cavanaugh, J. E. (1997). Regression and time series model

selection using variants of the Schwarz information criterion.

Communications in Statistics A, 26, 559–580.

Nowlan, S. J. (1990). Max likelihood competition in RBF networks.

Technical Report CRG-Tr-90-2, Department of Computer Science,

University of Toronto.

Redner, R. A., & Walker, H. F. (1984). Mixture densities, maximum

likelihood, and the EM algorithm. SIAM Review, 26, 195–239.

Rivals, I., & Personnaz, L. (1999). On cross validation for model selection.

Neural Computation, 11, 863–870.

Rissanen, J. (1986). Stochastic complexity and modeling. Annals of

Statistics, 14(3), 1080–1100.

Rissanen, J. (1999). Hypothesis selection and testing by the MDL principle.

Computer Journal, 42(4), 260–269.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning

internal representations by error propagation (Vol. 1). Parallel

distributed processing, Cambridge, MA: MIT Press.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of

Statistics, 6, 461–464.

Stone, M. (1974). Cross-validatory choice and assessment of statistical

prediction. Journal of the Royal Statistical Society B, 36, 111–147.

Stone, M. (1978). Cross-validation: A review. Mathematics, Operations

and Statistics, 9, 127–140.

Sugiura, N. (1978). Further analysis of data by Akaike’s information

criterion and the finite corrections. Communications in Statistics A, 7,

12–26.

Tikhonov, A. N., & Arsenin, V. Y. (1977). Solutions of ill-posed problems.

Baltimore, MD: Winston & Sons.

Tipping, M. E., & Bishop, C. M. (1999). Mixtures of probabilistic principal

component analysis. Neural Computation, 11, 443–482.

Vapnik, V. N. (1995). The nature of statistical learning theory. Berlin:

Springer.

Wallace, C. S., & Boulton, D. M. (1968). An information measure for

classification. Computer Journal, 11, 185–194.

Wallace, C. S., & Dowe, D. R. (1999). Minimum message length and

Kolmogorov complexity. Computer Journal, 42(4), 270–280.

Xu, L. (1993). Least mean square error reconstruction for self-organizing

neural-nets. Neural Networks, 6, 627–648. Its early version on

Proceedings of IJCNN91’Singapore, 1991, pp. 2363–2373.

Xu, L. (1995). A unified learning framework: multisets modeling learning.

Proceedings of 1995 World Congress on Neural Networks, 1, 35–42.

Xu, L. (1996). A unified learning scheme: Bayesian–Kullback YING-

YANG machine. Advances in Neural Information Processing Systems,

8, 444–450. A part of its preliminary version on Proceedings of

ICONIP95, 1995, pp. 977–988.

Xu, L. (1997). Bayesian Ying-Yang machine, clustering and number of

clusters. Pattern Recognition Letters, 18(11–13), 1167–1178.

Xu, L. (1998a). RBF nets, mixture experts, and Bayesian Ying-Yang

learning. Neurocomputing, 19(1–3), 223–257.

Xu, L. (1998b). Bayesian Kullback Ying-Yang dependence reduction

theory. Neurocomputing, 22(1–3), 81–112.

Xu, L. (2000). Temporal BYY learning for state space approach, hidden

Markov model and blind source separation. IEEE Transactions on

Signal Processing, 48, 2132–2144.

Xu, L. (2001a). BYY harmony learning, independent state space and

generalized APT financial analyses. IEEE Transactions on Neural

Networks, 12(4), 822–849.

Xu, L. (2001b). Best harmony, unified RPCL and automated model

selection for unsupervised and supervised learning on Gaussian

mixtures, three-layer nets and ME-RBF-SVM models. International

Journal of Neural Systems, 11(1), 43–69.

Xu, L. (2002a). Bayesian Ying Yang harmony learning. In M. A. Arbib

(Ed.), The handbook of brain theory and neural networks (second

edition). Cambridge, MA: The MIT Press, in press.

Xu, L. (2002b). Mining dependence structures from statistical learning

perspective. Lecture Notes in Computer Science: Proceedings of the

Third International Conference on IDEAL, Berlin: Springer.

Xu, L., Cheung, C. C., & Amari, S.-I. (1998). Learned parametric mixture

based ICA algorithm. Neurocomputing, 22(1–3), 69–80. A part of its

preliminary version on Proceedings on ESANN97, pp. 291–296.

Xu, L., Jordan, M. I., & Hinton, G. E. (1995). An alternative model for

mixtures of experts. In J. D. Cowan, et al. (Eds.), Advances in neural

information processing systems, (Vol. 7) (pp. 633–640). Cambridge,

MA: MIT Press, Its preliminary version on Proceedings of WCNN’94,

San Diego, vol. 2, 1994, pp. 405–410.

Xu, L., Krzyzak, A., & Oja, E. (1993). Rival penalized competitive learning

for clustering analysis, RBF net and curve detection. IEEE Transactions

on Neural Networks, 4, 636–649.

Xu, L., Krzyzak, A., & Yuille, A. L. (1994). On radial basis function nets

and kernel regression: Statistical consistency, convergence rates and

receptive field size. Neural Networks, 7, 609–628.

Xu, L., Yang, H. H., & Amari, S.-I. (1996). Signal source separation by

mixtures accumulative distribution functions or mixture of bell-shape

density distribution functions. Research proposal, presented at

FRONTIER FORUM (speakers: D. Sherrington, S. Tanaka, L. Xu &

J. F. Cardoso), organised by S. Amari, S. Tanaka, & A. Cichocki,

RIKEN, Japan.

L. Xu / Neural Networks 15 (2002) 1125–1151 1151

	BYY harmony learning, structural RPCL, and topological self-organizing on mixture models&?show [super]☆[/super];
	Introduction
	BYY system and harmony learning
	BYY system, harmony learning, and regularization techniques
	Three typical architectures
	Least divergence versus best harmony

	Gaussian mixture and Gaussian mixture-of-experts
	MSE clustering, cluster number selection, and RPCL learning
	Elliptic clustering, cluster number selection, and elliptic RPCL
	Subspace clustering, structural RPCL, and dimension determination
	Gaussian ME and RBF nets
	Parzen window density, kernel regression, and support vectors

	NonGaussian mixture and mixture of independent mapping
	Bernoulli-Gaussian mixtures and structural clustering
	Structural clustering, local LMSER, and competitive P-ICA
	Independent factorized NonGaussians and local nonGaussian LMSER
	Mixture of independent mappings: competitive ICA versus P-ICA

	BYY harmony topological self-organizing
	Two computational strategies for topological self-organizing
	BYY harmony topological self-organizing

	Conclusions
	Acknowledgments
	References

