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Abstract

The two traditional tasks of object detection and star/galaxy classification in astronomy can be automated by neural networks because the

nature of the problems is that of pattern recognition. A typical existing system can be further improved by using one of the local Principal

Component Analysis (PCA) models. Our analysis in the context of object detection and star/galaxy classification reveals that local PCA is not

only superior to global PCA in feature extraction, but is also superior to gaussian mixture in clustering analysis. Unlike global PCA which

performs PCA for the whole data set, local PCA applies PCA individually to each cluster of data. As a result, local PCA often outperforms

global PCA for data of multi-modes. Moreover, since local PCA can effectively avoid the trouble of having to specify a large number of free

elements of each covariance matrix of gaussian mixture, it can give a better description of local subspace structures of each cluster when

applied on high dimensional data with small sample size. In this paper, the local PCA model proposed by Xu [IEEE Trans. Neural Networks

12 (2001) 822] under the general framework of Bayesian Ying Yang (BYY) normalization learning will be adopted. Endowed with the

automatic model selection ability of BYY learning, the BYY normalization learning-based local PCA model can cope with those object

detection and star/galaxy classification tasks with unknown model complexity. A detailed algorithm for implementation of the local PCA

model will be proposed, and experimental results using both synthetic and real astronomical data will be demonstrated.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The number of sky objects contained in astronomical

images are inherently huge. One typical example is the 3

terabytes POSS-II images containing objects of the order of

2 billion (Fayyad, Djorgovski, & Weir, 1996). In view

of this, the tasks of object detection and star/galaxy

classification, which are traditionally handled manually,

need to be automated by some systematic means. In the last

decade, fuelled by the development of neural networks and

machine learning, various methods related to neural

networks application in astronomy have been proposed in

Andreon, Gargiulo, Longo, Tagliaferri, and Capuano

(2000), Bertin and Arnouts (1996), Fayyad et al. (1996)

and Odewahn, Stockwell, Pennington, Humphreys, and

Zumach (1992).

Theoretically, object detection should precede star/ga-

laxy classification because the former is to detect the objects

out of the original image and the latter is to classify

the objects identified into stars and galaxies. In implemen-

tation the two tasks can be achieved algorithmically and the

whole process described in Andreon et al. (2000) is

summarized in Fig. 1.

Object is regarded as some connected pixels that are

brighter than a certain threshold in the original image.

Currently, two main approaches have been used for object

detection. The first approach detects object pixels indirectly

through discarding background pixels while the second

approach directly detects the object pixels. SExtractor

(Bertin & Arnouts, 1996) is a typical example that uses the

first approach. For this example, a background map is

constructed with a weak assumption that all the objects in

the plate material share the same background.

After discarding the background, a thresholding and

template frame based method is used for object detection.

A major drawback of this approach is that the template

frame parameter needs to be predefined heuristically.

SExtractor can be contrasted with NExt (Neural Extractor)

(Andreon et al., 2000) which belongs to the second

approach. Although application of this approach does not

require a predefined template frame, it is computationally
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intensive for large images as it takes each pixel, together

with some neighborhood pixels, as one input.

Subsequent to the task of object detection, the task of

star/galaxy classification comprises three steps, namely

feature selection, feature extraction, and classification.

In literature, all features of an object are used as input to

neural network classifier. For instance, there are 25 features

in Andreon et al. (2000) and 10 in Bertin and Arnouts

(1996). However, since most of the features are correlated,

the actual number of features that are useful for analysis can

be much smaller. As a result, if we can make use of some

feature extraction techniques to reduce redundancy

between attributes, more precise results may be obtained.

Although the so-called Sequential Backward Elimination

Strategy (SBES) (Bishop, 1995) has been adopted in

Andreon et al. (2000) to select several best features out of

the original 25, some useful information contained in the

discarded features will be lost as a consequence of its

suboptimal nature.

Several inadequacies mentioned above can be improved

via local subspace analysis. In this paper, our aim is to

introduce the local Principal Component Analysis (PCA)

model derived from the perspective of Bayesian Ying

Yang (BYY) normalization learning (Xu, 2001a,b) and to

highlight its potential application to the tasks of object

detection and star/galaxy classification. BYY normalization

learning is a special case of BYY harmony learning that

was firstly proposed in 1995 (Xu, 1995 and 1996) and

systematically developed in past years. This BYY harmony

learning acts as a general statistical learning framework not

only for understanding various existing statistical learning

approaches, but also making model selection implemented

either automatically during parameter learning or sub-

sequently after parameter learning via a new class of model

selection criteria. Also, this BYY harmony learning has

motivated three types of regularization, namely a data

smoothing technique that provides a new solution on the

hyper-parameter in a Tikinov-like regularization (Tikhonov

& Arsenin, 1977), a normalization with a new conscience

de-learning mechanism that has a nature similar to the rival

penalized competitive learning (Xu, Krzyzak, & Oja, 1993),

and a structural regularization by imposing certain structural

constraints. The details are referred to the recent papers (Xu,

2000; Xu, 2001a,b; Xu, 2002) that jointly provide a

symmetrical overview on advances obtained along this

direction.

The BYY normalization learning used in this paper takes

the advantages of the automatic model selection ability for

Fig. 1. Original system for implementation of object detection and star/galaxy classification.
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deciding the number of clusters and the normalization for

regularizing learning on data of high dimension and a small

size. The rest of the paper is organized in the following way.

Section 2 will be devoted to a discussion of the benefits of

local subspace analysis in general. Section 3 gives a detailed

algorithm for implementing the BYY normalization learn-

ing-based local PCA model proposed by Xu (2001b).

Section 4 will highlight some beneficial properties of the

algorithm that are considered useful for the two tasks

discussed above. Experimental illustrations using synthetic

data will be demonstrated in Section 5. In Section 6 we

will present some results using the BYY normalization

learning-based local PCA model with real astronomical

data. Section 7 will be devoted to concluding remarks.

2. Benefits of local subspace analysis from a general

perspective

In our opinion, local subspace analysis, or local PCA in

this paper, is beneficial to the tasks of object detection and

star/galaxy classification in two ways. First, local PCA is

better than global PCA for the step of feature extraction

shown in Fig. 1. Second, it can improve the step of

clustering. As a consequence, we conceive the original

system shown in Fig. 1 can be improved by adopting local

PCA in both feature extraction and clustering. The suggested

system is as shown in Fig. 2.

2.1. Local PCA vs global PCA for feature extraction

PCA is also known as KL transform (Jolliffe, 1986).

Mathematically, it can be expressed as

y ¼ ATx; ð1Þ

where x denotes the n-dimensional input vector, y denotes

p-dimensional transformed vector, A denotes the n £ p

orthonormal transformation matrix whose columns being

composed of p principal eigenvectors of the covariance

matrix of x: It is well known that when data dimension is

reduced from n to p; the Mean Square Error (MSE) upon

reconstruction will be minimized via PCA. As a result,

PCA can be employed in tasks related to dimension

reduction and feature extraction that are frequently

encountered in pattern recognition and image processing

(Beatty & Manjunath, 1997; Chitroub, Houacine, & Sansal,

2001; Jain, 1989; Taur & Tao, 1996).

Fig. 2. Suggested System for implementation of object detection and star/galaxy classification.
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However, the performance of PCA will deteriorate for

data with little or no global linearity. In such cases, it is

preferable to consider some nonlinear transformation tools.

For example, when the distribution of data is hardly linear in

the global sense as illustrated in Fig. 3, the optimal linear

descriptor which corresponds to the optimal feature for the

whole data set will run out of expectation. In contrast, as

shown in Fig. 4, the result can be improved to a large extent

by performing PCA individually for each cluster, thus

extracting three locally optimum features. Hereafter we will

use the term global PCA to denote the circumstance when

PCA is applied in a global sense on all data while local

PCA the circumstance when PCA is performed individually

on each cluster (Hinton, Dayan, & Revow, 1997; Hinton,

Revow, & Dayan, 1995; Xu, 1995; Xu, 1998).

2.2. Local PCA vs gaussian mixture for clustering

Mathematically, gaussian mixture takes the following

form:

pðxluÞ ¼
Xk

i¼1

aiGðxlmi;SiÞ; ð2Þ

with ai . 0 and
Pk

i¼1 ai ¼ 1: Gðxlmi;SiÞ refers to a

gaussian distributed random variable x with mean vector

mi and covariance matrix Si: Specifying a gaussian mixture

model is nothing more than estimating the parameters k and

{ai;mi;Si}
k
i¼1:

From a theoretical point of view, the gaussian mixture

model is already quite powerful in the sense that through the

covariance matrix Si it can describe each cluster in a

structure of either hyper-spherical or hyper-ellipsoid.

In contrast, the k-means clustering algorithm can only

deal with the case that structure of every cluster is

hyper-spherical, which is closely related to a special case

of the gaussian mixture model, i.e. a mixture of k gaussian

densities with equal proportion and equal variance s2I (Xu,

1997a). However, when data dimensionality is high, the

gaussian mixture model is not only time-consuming to

implement but also often yields poor accurate results.

In particular, description of the whole data space by the

covariance matrix is less preferred when some high

dimensional data can be more appropriately described by

a lower dimensional subspace. For the d-dimensional data,

the number of free elements needs to be specified for each

covariance matrix adds up to dðd þ 1Þ=2: When d is large

and the sample size is small, it is difficult to precisely

estimate all these free elements (Hinton et al., 1995; Xu,

2001b,c). Fortunately, such problems can be greatly

relieved by replacing the gaussian mixture model with the

local PCA model.

3. An algorithm for implementing the BYY

normalization learning based local PCA model

The local PCA algorithm proposed in Kambhatla and

Leen (1997) adopts a two-step approach on implementation.

First, learning based on the gaussian mixture model is

carried out. Subsequently, PCA is performed on the

covariance matrix of each cluster. This approach is

straightforward to perform, yet it makes no effort to

overcome the problems of gaussian mixture mentioned

above. Another approach seeks to solve the problem of a

large number of free elements of the covariance matrix via

constraining the covariance matrix in certain subspace

structure form (Luo, Wang, & Kung, 1999; Tipping &

Bishop, 1999). Nevertheless, being based on Maximum

Likelihood (ML) learning, such models have no model

selection ability and therefore are not able to determine the

number of clusters. Although some recent works (Jain,

Duin, & Mao, 2000; Olivier, Jouzel, & Matouat, 1999)

achieve model selection via enumerating some cost

functions, a major tradeoff for adoption is the increasedFig. 3. Data as described by global PCA.

Fig. 4. Data as described by local PCA.
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time complexity owing to re-implementation of the whole

algorithm for different cluster number k:

Apparently a better model would be the one with

automatic model selection ability. The word automatic

means model complexity is determined in parallel with

parameter learning. The local PCA model proposed by

Xu (2001b) under the general framework of BYY

normalization learning is endowed with such ability.

3.1. BYY normalization learning

As a special case of BYY harmony learning (Xu, 1995

and 1996; Xu, 2000; Xu, 2001a,b; Xu, 2002), the BYY

normalization learning shares its key abilities of automatic

model selection and regularization. First, the least complex-

ity nature of the BYY harmony learning results in a

winner-take-all (WTA) type competition that makes

model selection. Second, the normalization provides a

‘conscience’ that introduces a certain degree of de-learning

during the learning process such that the combination of

WTA and conscience works with a nature similar to the

rival penalized competitive learning (Xu et al., 1993) that is

able to make clustering with the number of clusters selected

automatically during learning. The detail can be referred to

(Xu, 2001b; Xu, 2002).

3.2. Covariance matrix structure of gaussian mixture

We consider the structure of the covariance matrix of the

gaussian mixture model in the following form (Xu, 2001b)

S ¼ s0I þ WCWT
; ð3Þ

where W ¼ ½f1;f2;…;fm�; m # d with d being dimension

of the observed data, C ¼ diagðs1;s2;…;smÞ; with

WTW ¼ I; sj . 0 ðj ¼ 0; 1; 2;…;mÞ: Decomposition in

the above form waives the need to specify dðd þ 1Þ=2 free

parameters for each covariance matrix of gaussian mixture,

especially for high-dimensional data d with m p d: In effect,

the number of free elements is substantially reduced to

½mð2d 2 m þ 1Þ=2�:

It follows that the set of eigenvalues of S in Eq. (3) is:

{l1 ¼ s0 þ s1;…; lm ¼ s0 þ sm;lmþ1 ¼ s0;…;ld

¼ s0} ð4Þ

and the corresponding set of eigenvectors is:

{v1 ¼ f1;…; vm ¼ fm; vmþ1;…; vd}: ð5Þ

Since {fj}
m
j¼1 correspond to the m largest eigenvalues, they

are the m principal components of the covariance matrix.

Consider a gaussian mixture model with k gaussian

components. The set of parameters to be determined

becomes Q< {k;m} with Q ¼ {ai;mi;Wi;Ci;si;0}k
i¼1:

In general, for u [ Q; updating via BYY normalization

learning is typically (Xu, 2001b)

unew ¼ uold þ h0htðiÞ7u ln½aiGðxlmi;SiÞ�; ð6Þ

where Si is in the decomposed form as in Eq. (3), h0 is the

learning step size, 7u denotes gradient with respect to u in

the ascent direction of ln½aiGðxlmi;SiÞ�: A key point is the

coefficient hðiÞ resulted from an interaction between a WTA

type competition and a ‘conscience’ de-learning.

This coefficient hðiÞ not only can take a positive sign and

thereby implying learning, but also can be negative and

implying de-learning, which is similar to the rival penalized

competitive learning (Xu et al., 1993) that is able to

make clustering with the number of clusters selected

automatically during learning.

Specific algorithm for learning and updating {ai;mi}
k
i¼1

can be found in Xu (2001b). To derive an algorithm

for learning {Wi;Ci;si;0}k
i¼1 of Eq. (3) requires

two constraints to be imposed. First, si;j . 0;

i ¼ 1; 2;…; k; j ¼ 0; 1; 2;…;mi; where mi denotes the

number of principal components of cluster i and second,

WT
i Wi ¼ I: The first constraint will ensure S being positive

definite. The second constraint will ensure f’s being

mutually orthonormal, thus fulfilling the definition

of principal components. In implementation, the first

constraint can be satisfied via a simple transformation of

variables while the second constraint, being a typical

constraint optimization problem, may be solved by a

constraint gradient projection method which is similar to

the so-called Gradient Projection Method (see, for instance,

Papalambros and Wilde (2000)). Alternatively, learning on

{Wi;Ci;si;0}k
i¼1 of Eq. (3) can also be made by the Stiefel

manifold based algorithms proposed in Xu (2002).

A comparison on different implementing algorithms will

be made elsewhere.

3.3. Updating rules for the algorithm

3.3.1. Updating rules for s0;C

Updating si;0 and Ci requires the first constraint to be

satisfied. This can be achieved by writing si;0 ¼ e6i and

Ci ¼ dgðeViÞ; i ¼ 1; 2;…; k; where Vi is a diagonal matrix,

eVi and dg(·) is defined as for follows. For any arbitrary

matrices A;B;B ¼ eA is defined as Bm;n ¼ eAm;n ; and

B ¼ dgðAÞ is defined as Bi;j ¼ Ai;j for i ¼ j and 0 otherwise.

Instead of directly modifying each si;0 and Ci; updating can

be indirectly made via 6i and each Vi as shown in Table 1.

3.3.2. Updating rules for W

Updating W requires the second constraint to be satisfied

and may be achieved in two steps. First, parameter learning

is carried out as in Eq. (6). Second, principle components,

ranked in non-ascending order of their respective eigen-

values, are projected to a direction orthogonal to the

subspace spanned by their predecessors. For illustrative

Z.-Y. Liu et al. / Neural Networks 16 (2003) 437–451 441



purpose, consider the simple problem shown below

max f ðf1;f2Þ

subject to h ¼ fT
1f2 ¼ 0;

where f1;f2 are two column vectors. This problem can

be solved in two steps. In step 1, update fi by

fnew
i ¼ fold

i þ hPi7fi
ðf Þ where 7fi

ðf Þ denotes the partial

derivative of f with respect to fi; h is the learning rate, Pi is

a projection matrix defined by Pi ¼ I 2 7fiðhÞð7
T
fi
ðhÞ

7fi
ðhÞÞ217T

fi
ðhÞ; by which the vector fi is projected to a

direction that is orthogonal to another one (or the others if

there are more than two vectors). Taking the above problem,

for example, we have 7f1
ðhÞ ¼ 7f1

ðfT
1f2Þ ¼ fold

2 : As each

principal component undergoes updating individually,

the principal components may not be orthogonal to each

other anymore. As a result, step 2 seeks to ensure that

mutual orthogonality is preserved.

Specifically, W is updated according to the two steps

shown in Table 2.

4. Some beneficial properties of the BYY normalization

learning-based local PCA model

In this section, we would like to highlight some of

the beneficial properties of the BYY normalization

learning-based local PCA model not shared by their

counterparts and discuss their contribution to the tasks of

object detection and star/galaxy classification.

4.1. Selecting the number of clusters k

Model selection is important for the tasks of object

detection and star/galaxy classification because model scale

and complexity is unknown. For example, the number of

clusters is blind before the step of clustering and thus is one

of the unknowns that needs to be determined.

Conventionally, the methodology of model selection via

cost function has been developed. In literature, cost

functions used for the purpose of model selection include

minimum description length (Barron, Rissanen, & Yu,

1998), Akaike’s information criterion (Akaike, 1974), and

harmony value (Xu, 2001a), etc. Model selection via the

cost function approach usually involves enumeration of the

objective function for different k’s and choosing the k that

makes the function attain minimum or maximum. However,

this approach is repetitive and inefficient. In contrast,

model selection can be done during parameter estimation by

the normalization learning-based local PCA algorithm (Xu,

2001b).

4.2. Deciding the number of principal components m

Deciding the number of principal components for each

cluster forms the core of local subspace analysis. It is

another model selection problem for the local PCA model.

Interpretation of the number m can be different depending

on the purpose of the original task (Hinton et al., 1997; Luo

et al., 1999; Tipping & Bishop, 1999). Viewed from the

perspective of dimension reduction, the number of principal

components could mean the dimensionality of each cluster.

Moreover, it is also the number of features when similar

question is discussed under the context of feature extraction.

Traditionally, the ratio of preserved variance by the first m

principal components as shown below is used as the criteria

Table 1

Updating rules for s0;C

si;0 : si;0 ¼ ez
new
i ;

6new
i ¼ 6old

i þ 0:5h0s
old
i;0 Ni;ef TrððSold

i Þ21RiÞ;

Ci :
Cnew

i ¼ dgðeV
new
i Þ;

Vnew
i ¼ Vold

i þ 0:5h0Ni;efC
old
i dgðWT

i ðS
old
i Þ21RiWiÞ;

where Ni;ef ¼
PN

t¼1 htðiÞ with htðiÞ being the normalization coefficient

defined in Xu (2001b),

h0 denotes the learning step

size,
Ri ¼ ðSiðS

old
i Þ21 2 IÞ;

Si ¼
1

Ni;ef

XN
t¼1

htðiÞei; e
T
i;t;

ei;t ¼ xt 2 mold
i ; i ¼ 1; 2;…; k:

Table 2

Updating rules for W

Step 1

Wnew
i ¼ Wold

i þ h0Ni;ef
~dWi;

~dWi is a d £ mi matrix with jth column ~dwi;j;
~dwi;j ¼ Pi;jdwi;j;

dwi;j denotes the jth column vector of dWi;

dWi ¼ Cold
i ðSold

i Þ21ðSiðS
old
i Þ21 2 IÞWold

i ;

Pi;j ¼ I 2 Mi;jðM
T
i;jMi;jÞ

21MT
i;j;

Mi;j is a d £ ðmi 2 1Þ matrix derived from Wold
i by omitting the jth column

of Wold
i :

Step 2

Sort the diagonal elements of Cnew
i ; together with the corresponding

column vectors in Wnew
i in non-ascending order. Then make each column

vector fnew
i;j of Wnew

i orthonormal (denoted by f̂new
i;j ) via f̂new

i;j ¼
~fnew
i;j =k ~fnew

i;j k; j ¼ 1; 2;…;mi;
~fnew
i;j ¼ ðI 2 Qi;jðQ

T
i;jQi;jÞ

21QT
i;jÞf

new
i;j ;

fnew
i;j denotes the jth column vector of Wnew

i ;

Qi;j is a d £ ðj 2 1Þ matrix with the lth column being fnew
i;l ; l ¼

1; 2;…; j 2 1:
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for deciding what m should be

r ¼

Xm

i¼1
liXd

i¼1
li

¼
ms0 þ

Xm

i¼1
si

ds0 þ
Xm

i¼1
si

: ð7Þ

However, this ratio increases monotonically with m: So a

critical value for this ratio should be set heuristically.

In contrast, in implementation the BYY normalization

learning-based local PCA model, we can adopt the following

cost function for selecting the best m (Xu, 1997b; Xu,

2001a; Xu, 2002):

min
m

JðmÞ ¼ 0:5 m lnð2pÞ þ m þ
Xm
i¼1

li þ dln s0

" #
; ð8Þ

which was first proposed by Xu in 1997, e.g. Eq. (16) in Xu

(1997b).

4.3. Avoiding the dead unit problem

The so-called dead unit problem (Grossberg, 1987;

Rumelhart & Zipser, 1985), also known as the under-utilized

problem, is induced by local optimization and is frequently

encountered during traditional clustering. In the extreme

case, this refers to a phenomenon where one cluster occupies

data belonging to two or more clusters, leaving the other

clusters with no data. This problem can be successfully

overcome by the BYY normalization learning-based local

PCA model due to the ‘conscience’ (Desieno, 1988; Xu et al.,

1993) ingredient of BYY normalization learning.

5. Experimental illustrations with synthetic data

Various experiments will be presented in this section

to illustrate the benefits of the BYY normalization

learning-based local PCA model discussed above.

To facilitate interpretation, they will be based solely on

synthetic data.

5.1. On the model selection ability of cluster number k

The aim of this experiment is to compare the perform-

ance of the BYY normalization learning-based local PCA

with that of the ML learning-based local PCA on selecting

the cluster number k: We use synthetic data generated from

four distinct gaussian densities with equal a priori

probability. The number of clusters k is initialized as 5

and the algorithm in Tipping and Bishop (1999) is used for

implementing the ML-based local PCA. Results are shown

in Figs. 5 and 6, respectively, with little circles indicating

mean positions. It is clear that the BYY normalization

learning-based local PCA is capable of locating the four

clusters and automatically getting rid of the redundant

Fig. 5. Results by the ML learning-based local PCA.
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cluster while its counterpart tries to use the initial five

clusters to describe the original four-cluster data with a poor

performance.

5.2. On exploring local subspace structure

This experiment aims to demonstrate the strength of local

PCA on exploring local subspace structure of high

dimensional data with small sample size. The BYY

normalization learning-based local PCA algorithm together

with the cost function JðmÞ given in Eq. (8) will be used in

implementation for deciding m: As pointed out in Section 2,

the performance of conventional gaussian mixture using the

covariance approach under similar setting is nevertheless

disappointing. Thus results by gaussian mixture will be

given as well for comparison. We assume the 20-dimen-

sional data generated from three distinct gaussian

densities with sample size 30, 50, and 70, respectively,

with the three covariance matrices being given by

S1 ¼ S2 ¼ S3 ¼ I20; S1ð1; 1Þ ¼ S2ð1; 1Þ ¼ S3ð1; 1Þ ¼ 36;

S2ð2; 2Þ ¼ S3ð2; 2Þ ¼ 25; S3ð3; 3Þ ¼ 16:

Results showing the value of JðmÞ for different

number of principal components are shown in Fig. 7.

Based on the criterion of selecting the number of

principal components that makes JðmÞ attain minimum,

one principal component is chosen for the third cluster,

two for the first cluster, and three for the second cluster.

Fig. 8 shows how the local subspace structure of

20-dimensional data can be appropriately described by

the six principal components.

In contrast, results obtained via decomposing the

covariance matrices obtained from modeling a gaussian

mixture in a conventional way is far from satisfactory

since the recovered principal components do not reflect

the actual local subspace structure, in terms of directions

of principal components, of the clusters. Without loss of

generality, only results of the third cluster is given here.

The single principal component whose corresponding

eigenvalue is much larger than that of the aggregate of

all the other 19 is [0.23, 0.25, 0.22, 0.22, 0.23, 0.22,

0.22, 0.22, 0.22, 0.23, 0.22, 0.21, 0.22, 0.22, 0.22, 0.23,

0.22, 0.22, 0.22, 0.22]T.

The most prominent characteristic of the principal

component is that all its attributes are roughly the same in

magnitude. However, this result differs vastly from the fact

described in Fig. 8. Intuitively, it is well known that the

more parameters that needs to be learned, the less exact will

be the results. For the local PCA model, the number of free

elements that requires to be learned is 124, but for the

gaussian mixture model the number is 638.

5.3. On avoiding the dead unit problem

The aim of this experiment is to illustrate the ability of the

BYY normalization learning-based local PCA to solve the

dead unit problem. For the sake of comparison, the ML

Fig. 6. Results by the BYY normalization learning-based local PCA.
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Fig. 7. Model selection of principal components by JðmÞ:

Fig. 8. Local subspace structure as described by the BYY normalization learning-based local PCA.
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learning-based local PCA will be used. Synthetic data from

three distinct gaussian densities with equal a priori

probability are generated. Experimental results for the ML

learning-based local PCA and the BYY normalization

learning-based local PCA are shown in Figs. 9 and 10,

respectively. In Fig. 9, the cluster with a1 ¼ 0:67 occupies

data belonging to two clusters, making the one with a2 < 0

‘dead’. In contrast, a1 ¼ a2 ¼ a3 ¼ 0:33 in Fig. 10 and the

dead unit problem is successfully avoided.

6. Star/galaxy detection and classification using local

PCA and astronomical data

This section is devoted to the discussion of real life

application of local PCA algorithm to object detection and

star/galaxy separation in astronomy. Experimental results

on all those steps related to local PCA as shown in Fig. 2

will be shown.

6.1. Data considerations and preprocessing

Experiments will be primarily based on the FITS

image shown in Fig. 11. It is a 2000 £ 2000 arcsec2

region on the North Galactic Pole and is extracted from

the POSS-II F No. 443 plate.

Usually the original image is first preprocessed by

dividing into DxDy=n
2 disjoint n £ n blocks, where Dx and

Dy denote the width of height of the original image,1

respectively. In this paper we set n ¼ 6: Consequently,

one block corresponds to a 36-dimensional input vector.

Since direct processing of the 36-dimensional vectors is still

rather inefficient, it is more desirable to reduce data

dimensionality before further analysis.

6.2. Feature extraction for object detection

Feature extraction for this step is essentially dimension

reduction for the input vector. The four steps summarized

below are used by the BYY normalization learning-based

local PCA for feature extraction.

1. Remove the mean value m from the original data X

2. Implement the BYY normalization learning-based local

PCA algorithm

3. Coding: Y ¼
Pk

y¼1 PilxWT
y ðX 2 myÞ

4. Decoding: X̂ ¼
Pk

y¼1 PilxðWyY þ myÞm

Fig. 9. Results by the ML learning-based local PCA.

1 The width refers to the x axis, or axis ‘1’ in FITS image, and height

refers to the y axis, or axis ‘2’ in FITS image.
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Fig. 10. Results by the BYY normalization learning-based local PCA.

Fig. 11. Original image.
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where

Pilx ¼
aiGðxlmi;SiÞXk

j¼1

ajGðxlmj;SjÞ

denotes the probability of the occurrence of ith component

conditioned on sample x: Y is the extracted feature and X̂ is

the reconstructed signal.

The effectiveness of feature extraction can be measured

by a performance index called Peak Signal to Noise Ratio

(PSNR) of the reconstructed signal

PSNR ¼ 10 log10

S2
p

MSE

" #
; ð9Þ

where Sp denotes the peak signal value. We use the

bottom-left (300 £ 300) region of the original image for

training and the top-left (300 £ 300) region for testing.

Fig. 12. Typical modules belonging to four different clusters.

Table 3

List of 20 selected features for each object

Number Features Symbol Number Features Symbol

1 Isophotal area A 11 Ratio 2 r2

2 Semimajor axis a 12 Central intensity I0

3 Semiminor axis b 13 Average surface brightness S

4 Position angle a 14 Second order moment x X2

5 Object diameter d 15 Second order moment y Y2

6 Ellipticity e 16 Second order moment xy XY

7 Kron radius rk 17 Ellipse para x Cxx

8 Area logarithm c2 18 Ellipse para y Cyy

9 Peak intensity Ip 19 Ellipse para xy Cxy

10 Ratio 1 r1 20 Elongation E
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Meanwhile, we fix the number of principal components at 4 to

keep the compression rate at 1:9. Similar results by applying

global PCA is also given here for comparison. The PSNR for

training data is 33.1 for global PCA and 34.83 for local PCA.

Using the transformation matrices obtained via training,

the PSNR of global PCA on test data is 33.73 while that of

local PCA is 35.29. The larger PSNR ratio indicates better

performance of local PCA for feature extraction.

6.3. Clustering for object detection

Based on the extracted features, the BYY normalization

learning-based local PCA model is used for clustering.

First, the number of clusters as determined by the automatic

model selection ability of the BYY normalization learning-

based local PCA model is 4 with a priori probability of each

cluster being 2.5, 87.8, 8.5, and 1.2%, respectively. Also, the

number of principal components required for each cluster is

found to be 3 for all four clusters. Next, the data belonging

to cluster 2 consisting of almost only background pixels are

discarded. The decision is based on inspection that almost

all blocks containing even one or two object pixels are

assigned to the other three clusters.

Considering that the other three clusters are still a

mixture of object and background pixels, some segmenta-

tion method is needed to remove the background pixels.

An efficient approach to remove the background pixels (Liu

& Liu, 2000) is to segment the image in each cluster by

some computed threshold values. The first row of Fig. 12

shows four typical modules, each belonging to a different

cluster. It is obvious that not all the 16 pixels of each module

pertaining to either cluster 1, 3, and 4 are object pixels.

Post segmentation results are shown in the second row of

Fig. 12 for comparison.

6.4. Results of feature extraction for star/galaxy

classification

Assume some 20 features as discussed in Andreon et al.

(2000), Bertin and Arnouts (1996) and Odewahn et al.

(1992) have been selected and shown in Table 3.

We now have a 20-dimensional feature vector for each

object. This high dimensional representation of an object is

not only difficult to manage, but also unnecessary due

to some dependencies between attributes. Thus, it is

reasonable to perform feature extraction, or dimension

reduction, before classification in the next step. Moreover,

since the 20 features are not measured on the same unit or

scale, it should be normalized first.

Model selection for both k and m is necessary for this

step. As usual, with the help of the BYY normalization

learning-based local PCA algorithm, we get the number

of clusters 3 and number of principal components for the

three clusters 3; 4; 4; respectively. For consistency, the

number of principal components of the first cluster is

forced to be 4 for obtaining a four-dimensional

combinational feature.

Fig. 13. Results of object detection and star/galaxy classification on the bottom-left portion of the original image.

Table 4

Comparative results of star/galaxy classification

Star/galaxy classification using

supervised BP networks with four

features extracted by

Local PCA Global PCA SBES

% Correct for training data 99.3 99.5 98.4

% Correct for test data 91.6 88.7 86.9
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For comparing the effectiveness of different strategies for

feature extraction, Table 4 shows the results of subsequent

star/galaxy classification using Back-Propagation (BP)

networks2. Graphical illustration of typical object detection

and classification results can be found in Fig. 13.

6.5. A digression

Although not directly related to local PCA, an important

post-processing technique called de-blend is worth men-

tioning. After the whole image is scanned and the

neighboring pixels are connected to get pixel chains, some

of them may consist of overlapped objects. De-blend using

similar segmentation strategy for clustering is required

before measurement and classification. The only difference

is that pixels are segmented within each connected pixel

chain one by one with a threshold value calculated

respectively for each pixel chain (Liu & Liu, 2000).

An example is shown in Fig. 14.

7. Conclusion

In the context of object detection and star/galaxy

classification, local subspace analysis, or local PCA,

is preferred to global PCA for the task of feature extraction,

and preferred to gaussian mixture for the task of clustering.

Compared with other local PCA models, the one based on the

BYY normalization learning firstly given in Xu (2001b) with

an algorithm developed earlier in this paper is found to be

superior mainly because of the automatic model selection

ability for locating cluster number k; the ability of selecting

the number of principal components m via a cost function and

of avoiding of the dead unit problem. Consequently,

by incorporating the BYY normalization learning-based

local PCA model into the original system for object detection

and star/galaxy classification, we have in effect improved the

structure of the old system, as shown by the experiments.
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