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Abstract

Via extending Least MSE Reconstruction(LMSER) unsupervised learn-
ing to local and hierarchical forms, a new Vector Quantization (VQ) scheme
is proposed which includes the conventional VQ scheme as a degraded case.
Algorithms for both local and hierarchical implementation of this new VQ
scheme have been designed. Experiments on coding the standard LENA
image have shown that the new scheme provides a promising new VQ tool
with several advantages.

1 Introduction

In 1991, the present author proposed the Least MSE Reconstruction(LMSER) unsu-
pervised learning for neural networks (Xu, 1991; 1993). Recently, it was applied to
the problem of signal separation by Karhunen & Joutsensalo (1994) and shown that it
improves the performance of Oja’s nonlinear constrained Hebbian learning (Oja et al,
1991) for the problem. This paper further extends LMSER learning into the local and
hierarchical forms, which provides a new VQ scheme that includes the conventional VQ
scheme as a degraded case. VQ plays important roles in speech and image coding (Rab-
banid& Jones, 1991). The key idea of the conventional VQ is using the center vector mx
to represent a set Si of data. The key idea of our new scheme is that a direction vector
wx, in addition to mux, is also used togather to form a line segment for representing Sk.
In sequel, secion 2 proposes the new VQ scheme and several local LMSER imple-
mentation algorithms. Section 3 gives a simple binary tree implementation algorithm
.and its experimental results. Section 4 discusses the new VQ scheme’s advantages.

2 Local LMSER for VQ

A set of points can be represented by a line segment passing a center vector my along
a direction specified by another vector wy such that the following error is minimized. -

Ee= Y I —ulf = ) fx — mu = wis(wifx — ma])Il%, (1)

XeS, XES,
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where U = wiz,z = s(y),y = wix',x’ = x — my. s(y) is a nonlinear differentiable
antisymmetrical function with s(0) =0, s(~y) = —s(y) and lim,_, ﬂ”ﬂ = constant >
0, e.g., linear s(y) = y or sigmoid s(y) = tanh(By). Actually, Eq.(1) is just the special
case of one layer LMSER learning rule proposed by Xu (1991,1993).
With this presentation for data set, we can propose a new VQ scheme as follows:
Given a set of vectors X = {x;}, we find a set of codebooks MW = {(mj, w;)}Ne
to represent X such that each x € X is assigned to one of the N, subsets according to

Se={x:ex <ej, j# K}, ej = |ix —my — w;s(wi[x — m,])|?, (2)
The set of codebooks is decided by minimizing the MSE error:
N. ’
Buw =3 EXL, EWl=73" Ik —mx - wis(wix — m])j. (3)
k=1 T xes,

Discarding wi’s (i.e. letting wx = 0), the new scheme will degrade into exactly the
conventional VQ, i.e., the new scheme includes the conventional VO as a special case.

The new scheme can be implemented by a competitive learning algorithm, e.g.,
the Rival Penalized Competitive Learning (RPCL) (Xu, Krzyzak & Oja, 1993), which
results in an algorithm:

. ——ac——*-g;k, if k=c¢, vee. = min; v,e;
new old _ . .
07" = 6" + D0k, D= a,-g—;f, if k=r, vre; = minjz. v;e;, (4)

0, otherwise.

Where 6x = [m), wi]’, and the parameters a¢, ar, 7;'s are the same as given in Xu,
Krzyzak & Oja (1993).
For the special case of linear s(y) = y, eq.{3) becomes

Ne
- Evw =7 EWL, EX =5 I(x—mu)(I - wawh)|P. ()
k=1 xgs,

The minimum of EY¥), can be reached at my = mj = -#IT; ZXESk x and Wi = wy

which is the principal component vector of Sk, that is, it is the eigenvector of Iy =
#1?* szsk (x —my)(x - m})T corresponding to the largest eigenvalue.

Suppose X is initially divided into exclusive subsets {Sx}M<, the following iterative
algorithm gives a code set MW such that Eaw reaches a local minimum:

Step 1 Take x € X, assume it is currently in S;, we check the possible changes
A = —AE}(\;)W and A; = AE)(\,J,)W, 7 # 1 that may result in if we remove if from S;
to Sy for j 5 i. The changes can be calculated according to eq.(5) via the new centers

as.mqld_l_x #54mqld+x o
mpPeY = ?—‘#S.»T’ m7eY = —-—J#—S—;_*_%—, and the new prinicpal vectors wI<¥, w

of S — {x} and S; U {x}. =
Step 2 Find S- with A, = min; A, put x into S.. Then, goto Step 1. The
iteration stops untill no change for all x € X.
When wi = 0, the algorithm degenerates into the conventional hard /K -mean algo-

new

7

rithm and thus has the similar disadvantages encoutered by the later one that discussed -:=

in Xu & Jordan (1993). One way to improve it is to modify eq.(3) into

Ne Ne
Emw =) % wr(x){llx—ms - wis(wilx — m])|* + lnwe(x)}, s.t. > wn(x) =

k=1XeX k=1
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It 1s minimized by an alternative descent iterative algorithm:
Step 1 Fix all the mx, wi’s, and to update all the wk(x)’s by

o IIX—1, ~Wy s(Wix-m)}?

wk(x) = Z{Va (e—u)c--m,-—wj;(w;.[x--m_,-])u2 (7)

=1
Step 2 Fix all the wi(x)’s, and update all the myg, wk’s by one step move of
gradient descent on the first term given in eq.(6).
The algorithm will converge to a local minimim of Euw as long as Step 2 ensures
decreasing or non-increasing of Exw, which is always possible by a very small moving
at Step 2. For the special linear case s(y) =y, eq.(6) becomes

Ne .
Erw = g Z 3 onx){ll(x —~ mi)(f — wawh)|[? +Inws(x)}, (8)
=1XeX
and Step 2 can be done by directly solving _3_5%‘5/_ =0, and Qagr%f" = 0, that is, we have

Step 2° mp*Y = 313_( Yoxexwx(X)x, and wi*” is the solution of Ti*“wk =
Amaz Wk, 1.e., the eigenvector of ZF¥ = ;‘7 Doxex we(X)(x —me)(x — m;)7 with the
largest eigenvalue Amaz.

This modified algorithm is guarantted to converge sine Step 2’ ensures the decreasing
or non-increasing of Farw. This algorithm is a special case of the Multi-sets Modeling
Learning (Xu, 1994a) with each set being a line passing my and directing wi. It is also
a kind of soft local PCA (Xu, 1994bé&c).

3 Hierarchical Implementation and Image Coding

In the following, we propose a sequential binary tree algoritbm for the hierarchical
implementation of the new VQ scheme Eqs.(2)(3), as shown in Fig.1, a node ns in the
binary tree corresponds to a set S of data. We compute its mean m = # ers x and
find an w that minimizes e{w, m) = ) . {lx —mx — wxs(wi[x — mx])|I*. When s(y)
is nonlinear, this can be done by adaptive rule

w(t+1) = w(t) + a{s(y)(x — m — s(y)w(t)) + s (v) (v — Iw(E)*s(¥))(x — m)},
which is actually the special case of the one layer LMSER rule given in Xu (1991; 1993).
The converged w(t) is used as the solution w. , '

When s(y) is linear with s(y) = y, w can be obtained by explicitly solving

TW = AmasW, T = ;;IE; 3 (x = m)(x—m)T. (9)
XES,

After obtaining m, w and e(w,m) as above, we check whether ¢(w, m) is below a
prespecified bound eq. If yes, no son will be created for ns, otherwise we create its two
sons ns, and ns, which correspond to two exclusive subsets of :

Sy ={x:(x—m)Tw>0,x€S} S ={x:(x-m)Tw<0,x€S} (iO)

Then, the same procedure will be repeated on S1 and Sz, as well as their sons sequently
(if any). The root of this tree corresponds to the original data set X. The tree con-
struction will be completed when it is a balanced binary tree with a given depth d or
when no node needs to be splitten under the given error bound eq.
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The binary tree Ty can be built in either the Depth First or the Breadth First,
as well as Best Frist search (Pearl, 1984). In sequel, we use the binary tree for image
coding.

The general procedure of VQ based image coding consists of two phases. At the
first phase, a set of training images are transformed, one block by one block (e.g., with
size r x r, r = 4 or 8), into vectors. An VQ algorithm is used on the training vectors to
obtain a set of N, codevectors, which are also sent to the receiver. At the second phase,
each r x r block on a testing image is turned into a vector x which is then coded by
[logaN.] bits. The bits are transmitted to the receiver to find one codevector to decode
the bits to a vector X.

In our case, the codebook T is sent to the receiver in advance with the parameter
pair {m, w} of each leaf as a codevector. At the sender, a test vector x is assigned to a
leaf of T} indexed by a binary number /. Hence, x can be coded by the index value [.
if Ty is of depth d with leaves Ny <'297!, the index value [ for each leaf can be coded
by (log2 Ny] bits or d bits, which are transmitted to locate the leaf codevector (mx, wi)
of Ty at the receiver. This part is same as that for the conventional VQ. However, here
we have one additional job: we still need to code the scalar y so that x can be re-built
at the receiver end by

% =my +wry, y=s(wilx—my])or y=wi[x—msl (11)

The best way to code y is to quantize it into ny numbers {b;};” with each being a
center of ny bins so that y falls in each bin with equal probability, i.e., let y = b; if y
falls in the bin centered at b;. Thus, the set {b_,‘};"’ should be appended to a codevector
for being sent to the receiver in advance. Also, for a test vector z, the extra [logany]
bits need to be transmitted so that X can be built by eq.(11).

One special case deserving a particular mention is that n, = 1. In this case, all the
y is quantized to the only center by = E(y). Now, Eq.(11) is simplifed into X = my, and
it returns back to implement the conventional VQ scheme. However, this algorithm is
different from the existing algorithms in VQ literature. The parameters on w are still
necessary for building up the binary tree Tb and for getting the final codevectors on mx
at all the leaf nodes.

From the perspective of the scalar quantization for coding y, we get also an interest-
ing insight on the role of nonlinear s(.). After quantizing y into ny equal-probability-bins
represented by by < b2 < -+, < bn,, in fact, y = wi[x — my] becomes

y= S(wilx —mi]), S(r)=b +22c;U(r—c,’A), ci=(bi—bim1)/2,  (12)

=2

where U(r — ¢} = 1, when r > ¢, otherwise U(r — c) = 0. S(r) is a stair function as
shown in Fig.1(b). When y is bounded and ny —+ 00, S(r) tends to a sigmoid nonlinear
" function. Let Sa(r) = bn, — b1 +25(r)/(ba, —b1), =1 < Sa(r) <1, it falls within the
same range as s{r) = tanh(r). We can regard that the role of sigmoid nonlinear s(.) is to
help equal-probabilistic quantization of s(w§[x — my]). Furthermore, let s(r) = Sa(r),
wj = 1/0.5(bs, — b1)wx and mj = mx to be the solutions for the case of nonlinear
s(.), we can observe that the procedure of letting mx = '#1_51\:)(55)(' and wj being
given by Eq.(9) for the linear case s(y) = y actually is equivalent to a nonlinearr case
if we divide {y : y = wi[x — my], x € S} into ny equal-probability-bins centered at
by <by <o < bpy.

Fig.2 gives some experimental results. It is interesting that only one image is used as
the training image and the image is significantly different from the testing LENA image ~
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and an other testing image Fig.2(d). It is instructive to compare these reconstructed
images with those reconstructed images obtained by [/RTVQ provided in Chapter 12 of
Rabbani& Jones(1991),which outperforms the classical VQ and other variants. There,
eight 512 x 512 different images were used as the training set with each 4 x 4 block as an
16 dimensional vector. Roughly Figs.(b)&(c) are comparable to the results of I[/RTVQ
that used the bite rate 0.5 bpp, 0.69 bpp respectively. However, Figs.(b)&(c) have used
the bit rates with a further compression by 20% ~ 30%. The Fig. 2(d) shows a good
result obtained on a different testing image. These results suggest that the new scheme
has superior abilities on both generalization and data compression.

4 Remarks

One key feature of the new scheme is that number of free variables in the whole codebook
is significantly less than that of the convectional VQ scheme, where a code vector of
dimension Ng represents only one point in R4, Its rate of poiats per variable is 1/N,.
However, for the new scheme, a pair (wx, m) with scalar gantization ny levels can
represent ny points in RM4. The rate of points per variable is ﬁi—n; which is larger
than 1/Ng as long as ny > 2/(1 — 1/N4), Na > 1. In other words, to use the same
number of points in R™¢ as codevectors, the conventional VQ scheme needs ;%:%—
times more free variables. Y

A codebook actually sets up an image model. The more the number of free variables
in this model, the smaller the error on a training set, but the worse its generalization
ability and the larger the error on a testing set, and the more the number of training
samples are needed as well. In other words, the new scheme will have the advantages of
better generalization and smaller testing error over the conventional VQ scheme. This
is why better results are obtained in Figs.(b)-(e) by using only one training image and
even smaller bit rates.

The key feature also means that the conventional VQ scheme needs ﬁdli—,f‘—y times

more bits than the new scheme need for coding a codebook of the same representation
ability. For many practical applications such as visible telephone, a fixed codebook that
obtained on a pre-determined training set is not adequate to produce a good coding
for on line transmission. A considerably reduced size of codebook by the new scheme
makes it possible to adaptively update the codebook and send it to the receiver for each
certain period. Furthermore, the binary tree algorithm provides a fast training which
- makes the adaptive modification of codebook more possible.

In addition, the tree structure of the codebook T3 makes the coding and decoding
very fast, which will help to considerably speed up the data transmission a lot too.
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Figure 1 (a) A binary tree. (b) Sigmoid nonlinearity vs. scalar quantization.

Figure 2 The experimental results on using the binary tree coding.with s(y) =y
and ny = 4. (2) The training image of size 512 x 512 with the bit rate 8 bpp (i.e., 256
grey levels). Each 4 x 4 blocks is represented by an 16 dimensional vector. (b) The
reconstructed 512 x 512 LENA test image by a tree codebook of depth 5. Its bit rate
is (5 +log, 4)/16 = 0.4375 bpp. (c) The residual image of Fig.2(b) scaled by a factor
of 2 and biased by 127. (d) The reconstructed LENA image by T, of depth 6 with the
bit rate is 0.5 bpp. (e) The residual image of Fig.2(c). (f) The reconstructed another
testing image of size 512 x 512.
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