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Abstract As a supplementary of [Xu L. Front. Electr.
Electron. Eng. China, 2010, 5(3): 281–328], this paper
outlines current status of efforts made on Bayesian Ying-
Yang (BYY) harmony learning, plus gene analysis appli-
cations. At the beginning, a bird’s-eye view is provided
via Gaussian mixture in comparison with typical learn-
ing algorithms and model selection criteria. Particularly,
semi-supervised learning is covered simply via choosing
a scalar parameter. Then, essential topics and demand-
ing issues about BYY system design and BYY harmony
learning are systematically outlined, with a modern per-
spective on Yin-Yang viewpoint discussed, another Yang
factorization addressed, and coordinations across and
within Ying-Yang summarized. The BYY system acts as
a unified framework to accommodate unsupervised, su-
pervised, and semi-supervised learning all in one formu-
lation, while the best harmony learning provides novelty
and strength to automatic model selection. Also, mathe-
matical formulation of harmony functional has been ad-
dressed as a unified scheme for measuring the proximity
to be considered in a BYY system, and used as the best
choice among others. Moreover, efforts are made on a
number of learning tasks, including a mode-switching
factor analysis proposed as a semi-blind learning frame-
work for several types of independent factor analysis,
a hidden Markov model (HMM) gated temporal fac-
tor analysis suggested for modeling piecewise stationary
temporal dependence, and a two-level hierarchical Gaus-
sian mixture extended to cover semi-supervised learning,
as well as a manifold learning modified to facilitate au-
tomatic model selection. Finally, studies are applied to
the problems of gene analysis, such as genome-wide asso-
ciation, exome sequencing analysis, and gene transcrip-
tional regulation.
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1 Introduction

The Bayesian Ying-Yang (BYY) harmony learning is
featured by seeking the best harmony between the Ying-
Yang pair in a BYY system. In this system, the obser-
vation X is regarded as generated from its inner repre-
sentation R. The joint distribution of X and R has two
types of Bayesian decompositions. One is p(R|X)p(X)
called the Yang machine, while the other q(X |R)q(R) is
the Ying machine. The best harmony between this Ying-
Yang pair is implemented via maximizing the following
harmony functional:

H(p||q) =
∫
p(R|X)p(X) ln[q(X |R)q(R)]dXdR, (1)

which leads to not only a best matching between the
Ying-Yang pair, but also a compact model with a least
complexity. Such an ability can be observed from sev-
eral perspectives as introduced in Sect. 4.1 of Ref. [1].
The spelling ‘Ying’ should be ‘Yin’ by the current Chi-
nese Pin Yin system that could be backtracked to over
400 years evolution from the initiatives by westerns (e.g.,
M. Ricci, N. Trigault) who would not be aware of that
the length of ‘Yin’ lost its harmony with Yang. In a com-
pliment to the famous Chinese ancient harmony philoso-
phy, ‘Ying’ is preferred by the present author since 1995.

Firstly proposed in Ref. [2] and systematically devel-
oped over a decade and half, the BYY harmony learn-
ing provides not only a general framework that ac-
commodates typical learning approaches from a unified
perspective but also a new road that leads to improved



148 Front. Electr. Electron. Eng. 2012, 7(1): 147–196

model selection criteria, Ying-Yang alternative learn-
ing with automatic model selection, as well as coordi-
nated implementation of Ying-based model selection and
Yang-based learning regularization. Readers are referred
to Ref. [1] for a latest systematical introduction and a
tutorial on algorithms for typical learning tasks. Also,
readers are referred to Ref. [3] for another perspective
that a co-dimensional matrix pair forms a building unit
and a hierarchy of such building units sets up the BYY
system. As a supplementary of Refs. [1] and [3], this pa-
per focuses on outlining current status of essential topics
and challenging issues about the BYY harmony learning,
plus new applications to gene analysis.

Taking the problem of learning Gaussian mixture to
start with, Sect. 2 provides a comparative introduction
on not only local learning mechanism in comparison
with typical learning algorithms, such as expectation-
maximization (EM), hard-cut EM, k-means, competi-
tive learning, and rival penalized competitive learning,
but also its performance of automatic model selection
in comparison with Bayesian approaches and two-stage
implementation based on some model selection criteria.
As a supplementary to Sects. 3.1 and 2.1 in Ref. [1],
where the focuses were put on basic concepts, detailed
explanations, and learning algorithms, this section aims
at their relations to typical learning algorithms and a
systematic comparison. Also, unsupervised, supervised,
and semi-supervised learning are all included in a com-
mon format simply via an option of a scalar parameter.

Reorganizing the key issues of Sect. 4.2 in Ref. [1] and
also some other issues scattered among previous pub-
lications [4–6], Sect. 3 systematically outlines essential
topics on designing BYY system, including basic prin-
ciples, typical ingredients and their probabilistic struc-
tures. Four new issues are added. First, a modern per-
spective on Yin-Yang viewpoint is discussed, with fur-
ther insights on the BYY system and the relation be-
tween Ying machine and Yang machine. Second, an al-
ternative factorization of Yang machine into ingredient
structures are addressed to facilitate designing Yang ma-
chine such that the integral over θ can be handled with
conjugate priors [7]. Third, coordination across Ying-
Yang, within Ying, and within Yang are outlined, fea-
tured not only by a coordination between Ying-based
model selection and Yang-based learning regularization,
but also by coordinations within ingredients of Ying and
within ingredients of Yang. Fourth, the BYY system is
shown to provide a unified framework to accommodate
unsupervised, supervised, and semi-supervised learning
all in one formulation, differing in special settings on one
or more of ingredients in a BYY system. The last but
not least, historical remarks are provided on past stud-
ies about BYY system, and demanding issues are also
addressed.

Next, Sect. 4 outlines essential topics on the BYY

harmony learning. On one hand, Sect. 4.1 and Appendix
B of Ref. [1] are reorganized and elaborated systemati-
cally to show how Ying-Yang best matching provides a
unified perspective that covers existing typical learning
principles or approaches and how Ying-Yang best har-
mony not only leads to existing learning principles but
also provides novelty and strength to learning with au-
tomatic model selection. On the other hand, new efforts
have been made on both the harmony functional level
and the learning implementation level. First, the math-
ematical formulation of harmony functional has been
further addressed as a unified scheme for measuring bi-
entity proximity, by which maximization of its special
cases leads to maximizing entropy, minimizing cross en-
tropy [8–10], and minimizing Kullback divergence (plus
its related learning approaches as well). Second, how
to measure bi-entity proximity in a BYY system has
been examined from different perspectives. After outlin-
ing studies from a unidirectional perspective, including
both typical top-down approaches [11–14] and bottom-
up approaches [15–17], as well as discriminative training
criteria proposed in the literature of speech recognition
[18,19], we come to measuring the bi-entity proximity
between Ying-Yang as the solution. Third, learning im-
plementation has been further elaborated with detailed
description on manifold shrinking dynamics and with
balanced operation on handling approximation. Also,
historical remarks are provided on past studies about
the BYY best harmony learning theory and implemen-
tations, and challenging issues are suggested for further
investigations.

Moreover, Sect. 5 provides some insights on the roles
of inner dependence structures in the BYY system. First,
a lattice structure based mode-switching factor analy-
sis has been proposed as a semi-blind learning frame-
work that summarizes Gaussian factor analysis (FA),
non-Gaussian FA (NFA), and binary FA (BFA), as well
as Gaussian mixture and local FA models, and accom-
modates unsupervised, supervised, and semi-supervised
learning all in one formulation. Second, previous stud-
ies on temporal structure has been outlined, with new
suggestions for modeling piecewise stationary temporal
dependence (e.g., high-resolution range profile data for
radar automatic target recognition) by hidden Markov
model (HMM) gated temporal factor analysis and ex-
tensions. Third, we proceed to hierarchical and graphical
structures, and present a two-level hierarchical Gaussian
mixture, simplified from a three-level hierarchical Gaus-
sian mixture illustrated in Fig. 12 of Ref. [1] but ex-
tended to cover semi-supervised learning. Also, we mod-
ify the manifold learning by Eq. (66) in Ref. [3] with the
role of graph Laplacian matrix adjusted by learning a
diagonal matrix for automatic model selection.

Finally, studies have been applied to gene analysis
in Sect. 6, including genome wide association (GWA)
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study, exome sequencing analysis, and gene transcrip-
tional regulation. A semi-blind NFA learning is proposed
to improve the performance of logistic regression and
then extended for analyzing the relations between a set
of single nucleotide polymorphisms (SNPs) and multiple
complex traits. Moreover, this semi-blind NFA learning,
and a three-layer network as well, is implemented by the
BYY harmony learning with automatic model selection
nature to push extra parameters towards zero. We ob-
serve how interactions between two SNPs affect traits or
diseases, through identifying a subset of quadratic sep-
arable ability. Moreover, our efforts on SNP based anal-
ysis further proceed to exome sequencing analysis along
two directions. One is getting a confusion table by one
of classifiers with a good generalization ability (e.g., the
above BYY harmony learning based semi-blind NFA)
and testing a null hypothesis made from this confusion
table with help of an appropriate statistic. The other
direction is making a dimension reduction by learning
a BYY system with its Yang pathway as a classifier for
getting a confusion table. Furthermore, we move to mod-
eling gene transcriptional regulation by a noisy BFA,
which leads to improvements of networks component
analysis [20,21]. This noisy BFA is also modified to a
semi-blind BFA that can be regarded as a probabilistic
extension of the semi-blind learning BFA (see Eq. (70)
in Ref. [3]), for which a learning algorithm is obtained
from a standard BFA algorithm with help of a three-
step-alternation.

2 Begin with learning Gaussian mixture

2.1 Algorithms for learning Gaussian mixture

2.1.1 Bayes classifier by supervised learning

We start from supervised learning on Gaussian mixture
as shown in Fig. 1, namely, each class is modeled by a
Gaussian G(x|μ�,Σ�) with a proportion αj . Given a set
of samples with each sample xt associated with a teach-
ing label j or equivalently:

p�,t = δ�,j , δi,j =

{
1, i = j,

0, otherwise,
(2)

where δi,j is the Kronecker delta function.
The maximum likelihood (ML) estimation on param-

eters of each Gaussian is directly obtained as follows:

α∗
� =

∑
t p�,t

N
, μ∗

� =
1

Nα∗
�

∑
t
p�,txt,

Σ∗
� =

1
Nα∗

�

∑
t
p�,t(xt − μ∗

� )(xt − μ∗
� )

T, (3)

that is, learning is decoupled into making the ML learn-
ing on each Gaussian separately. Then, a Bayes classifier

for Maximum A Posteriori (MAP) classification,

�∗(x) = argmax
�
q(�|x, θ∗), (4)

is simply obtained via q(�|x, θ) in Fig. 1 with θ∗ =
{α∗

� , μ
∗
� ,Σ

∗
�} obtained by Eq. (3). The supervised im-

plementation puts the computation by Eq. (3) into Eq.
(4) only in one run, which is good for saving computing
cost. However, the obtained label �∗ has not been reused
to refine the original label by Eq. (2).

Fig. 1 Learning Gaussian mixture

2.1.2 EM algorithm and hard-cut EM

Given a set of samples without teaching labels, as shown
in Fig. 1, they are collectively described by a Gaussian
mixture q(x|θ). Unsupervised learning is made by using
θ∗ via Eq. (3) to estimate

p�,t = q(�|xt, θ
∗), (5)

which is called E-step while Eq. (3) is called M-step.
The E-step and M-step composes of the EM algorithm
[22,23] as listed in the first row of Table 1 The two steps
are iterated from an initialization of θ∗, until converged.

Samples can be classified by Eq. (4) or equivalently
we get the counterpart of Eq. (2) as follows:

p�,t = δ�,�∗(xt), (6)

which is the winner-take-all (WTA) hard-cut modifica-
tion of the E-step by Eq. (5). As listed in the second
row of Table 1, making iterations by Eqs. (6) and (3)
provides a hard-cut EM algorithm that was firstly sug-
gested in Sect. 4.2 of Ref. [2]. Moreover, at the special
case α� = 1/k and Σ� = σ2I, Eq. (4) is simplified into
the following nearest neighbor (NN) rule:

�∗(x) = arg min
�
‖x− μ�‖2. (7)

As listed in the third row of Table 1, the hard-cut EM
algorithm is further degenerated into the conventional
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Table 1 Algorithms for learning Gaussian mixture

k-means algorithm (or a NN-VQ algorithm) (see Sect.
4.3 of Ref. [2]).

2.1.3 Competitive learning and RPCL learning

As a sample xt comes, we get p�,t by Eqs. (6) and (7).
Then, we update

μnew
� = μold

� + ηp�,t(xt − μold
� ), (8)

where η > 0 is a small number as a learning step size.
Given a mean estimate μn obtained from n samples, as a
new sample xt comes we have μn+1 = (Nμn +xt)/(N +
1) = μn + η(xt − μn), η = 1/(N + 1). Thus, we can
regard Eq. (8) as an incremental or adaptive version of
updating μ∗

�∗ in Eq. (3). In other words, this competitive
learning is actually an incremental or adaptive version
of the k-means algorithm.

RPCL learning incurs automatic model selection. In
addition to that the winner μ�∗ moves a little bit to
adapt the current sample xt, RPCL learning also repels
the rival (i.e., the second winner) μr a little bit apart
from xt to reduce a duplicated information allocation.
That is, Eq. (6) is modified into

p�,t =

⎧⎪⎨
⎪⎩

1, � = �∗(xt),

−γ, � = arg min� �=�∗ ‖x− μ�‖2,
0, otherwise,

(9)

where γ ≈ 0.005 ∼ 0.05 controls the penalizing strength.
The implementation of Eq. (8) will gradually drive an ex-
tra μj far away from data, during which the number k of
clusters is determined automatically [24]. As listed in the
5th row of Table 1, Eqs. (8), (9) and (3) are generally im-
plemented on Gaussian mixture with an extra Gaussian
discarded as its corresponding αj → 0 and Tr[Σj ] → 0.
One key point of RPCL is how to control an appropri-
ate penalizing strength γ, which is usually handled by a
rule of thumb. Additionally, a direct updating of Σj by
Eq. (3) may not guarantee that each Σj remains to be
nonnegative definite, for which we seek some techniques
(see Table 1 (B) and (C) in Ref. [25]).

2.1.4 BYY harmony learning algorithm

With p�,t given, the BYY harmony learning updates each
Gaussian still by Eq. (3) as its Ying-step, namely, the
Ying-step has a same formulation as the M-step, while
a Yang-step modifies the E-step by Eq. (5) with one ad-
ditional correcting term as follows:

p�,t = q(�|xt, θ
∗)(1 + Δπ�,t),

Δπ�,t =

{
πt(θ∗� )−∑j q(j|xt, θ

∗)πt(θ∗j ), (a)

−Et(θ∗� ) +
∑

j q(j|xt, θ
∗)Et(θ∗� ), (b)

πt(θj) = ln[αjG(xt|μj ,Σj)],

Et(θj) = − ln q(j|xt, θ) = − ln
αjG(xt|μj ,Σj)

q(xt|θ) , (10)

where Δπ�,t of choice (b) is equivalent to the choice (a).
The choice (a) describes the top-down fitness on xt by
the jth Gaussian under the benchmark of the average
fitness to xt by the Gaussian mixture, while the choice
(b) describes the bottom-up certainty of classifying xt

to the jth Gaussian under the benchmark of the average
certainty of classifying xt to each Gaussian.

Taking the choice (a) as an example, Δπ�,t > 0 means
that the jth component is better than the average of
all the components in term of their fitness πt(θj). We
thus update the jth component in Eq. (3) to enhance
its contribution on describing xt. If 0 > Δπ�,t > −1,
i.e., the fitness πt(θj) by the jth component is below the
average but still not too far away, the contribution of xt

on updating the jth component remains a same trend
as in Eq. (3) but with a reduced strength. Moreover,
when −1 > Δπ�,t, the updating on the jth component
reverses the direction to become de-learning, somewhat
similar to updating the rival in RPCL learning.

Iterating Eqs. (10) and (3) alternatively implements
the maximization of the following simplified harmony
functional H(p||q) by Eq. (1):

H(p‖q) =
∑

t

∑
j

p(j|xt, θ)πt(θj),

p(j|xt, θ) = q(j|xt, θ), (11)
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where πt(θj) is given by Eq. (10). Strictly speaking,
putting p�,t by Eq. (10) directly into Eq. (3) may not
guarantee the iteration to converge, since Eq. (3) is only
an approximate solution of the fixing point equation
∇θH(p||q) =

∑
t

∑
j pj,t∇θπt(θj) = 0. However, H(p||q)

will increase from θ∗old of the current value along the
direction towards the new value θ∗ if it moves in an ap-
propriate stepsize, i.e., θ∗old + η(θ∗ − θ∗old) (see Box 3©
and Remark c in Fig. 7 of Ref. [1]), to which readers
are also referred to Box 4© and Remark a) for smooth-
ing each sample xt by a Gaussian kernel G(x|xt, h

2I),
especially when there is only a small size of samples.

2.1.5 Semi-supervised BYY harmony learning

The BYY harmony learning is also applicable to sam-
ples with teaching labels, which leads to a classifier that
is different from Bayes classifier with an improved dis-
criminative ability. Generally, semi-supervised learning
considers a mixed case of supervised learning on sam-
ples with teaching labels and unsupervised learning on
samples without teaching labels. One early exploration
on Gaussian mixture was made in 1997 under the name
of semi-unsupervised learning, see Eq. (7.14) in Ref. [26].
Specifically, given a teaching pair xt, j

∗
t , the key point is

that p(j|xt, θ) in Eq. (11) is replaced by

p(j|xt, θ) = (1− γ)q(j|xt, θ) + γδ�,j∗t , (12)

where 0 � γ � 1 is a constant that reflects the strength
of teaching. However, a weak point is that γ is irrelevant
to each sample xt.

Instead of Eq. (12), we may also consider p(j|xt, θ) =
qγ(�|xt, θ) given by

qγ(�|xt, θ) =
γδ�,j∗t + α�G(xt|μ�,Σ�)

qγ(xt)
,

qγ(xt) = γ +
∑

j

αjG(xt|μj ,Σj)χ∗
κ(j). (13)

When γ = 0, we have q0(�|xt, θ) = q(�|xt, θ) and thus are
lead to the previously introduced unsupervised learning
on Gaussian mixture,while in the limit γ = ∞, we are
lead to q∞(�|x, θ) = δ�,j∗t , which means that the teach-
ing label is absolutely trustable and thus only supervised
learning is implemented.

To implement a semi-supervised BYY harmony learn-
ing in general, the Ying-step is again updating each
Gaussian still by Eq. (3), while the Yang-step gets p�,t

by further modifying Eq. (10) into

p�,t = qγ(�|xt, θ
∗)χ∗

κ(�) + ωγ
t q0(�|xt, θ

∗)Δπ�,t,

ωγ
t =

q0(xt)
qγ(xt)

, q0(x) = q(x), q0(�|x, θ) = q(�|x, θ),
Δπ�,t

=

{
πt(θ∗� )χ∗

κ(�)−∑j qγ(j|xt, θ
∗)πt(θ∗j )χ∗

κ(j), 1)
−Et(θ∗� )χ∗

κ(�) +
∑

j qγ(j|xt, θ
∗)Et(θ∗j )χ∗

κ(j), 2)

j∗t =

{
j∗t,1, unsupervised with no label for xt,

jt, for each supervised pair xt, jt,

χ∗
κ(�) =

{
1, for � ∈ Jκ

t ,

0, for � /∈ Jκ
t ,

Jκ
t = {j∗t } ∪ {j∗t,1, j∗t,2, . . . , j∗t,κ} ⊆ {1, 2, . . . , k},

with πt(θ∗j∗t,1
) � · · · � πt(θ∗j∗t,κ

) · · · � πt(θ∗j∗t,k
), (14)

where the indices are sorted by the values of πt, and a
subset with the largest values is selected as Jκ

t .
When γ = 0, we start from Jκ

t = {1, 2, . . . , k} at which
Eq. (14) degenerates back to Eq. (10). That is, it re-
turns to the BYY harmony learning on samples without
teaching labels. Taking the choice 1) in Eq. (14) as an
example, we have

p�,t = q(�|xt, θ
∗)(χ∗

κ(�) + Δπ�,t), (15)

which allocates xt among a more concentrated subset
Jκ

t . That is, we are lead to an apex approximation based
BYY harmony learning on samples without teaching la-
bels, which is helpful when k is a large number. Details
are referred to Sect. 4.3 of Ref. [1].

We further have χ∗
κ(�) = δ�,j∗t when Jκ

t consists of
merely j∗t , which is also reached by p�,t(θ) in Eq. (59) of
Ref. [3] as Jt = {j∗t } and Ψx = 0. That is, this super-
vised learning case is same as the one by Eq. (59) of Ref.
[3].

When γ �= 0, still taking the choice 1) in Eq. (14) as
an example, we observe

p�,t = qγ(j∗t |xt, θ
∗)δ�,j∗t + ωγ

t q(�|xt, θ
∗)Δπ�,t,

Δπ�,t = [δ�,j∗t − qγ(j∗t |xt, θ
∗)]πt(θ∗j∗t ), (16)

by which Δπ�,t > 0 at � = j∗t enhances the learn-
ing on G

(
xt

∣∣μj∗t ,Σj∗t

)
αj∗t for describing xt, while

Δπ�,t < 0 makes each of the rest Gaussians de-
learning, with a penalized strength proportional to
ωγ

t qγ(j∗t |xt, θ
∗)q(�|xt, θ

∗).
We have 0 � 1 − ωγ

t � 1 that also reflects the de-
gree of teaching when j∗t is a teaching label or a degree
of boosting when j∗t = arg max� q(�|xt, θ

∗). Specifically,
1 − ωγ

t increases monotonically as γ > 0 increases to-
wards ∞, and γδ�,j∗t makes a super-Bayes (to be fur-
ther discussed later around Eq. (46) and Item (A) in
Sect. 3.4.2) enhancement on j∗t . In the limit γ =∞ and
thus ωγ

t = 0, it means that merely the teaching label is
considered or the WTA learning is adopted. Typically,
γ could be set at a large enough constant or initialized
large enough and then reduces gradually during learning.
Also, we may learn an appropriate γ with help of a prior
q(γ) of Gamma distribution. Therefore, we observe that
unsupervised learning, supervised learning, and semi-
supervised learning are considered in a common format
simply via a option of γ, featured with a correcting
term Δπ�,t that makes each class G (xt |μj ,Σj )αj be-
come more discriminative from each other.
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Actually, the alternative implementation of Eqs. (14)
and (3) can be regarded as a simplification of Eqs. (56)
and (57) in Ref. [3], after ignoring a priori and shutting
off the de-noise nature by letting Ψ = 0. On the other
hand, it extends the one in Ref. [3] with one teaching
degree ωγ

t added in consideration.
Conventionally, supervised learning gets a classifier

�∗(x) by Eqs. (2) and (4) from training samples with
teaching labels. Then, the obtained classifier is applied
to testing samples without teaching labels, while testing
samples has no contribution on learning the classifier.

For many applications, especially in bioinformatics
(e.g., noncoding RNA analysis), we usually have a small
size of training samples and naturally expect to use test-
ing samples to help learning the classifier as well. For
this purpose, we suggest to put both the training and
testing samples altogether under the above formulation
of semi-supervised learning with help of the algorithm
of Ying-Yang alternation listed in Table 1, while teach-
ing labels take their roles via γ. During learning, each
sample is classified by j∗t . In addition to a better use of
samples, this learning also takes the advantage of au-
tomatic model selection on determining the number of
classes. Even when the number of classes is known for
a set of training samples, putting both the training and
testing samples together facilitates that classes may need
to re-adjust or new classes may emerge.

2.2 Automatic model selection, prior aided learning,
and model selection criteria

2.2.1 Model selection: Two-stage enumeration and
stepwise searching

Learning a Gaussian mixture includes parameter learn-
ing for estimating all the unknown parameters θ and
model selection for determining the number k of Gaus-
sian components. Parameter learning may be made by
any one of the algorithms introduced previously, while
model selection for k can be made by RPCL learning
and BYY harmony learning.

The EM algorithm implements the ML learning. How-
ever, maximizing the likelihood function or minimizing a
fitting error suffers an over-fitting problem. More specif-
ically, it is under-selective on k such that extra resource
of structures is wasted on fitting noises or outliers. Even
worse, it deteriorates the generalization performance.

Selecting k is typically handled by a two-stage learn-
ing implementation as follows:

Stage I : enumerates k to get a set M of candidate
models with the parameters of each
candidate estimated by the EM algorithm;

Stage II: one best candidate is selected by a model

selection criterion k∗ = argmink J(k).

(17)

Examples of such criteria include AIC, CAIC,
BIC/MDL, etc. However, this two-stage implementation
suffers from a huge computation because it requires pa-
rameter learning for each k ∈ M . Moreover, a larger k
often implies more unknown parameters, which makes
parameter estimation become less reliable and thus the
criterion evaluation reduce its accuracy (see Sect. 2.1 in
Ref. [1] for a detailed discussion).

One road to reduce computing cost is a stepwise imple-
mentation. Typical examples are those incremental algo-
rithms that attempt to incorporate as much as possible
what already learned as k increases step by step, focus-
ing on learning newly added parameters [27]. Usually, it
leads to a suboptimal performance. Reversely, this prob-
lem may be lessened in a way that k decreases step by
step in a tree searching, for which a depth-first searching
suffers from a suboptimal performance seriously, while a
breadth-first searching suffers a huge combinatorial com-
puting cost.

2.2.2 Automatic model selection: From RPCL to BYY
harmony learning

An alternative road of studies is referred as automatic
model selection that automatically determines k during
parameter learning. Being a quite difference nature from
a usual stepwise implementation that adds or removes
a subset of parameters from θ based on whether a se-
lection criterion indicates an improvement, automatic
model selection is associated with a learning algorithm
or a learning principle with the following two features:
• There is an indicator on a subset θSR of scale rep-

resentative (SR) parameters, representing a par-
ticular structural component that is effectively
discarded if its corresponding ψ(θSR) = 0, e.g., a
Gaussian component in Fig. 1 is discarded if its cor-
responding αl = 0.

• During implementation of this learning, there is an
intrinsic mechanism that drives ψ(θSR) → 0, if the
corresponding structure is redundant and thus can
be effectively discarded.

Readers are referred to page 287 of Ref. [1] for further
details about automatic model selection.

One early effort is RPCL learning, with its penaliz-
ing strength handled by a rule of thumb. Favorably, the
BYY harmony learning gets rid of the difficulty of find-
ing an appropriate penalizing strength, with both pa-
rameter learning and model selection made under the
best harmony principle by Eq. (1). With help of the least
complexity nature, the BYY harmony learning is capa-
ble of automatic model selection even without imposing
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a priori on the parameters, e.g., merely via Δπ�,t in Eqs.
(10), (14), (15), and (16).

2.2.3 Prior aided automatic model selection

As addressed at the end of Sect. 4.2 in Ref. [1], some
prior actually intends to cancel out certain bias implic-
itly incurred from using a parametric model on a small
size of samples, which leads to a learning regularization
that effectively reduces model complexity without neces-
sarily discarding extra parameters. On the other hand,
sparse learning or Lasso shrinkage prunes away extra
weights by a Laplace prior in a regression task [28,29].
Also, with the help of appropriate priors, efforts have
been made on minimum message length (MML) [30] and
variational Bayes (VB) for Gaussian mixture by pruning
either or both of extra αl and extra Σl in Refs. [13,14,31],
sharing the features of automatic model selection.

Minimizing a two-part message for a statement of
model and a statement of data encoded by that model,
MML involves a term that computes the determinant of
Fisher information matrix [32]. Figueiredo and Jain in
Ref. [30] developed such an MML algorithm for learning
Gaussian mixture with a prior by a product of indepen-
dent Jeffreys priors on αl and the parameters in Gaus-
sian components, and with the Fisher information ma-
trix approximated by a block-diagonal matrix. Tackling
the difficulty in computing the marginal likelihood with
a lower bound by means of variational method, the ex-
isting VB algorithms for learning Gaussian mixture are
featured by a Dirichlet prior on αl and an independent
Normal-Wishart (NW) prior on each Gaussian compo-
nent’s parameters [13,31].

However, these efforts highly depends on choosing an
appropriate prior, which is usually a difficult task, while
an inappropriate prior may deteriorate the performance
of model selection seriously. Without any priors on the
parameters, VB and MML all degenerate to the maxi-
mum likelihood learning, while the BYY harmony learn-
ing is still capable of automatic model selection. Also,
the performances of BYY harmony learning can be fur-
ther improved by incorporating appropriate priors.

2.2.4 Empirical comparative investigation

Recently in Ref. [7], an empirical comparative investiga-
tion has been made on VB, MML, and BYY harmony
learning, for learning Gaussian mixture with an appro-
priate number of Gaussian components determined au-
tomatically during learning. The performances are eval-
uated through extensive experiments with help of not
only Jeffreys priors but also conjugate Dirichlet-Normal-
Wishart (DNW) priors, resulting in several empirical
findings.

First, as Jeffreys prior is replaced by the DNW prior,
all the three approaches improve their performances.
Moreover, Jeffreys makes MML slightly better than VB,
while the DNW makes VB better than MML. Second,
as the hyper-parameters of DNW prior are further op-
timized by each of its own learning principle, BYY
improves its performances while VB and MML dete-
riorate their performances when there are too many
free hyper-parameters. Actually, VB and MML lack a
good guide for optimizing the hyper-parameters of DNW
prior. Third, BYY considerably outperforms both VB
and MML for any type of priors and whether or not
hyper-parameters are optimized. Being different from
VB and MML that rely on appropriate priors to per-
form model selection, BYY does not highly depend on
the type of priors. It has model selection ability even
without priors and performs already very well with Jef-
freys prior, and incrementally improves as Jeffreys prior
is replaced by the DNW prior.

Finally, all the algorithms were applied to image seg-
mentation on the Berkeley database of real world images.
Again, BYY outperforms VB and MML considerably,
with a better ability to detect the objects that are even
highly confused with the background.

2.2.5 Model selection criteria

Though a two-stage implementation by Eq. (17) suffers
from a huge computation, extra computing cost will in-
deed bring a further improvement on the performance of
model selection since H(p||q) by Eq. (1), as well as the
objective functions that contains some not differentiable
terms about k. These terms can not be used to guide
parameter learning, but is still useful for making model
selection by k∗ = argmink J(k).

Using a prior q(θ|Ξ) with hyper-parameters Ξ, we
maximize H(p||q) by Eq. (1) with respect to R =
{Y, θ,Ξ, k}, by alternating the following multiple stage:

Step Y : Y ∗ = arg max
Y

H(p‖q)given θ, k, Ξ,

Step θ : θ∗ = arg max
θ
H(p‖q)given Y, k, Ξ,

Step Ξ : Ξ∗ = arg max
Ξ

H(p‖q)given Y, θ, k,

Step k : k∗ = argmin
k
J(k),

where J(k) = −H(p‖q)given Y, θ,Ξ, (18)

for which readers are further referred to Sect. 4.3.
For a Gaussian mixture, Step Y gets p�,t by either of

Eqs. (10), (14), (15), and (16), while Step θ becomes the
one by Eq. (3). Two steps jointly correspond to Stage I
in Eq. (17), while Step k corresponds to Stage II. More-
over, it follows from Eq. (13) in Ref. [1] that we have

J(k) = 0.5
k∑

j=1

αj

{
ln |Σj |+ h2Tr

[
Σ−1

j

]}
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−
k∑

j=1

αj lnαj + 0.5nf (θ) , (19)

where nf (θ) is the number of free parameters in θ, e.g.,
nf (θ) = dk + k − 1 + 0.5d(d+ 1)k. The data smoothing
parameter h could be obtained by Box 4© in Fig. 7 of
Ref. [1] or by Eq. (60) given at the end of Sect. 4.3.1 in
this paper. For simplicity, we may simply set h = 0.

Favorably, the BYY harmony learning is also able to
learn hyper-parameters Ξ by Step Ξ, which may be omit-
ted when Ξ is pre-specified or a prior q(θ) is used without
hyper-parameters.

3 Topics on Bayesian Ying-Yang system

3.1 Bayesian Ying-Yang system from a modern Yin-
Yang perspective

3.1.1 A modern perspective on Yin-Yang viewpoint

We refer the modern perspective on Yin-Yang intro-
duced in Appendix B of Ref. [1] and especially Fig. B1.
For convenience, we simplify Fig. B1 there into Fig. 2
here for a further insight on a Ying-Yang system. From
the view of the Chinese ancient Yin-Yang (or preferably
Ying-Yang) theory, a body or a system that survives and
interacts with its world can be regarded as a Ying-Yang
system that functionally composes of two complement
parts. One is called Yang, from its external world into
its inside, e.g., the bottom-up part on the left side of Fig.
1, while the other is called Ying, from its inside into its
external world, e.g., the top-down part on the right side
of Fig. 1,

It follows from Figs. 2(b) and 2(c) that Ying is pri-
mary, supports Yang, and demonstrates itself via Yang;
e.g., Ying in Fig. 1 describes observation by a mixture of
Gaussian components, which provides a basis for Yang
to solve classification problem via Bayes posteriori. The
performance of Yang demonstrates the goodness of Ying
modeling. On the other hand, Yang is secondary, basing
on Ying and serving Ying, e.g., Yang in Fig. 1 is either
directly the Bayes inverse by Eq. (5) of a Gaussian mix-
ture modeled by Ying, or a variants or extension by one
of Eqs. (6), (9), (10), (15), and (16) that relate to this
Bayes inverse.

Formally, as shown in Fig. 2(a), Yang consists of a visi-
ble domainX (called Yang domain) that collects samples
from the external world, and a pathway X → R (called
Yang pathway) that transforms what gathered in the
Yang domain into inner representations to be supplied
to the Ying domain R. In Fig. 1, a set XN of samples
is considered in the Yang domain. The Yang pathway
consists of an estimation XN → θ∗ by Eq. (10) and a

mapping of sample xt into either �∗(xt) by Eq. (6) or
generally p�,t by one of Eqs. (9), (10), (15), and (16).
Moreover, automatic model selection determines an ap-
propriate mapping XN → k∗.

Fig. 2 BYY system from a perspective on Yin-Yang

On the other hand, Ying consists of an inner do-
main (called Ying domain) that receives, accumulates,
integrates, digests the inner representations provided by
Yang, and of a pathway R → X (called Ying path-
way) that selects among the Ying domain to generate
outputs to its external world. In Fig. 1, the Ying do-
main is simply R = {Y, θ, k} with θ = {αj , μj ,Σj}kj=1 or
R = {Y, θ, k,Ξ} if a priori is considered on θ with hyper-
parameter Ξ. Moreover, the Ying pathway R → X is
simply given by each Gaussian G(x|μj ,Σj), while a best
value of {θ∗, k∗,Ξ∗} is determined via learning, which
specifies a Ying pathway YN → XN given θ∗, k∗,Ξ∗.

As outlined in Fig. 3, the rest of this section addresses
essential topics on Bayesian Ying-Yang system and its
design. Continuing the above introduction from a mod-
ern Yin-Yang perspective, we further describe a Ying-
Yang system in term of probabilistic modeling, namely,
two Bayesian decompositions of the joint distribution
on X and R, as introduced at the beginning of Sect. 1.
Provided with a set XN of samples, we need not only
to determine all unknowns in R, but also to design the
probabilistic structures of p(R|X)p(X) and q(X |R)q(R).

3.1.2 Ying machine versus Yang machine

First, Ying is primary, and its probabilistic structure is
designed according to the nature of learning tasks. It
follows from Fig. 2(d) that Ying is featured with a com-
pact capacity of accommodating and accumulating, as
well as a good ability of integrating and digesting what-
ever supplied by Yang. Thus, the probabilistic structure
of q(X |R)q(R) should be as compact as possible, sub-
ject to a principle of least complexity. Second, Yang is
secondary and its probabilistic structure is designed ac-
cording to the probabilistic structure of Ying. Moreover,
it follows from Fig. 2(d) that Yang is vigor in adapting
to not only variety of external world but also serving the
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demands of Ying in a range of variety. Accord-
ingly, p(R|X) is designed as some type of inverse of
q(X |R)q(R) to match the needs of Ying, subject to a
variety preservation principle.

We take Fig. 1 as an example to get some insights.
Typically, p(X) comes directly from XN by the empir-
ical distribution p(X) = δ(X −XN ), where δ(u) is the
Dirac delta function. When there is a small size of sam-
ples, xt is not directly input but smoothed by a Gaussian
kernel G(x|xt, h

2I) featured with a bandwidth h, e.g.,
p(X) may be given by either of two Parzen window es-
timators in Eq. (6) of Ref. [1]. Concisely, we may regard
h also as a type of data with a density p(h|h0). Jointly,
we consider p(X) in a general formulation as follows:

ph(X |XN) = p(X |XN , h)p(h|h0),

p(X |XN , h) =

{∏N
t=1G(x|xt, h

2I), (a)∏N
t=1 ph(xt), (b)

ph(x) =
1
N

N∑
t=1

G
(
x
∣∣xt, h

2I
)
. (20)

The structure of Ying machine q(X |R)q(R) is de-
signed subject to a least complexity principle, for which
q(R) is designed for a representation R of a least redun-
dancy. In the cases without any given knowledge, a least
redundancy is featured by the following independence:

q(R) = q(Y )q(θ),
q(Y ) in its representation of least redundancy,
q(θ) in its representation of least redundancy. (21)

In Fig. 1, q(Y ) is simply q(y = �) = α�, � = 1, 2, . . . , k,
for which a least redundancy means that k takes a value
as small as possible. Also, we expect that the correspond-
ing top-down q(x|θ) describes XN well, which however
tends to use a large k. Such a trade-off makes the value
k unable to be determined simply by design. Instead, an
appropriate k should be determined via learning, as to
be further discussed later in Sect. 4.2.

For q(θ), a least redundant representation is given by

q(θ) = q(α)
∏

j

q(μj)
∏
j

q(Σj), (22)

where α = {α�, � = 1, 2, . . . , k}. A simple choice is that
each of q(α), q(μj), and q(Σj) is given by Jeffreys prior,
while a more sophisticated choice is that q(α), q(μj), and
q(Σj) are given by the DNW prior. Readers are referred
to Ref. [7] for a recent systematic study, and also to the
next subsection for further discussions on q(θ).

We design the structure of q(X |R) based on the nu-
meric types of Y and X as well as their relation Y → X ,
subject to still a principle of least complexity. In Fig.
1, q(X |R) is simply a Gaussian G(x|μj ,Σj), for which
there is nothing that could be done by design to make
G(x|μj ,Σj) to be a least complexity. Even so, we still

prefer to design q(X |R) such that it makes a least com-
plexity be easier reachable.

A typical designing principle for q(X |R) is divide and
conquer. That is, dividing q(X |R) into a series of sim-
ple components and then combining them in a simple
rule or equivalently letting q(X |R) to be formed from
a series of simple components in a simple composing
way. E.g., considering q(X |R) = G(x|μj ,Σj) with Σj in
an eigen-composition Σj = σ2

j I +
∑mj

i=1 λjiφjiφ
T
ji, where

λji, i = 1, 2, . . . ,mj are the first mj largest eigenvalues
of Σj such that Σjφji = λjiφji. Such a structure makes
it easier to consider q(X |R) in a least complexity via
determining a smallest dimension mj .

Next, we design each of two components in the follow-
ing factorization:

p(R|X) = p(Y, θ|X) = p(Y |X, θ)p(θ|X). (23)

In Fig. 1, we further have p(Y |X, θ) =
∏

t p(�t|xt, θ),
with the structure of p(�|x, θ) being the Bayes inverse
q(�|x, θ). This type of Yang preserves equally the Ying
variety about � by conditioning on x, θ, which is differ-
ent from the EM algorithm with q(�|x, θ∗) by Eq. (5) in
that here we have p(�|x, θ) = q(�|x, θ) for any θ instead
of being fixed merely at θ∗. It is this difference that leads
to p�,t given by Eq. (10) instead of by Eq. (5).

Conceptually, p(θ|X) may also be a Bayes inverse of
its counterpart in the Ying machine. Usually, such a
p(θ|X) is computationally not trackable due to comput-
ing the integral over θ. Previously in Sect. 2, we only
consider one rough approximation simply by

p(θ|X) = δ(θ − θ∗), (24)

where θ∗ is the latest available value about θ, e.g., by
Eq. (18) or Eq. (3). Readers are referred to Sect. 4.3.1
for another approximation.

3.2 Topics on BYY system design

3.2.1 Topics on Ying structure design

We start from the design of Ying structure as outlined
by the Box 2© in Fig. 3. The first topic considers how to
describe the regularity underlying a given setXN of sam-
ples by a combination of q(X |R) for a mapping Y → X

and q(Y ) for the representation of XN . Then, it follows
the second topic of designing appropriate structure for
each components of q(θ) according to the roles of pa-
rameters in q(X |R) and q(Y ).

The first topic is featured by different choices that
trade off the roles between q(Y ) and q(X |R). Taking
Fig. 1 as an example, Y consists of only one integer �
taking several values and thus q(Y ) is simply a discrete
point distribution on these values, with each value of �
allocating one Gaussian G(x|μj ,Σj) to a cloud of data.



156 Front. Electr. Electron. Eng. 2012, 7(1): 147–196

One extreme is that � only takes one value, at which
q(Y ) actually disappears and we use only one Gaussian
or a general distribution to describe XN .

The other extreme is that q(X |R) degenerates into
X = Y +E with a noise E independent from Y that is a
de-noising representation of X , for which a complicated
q(Y ) is needed to describe the structure underlying XN .

Between the two extremes, one typical scenario is con-
sidering that XN = [x1, x2, . . . , xN ] is a d × N matrix
with each column vector xt = [x(1)

t , x
(2)
t , . . . , x

(d)
t ]T inde-

pendently and identically distributed (i.i.d.). In such a
case, the problem is simplified to describe xt by its inner
encoding yt through a mapping yt → xt. Without any
given knowledge, yt = [y(1)

t , y
(2)
t , . . . , y

(m)
t ]T with m � 1

is usually assumed to be mutually independent among its
elements for a least redundant representation, while the
mapping yt → xt captures the inter-dimensional depen-
dence among the elements of xt = [x(1)

t , x
(2)
t , . . . , x

(d)
t ]T.

Typically, the linear dependence is considered by

xt = Ayt + et, Eety
T
t = 0,

et ∼ G(et|0, σ2I), (25)

which has been widely studied under the name of inde-
pendent factor analysis, e.g., factor analysis (FA) when

yt ∼ G(yt|0,Λ), Λ is diagonal, (26)

which is different from the traditional FA that uses the
following parameterization:

yt ∼ G(yt|0, I). (27)

Shortly, we use FA-a to denote FA by Eqs. (25) and
(27) that jointly considers a Gaussian G(x|μ,Σ) via
Σ = σ2I + AAT, while FA-b denotes FA by Eqs. (25)
and (26) that jointly considers a Gaussian G(x|μ,Σ) via
Σ = σ2I + AΛAT. Either of two FA types considers

a Gaussian G(x|μ,Σ) with Σ formed from several sim-
ple units in a simple composition. Each unit is simply
a subspace spanned by one column vector of A, plus an
additional dimension σ2I for the noise e. It follows from
the least complexity principle that the number of such
units (or the dimension m of yt) is as less as possible,
which correspondingly is the counterpart of selecting k
in Fig. 1, i.e., the task of model selection.

Two FA types are equivalent in term of maximizing
the likelihood on lnG(x|μ,Σ) as long as AaA

T
a = AbΛAT

b

or Aa = AbΛ0.5, where Aa and Ab correspond to A in
FA-a and FA-b, respectively. However, the BYY har-
mony learning produced different model selection perfor-
mances on two FA types (see Item 9.4 in Ref. [26] and
Sect. 3 in Ref. [33]). Extensive empirical experiments
in Ref. [34] has further shown that the BYY harmony
learning and VB perform reliably and robustly better on
FA-b than on FA-a, while BYY further outperforms VB
considerably, especially on FA-b. In the sequel, we con-
sider merely this type FA-b (the subscript b is omitted
whenever there is no confusion) and its extensions.

Moreover, we proceed to NFA when y
(j)
t is non-

Gaussian, and BFA when y(j)
t takes only a binary value.

Alternatively, we may also proceed to a mixture of
several FA models. That is, Eq. (25) becomes

xt = Ayt,� + μ� + et,�, Eet,�y
T
t,� = 0,

q(�) = α�, � = 1, 2, . . . , k,
et,� ∼ G(e|0, σ2

� I), (28)

and Eq. (26) correspondingly becomes

yt,� ∼ G(y|0,Λ�), Λ� is diagonal, (29)

which has been widely studied under the name of local
factor analysis (LFA) with each located at μ� [35], see
a recent review in Ref. [17]. In this case, yt comes from

Fig. 3 BYY system design
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G(y|0,Λ�) with a probability α�, and the mapping yt →
xt is replaced by �t, yt → xt that makes yt → xt locally
at �t.

In parallel to these LFA studies, there are also related
studies called a mixture of factor analysis [27,36,37],
which actually considers a mixture of FA-a models.
Thus, its difference from the above LFA is similar to
the above discussed difference of FA-a from FA-b.

For recent outlines of studies on local factor analysis
and independent factor analysis (FA, NFA, BFA, etc.),
readers are referred to Sect. 3.2 in Ref. [1] (see the first
column of its roadmap in Fig. 3) and to Ref. [3] under the
guidance of its roadmap in Fig. 1. Moreover, extensions
along this direction will be further discussed in Sect. 5
of this paper.

When there is some dependence structure across the
columns of XN , which is not able to be captured by Eq.
(25), the Ying machine accordingly needs a structure to
capture this dependence too.

There could be different types of dependence acrossN
columns of XN . One most commonly encountered one is
serial or temporal dependence among xt, t = 1, 2, . . . , N .
Typically, we describe this temporal dependence inde-
pendently by each element of yt, e.g., by the following
first order independent autoregressive process:

yt = Byt−1 + εt, Eyt−1ε
T
t = 0,

εt ∼ G(εt|0,Λ), Λ is diagonal,
B = diag[b1, b2, . . . , bm], (30)

while q(X |R) can be simply described by the instan-
taneous linear relation by Eq. (25). Though a same
type of temporal dependence can be described by xt =
Cyt−1 + Aεt + et with a constraint C = AB, it al-
most doubles the number of parameters in consideration,
which not only makes the problem of a small sample size
become more serious, but also increases the complexity
of R. Thus, it follows from the least complexity principle
that the combination of Eqs. (25) and (30) is preferred.

There are three typical ways for q(Y ) to model tem-
poral dependence as follows:
• Transfer distribution: When yt = �t is simply

one integer as in Fig. 1, a transfer distribution
q(yt = �t|yt−1 = �t−1) is used to capture the first
order dependence, which leads to HMM model and
variants (see Sect. 5.3 in Ref. [1]).

• Mean regression: When yt is a real vector, Eq. (30)
is one example of the mean vector regression. Also,
such a regression may be modified to a binary vec-
tor yt with help of a post-linear function, e.g., see
Eq. (104) in Sect. 5.5.1. Details are referred to Sect.
5.3 in Ref. [1] and Sect. 4.2 in Ref. [3].

• Covariance regression: Actually, Eq. (30) also pro-
vides a covariance matrix regression E(ytyt)T =
BE(yt−1y

T
t−1)BT + Λ (see Fig. 8 in Ref. [38]).

Another type of dependence is local topology de-
scribed by a nearest neighbor graph, which will be fur-
ther introduced later at the end of Sect. 5.2.

After the structures of q(X |R) and q(Y ) have been de-
signed, there are still a set θ of unknown parameters in
these structures, for which we need an appropriate prior
q(θ), as encountered in the Bayesian approaches, from
which those existing ways of getting q(θ) can be directly
adopted, e.g., as previously discussed around Eq. (22).

Moreover, we believe that in a given parametric model
q(x|θ) there is another role for a prior q(θ) to take. For
a finite set of samples {ut}, we have

∫
q(u|θ)du = 1, but Z(θ) =

∑
t

q(ut|θ) �= 1, (31)

which actually imposes an implicit measure or a pri-
ori on θ that incurs some unexpected bias on estimat-
ing θ. Instead of imposing a priori, another role of q(θ)
should be removing this unwanted bias, which motivated
the so-called induced bias cancellation (IBC) that uses
q(ut|θ)/Z(θ) in place of q(ut|θ), e.g., see Eq. (21) in Ref.
[39] and Sect. II(A) of Ref. [40]. Readers are further re-
ferred to Sect. 3.4.3 in Ref. [41] for a recent overview and
to Sect. 23.7.4 in Ref. [42] for historical remarks. Also,
as pointed out at the end of Sect. 4.2 of Ref. [1], it coin-
cides with the normalized maximum likelihood (NML)
used in the MDL encoding [43].

In summary, a Ying machine is designed according
to a least complexity principle, featured with design-
ing q(R) in a least redundancy principle and designing
q(X |R) in a divide-conquer principle. Design starts from
a trade off consideration between q(Y ) and q(X |R). Each
component of q(θ) is designed according to the roles of
parameters in q(X |R) and q(Y ).

3.2.2 Topics on Yang structure design

We proceed to the Box 3© in Fig. 3. With p(X) given
by either δ(X −XN ) or Parzen estimators in Eq. (6) of
Ref. [1], the task is mainly designing the probabilistic
structure of p(R|X).

For p(R|X) in Eq. (23), we need to design the prob-
abilistic structure of each component. As introduced
at the end of Sect. 3.1.2, it follows from p(Y |X, θ) =∏

t p(�t|xt, θ) that the Bayes inverse type of Yang
p(�|x, θ) = qbayes(�|x, θ) serves Ying in an equal variety
of Ying, where qbayes(�|x, θ) is q(�|x, θ) in Fig. 1.

It further follows from Figs. 2(c) and 2(d) that the
role of Yang is not just serving the demands of Ying
but also vigorously adapt its external world via visual-
izing the fitness of Ying to samples and also selecting
the best inner encodings to enhance the performance of
Ying. A modern perspective of this nature is mathemat-
ically expressed as a variety preservation principle given
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by Eq. (27) in Ref. [1]. Also, maximizing H(p||q) by Eq.
(1) subject to Eq. (27) in Ref. [1] will give the variety
preservation principle another variant as follows:

p (R|X) = q (R|X)χR∈Dρ
R∗ ,

q (R|X) =
q (X |R) q(R)∫

R∈Dρ
R∗ (X)

q (X |R) q(R)dR
,

Dρ
R∗ (X) = {R : q (R|X) + ρ � q (R∗|X)} , ρ � 0,

R∗ = argmaxR [q (X |R) q(R)] , (32)

where Dρ
R∗ (X) is called apex zone or climax neighbor-

hood, and χu∈D is a characteristic function as follows:

χu∈D =

{
1, for u ∈ D,
0, for u /∈ D. (33)

Yang adapts samples via selecting R ∈ Dρ
R∗ (X) to

supply Ying in order to further enhance the fitness of
Ying to the samples. This Dρ

R∗ (X) is controlled by a
scalar ρ to form a spectrum ranging between p(R|X) =
δ(R − R∗) at ρ = 0 and p(R|X) = q(R|X) for any R

when ρ > 0 becomes large enough.
For the problem in Fig. 1, we have

p(�|x, θ) = q(�|x, θ)χ�∈Jκ
t
,

q(�|x, θ) =
α�G(x|μ�,Σ�)∑

j∈Jκ
t
αjG(x|μj ,Σj)

, (34)

where Jκ
t is given in Eq. (14), from which we get p�,t

given by one of Eqs. (10), (14), (15), and (16).
For Y = {y} of vectors and θ of real parameters, it is

usually difficult to get p(R|X) by Eq. (32). Instead, we
consider each component distribution of p(R|X) by its
statistics up to the second order. E.g., we consider the
following regression functions (the 1st order statistics):

ηY (X) = Ep(Y |X,θ)(Y ), ηθ(X) = Ep(θ|X)(θ),

where Ep(u)(u) =
∫
p(u)udu, (35)

and the covariance matrices (the 2nd order statistics):

Γp
Y |X,θ = Varp(Y |X,θ)(Y ),
Γp

θ|Y = Varp(θ|Y )(θ), (36)

where

Varp(u)(u) =
∫
p(u)[u− Ep(u)(u)][u− Ep(u)(u)]Tdu.

That is, p(Y |X, θ) is approximated by a Gaussian
G(Y |ηY (X),Γp

Y |X,θ) and p(θ|X) is approximated by a
Gaussian G(θ|ηθ(X),Γp

θ|Y ).
There can be different choices for the struc-

tures of ηY (X) and ηθ(X). One is free of struc-
ture such that ηY (X) and ηθ(X) can be deter-
mined by maximizing H(p||q) by Eq. (1), e.g.,

ηY (X) = arg maxY ln [q (X |R) q(R)], and ηθ(X) =
argmaxθ ln [q (X |R) q(R)]. As to be further addressed in
Sect. 4.3, this choice is helpful for understanding but
may lead to some implementation problem.

Instead, ηY (X) also takes a parametric structure that
is typically decomposed into a set of simplified regres-
sions {ηyt(xt)} with

ηY (X,Φ) = {ηy(x1,Φ), ηy(x2,Φ), . . . , ηy(xt,Φ), . . .},
ηy(xt,Φ) = f(ȳt) = [f(ȳ(1)

t ), f(ȳ(2)
t ), . . . , f(ȳ(m)

t )]T,
ȳt = ω1(Wxt + w) + ω2η

∗
yt

(xt) + ω3η
old
yt

(xt),

ωj � 0,
∑

j

ωj = 1, Φ = {W,w, {ωj}},

η∗y(xt) = arg max
y

ln [q(xt|y, θx|y)q(|θy)], (37)

where f(r) is a scalar function. Typically, we let f(r) = r

for an element y(j) that takes a real value and a sigmoid
function f(r) for an element y(j) that takes a binary
value. For the factor analysis by Eqs. (25) and (26), we
simply have ω1 = 1, ω2 = 0, ω3 = 0 such that

ȳt = Wxt + w. (38)

For the covariance matrices in Eq. (36), it also follows
from the variety preservation principle by Eq. (32) that
we consider

Γp
Y |X,θ = Γq

Y |X,θ = Πq −1
Y |X,θ,

Πq
Y |X,θ = −∂

2 ln [q (X |R) q (R)]
∂vec[Y ]∂vec[Y ]T

,

Γp
θ|X = Γq

θ|X = Πq −1
θ|X ,

Πq
θ|X = −∂

2 ln
∫
q (X |R) q (R)dY

∂vec[θ]∂vec[θ]T
, (39)

which refines Πq
Y |X ,Πθ in Eq. (31) of Ref. [1] such that

the conditioning part Y |X, θ, θ|X is clarified. The inte-
gral over Y is either analytically solved or handled by
the following Laplace approximation:

p(x) =
∫
q(x|u)q(u)du

≈ (2π)0.5du |Π(u)|−0.5q(x|u∗)q(u∗),
u∗ = arg max

u
ln[q(x|u)q(u)],

Π(u) = −∂
2 ln[q(x|u)q(u)]

∂u∂uT
, (40)

where du is the dimension of u.
In addition to Eq. (23), we may have an alternative

factorization of p(R|X) as follows:

p(R|X) = p(Y |X)p(θ|Y,X), (41)

for which we consider

p (Y |X) = q (Y |X)χY ∈Dρ
Y ∗ ,

Dρ
Y ∗ = {Y : q (Y |X) + ρ � q (Y ∗|X)} ,

p(θ|Y,X) = q(θ|Y,X)χθ∈Dρ
θ∗
,

Dρ
θ∗ = {θ : q(θ|Y,X) + ρ � q(θ∗|Y,X)} ,

q(Y |X) =
∫
q(X |R)q(R)dθ∫
q(X |R)q(R)dR

,
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q(θ|Y,X) =
∫
q(X |R)q(R)dY∫
q(X |R)q(R)dθ

, (42)

where ρ takes a similar role to the one in Eq. (32), with
different values resulting in different sizes of apex zone.
Also, ρ may take different values in Dρ

Y ∗ , Dρ
θ∗ , and Dρ

R∗ .
Moreover, getting q(Y |X) and q(θ|Y,X) involves the

integral over Y and the integral over θ, which can be
handled for those structures of q(X |R) and q(R) that
are integrable over either or both Y and θ. E.g., for a
Gaussian mixture in Fig. 1, with q(X |R) = G(x|μj ,Σj)
and q(α), q(μj), and q(Σj) respectively in the DNW pri-
ors, these integrals can be handled analytically via its
conjugate Bayes posteriori counterparts [7].

Further investigation may be made on handling the
integrals that are not analytically trackable. Similar to
Eq. (39), we consider

Γp
Y |X = Γq

Y |X = Πq −1
Y |X ,

Πq
Y |X = −∂

2 ln
∫
q (X |R) q (R) dθ

∂vec[Y ]∂vec[Y ]T
,

Γp
θ|Y,X = Γq

θ|Y,X = Πq −1
θ|Y,X ,

Πq
θ|Y,X = −∂

2 ln[q (X |R) q (R)]
∂vec[θ]∂vec[θ]T

. (43)

In summary, a Yang machine is designed as a type
of inverse of the Ying, subject to a variety preserva-
tion principle, in order to not only match the demands
of Ying but also enhance the performance of Ying in
adapting the external world. Specifically, the structure
of p(R|X) comes from the structure of each component
in two types of factorization by Eqs. (23) and (41).

3.3 BYY coordination and all in one formulation

3.3.1 Coordinations across Ying-Yang, within Ying
and within Yang

As discussed in Sect. 2.1 of Ref. [1], there are two
types of methods to tackle an over-fitting problem of
maxθ ln q(XN |θ). One is model selection that prunes
away extra parameters in θ, while the other is learning
regularization that imposes certain constraint in order to
effectively reduce model complexity, without necessarily
discarding extra parameters. However, such a regular-
ization actually disturbs the purpose of model selection.
That is, on the same q(XN |θ) there is a trade-off between
model selection and learning regularization.

In a BYY system, Ying machine models data, on
which model selection is made, while Yang machine
serves as one inverse of Ying machine. Instead of on
Ying machine, regularization is indirectly imposed on
Yang machine. Thus, regularization and model selection
are coordinated within a BYY system without conflict,
i.e., design of a BYY system is featured with a coordi-

nation between Ying-based model selection and Yang-
based learning regularization, as outlined in the Box 4©
of Fig. 3. Further details are referred to Sect. 2.1 in Ref.
[1].

Model selection by Ying machine is also featured
with another coordination between its two components
q(X |R) and q(R). For an easy understanding, we take
the factor analysis by Eqs. (25) and (26) as an exam-
ple, where the task of model selection is determining the
dimension m of yt or equally the rank of A. The infor-
mation about m is contained not only in G(yt|0,Λ) as
a part of q(R) but also in G(xt − Ayt|0, σ2I) as a part
of q(X |R). Automatic model selection can be made via
discarding the jth dimension of yt by checking if either
the jth element λj of Λ tends to zero or all the elements
aij , ∀i in the jth column of A tend to zero. Also, we may
coordinately check whether we have

λj

∑
i

|aij |r → 0, r � 1. (44)

That is, model selection can be made coordinately by
the corresponding parts in both q(X |R) and q(R). In
Ref. [3], the above two matrices A and Y = {yt} are re-
garded as a co-dim matrix pair that shares a same rank
m. Such a matrix pair forms a building unit. We are thus
motivated to design q(X |R) and q(R) coordinately into
a hierarchy of such building units. Readers are referred
to Sect. 2 of Ref. [3] for a systematic study.

Similarly, we may consider such a coordination for
learning Gaussian mixture in Fig. 1 too. We can dis-
card the j-th Gaussian by checking either αj → 0 or
Tr[Σj ]→ 0. It is even better to check if

αjTr[Σj ]→ 0. (45)

Moreover, learning regularization by Yang machine is
featured with another coordination between its two parts
P (X) and p(R|X). For P (X) given by Eq. (20), a sample
xt is not directly input but smoothed by a Gaussian ker-
nel G(x|xt, h

2I) with a bandwidth h. This is equivalent
to add each sample with a Gaussian noise G(x|xt, h

2I).
It is known that maxθ ln q(XN |θ) with noise added to
samples is equivalent to a conventional learning regular-
ization [44], where a difficulty is controlling an appro-
priate strength h. Differently, inputting P (X) by Eq.
(20) to a BYY system, we get not only a similar reg-
ularization role, but also an appropriate h during BYY
harmony learning. This learning regularization is usually
referred under the name of data smoothing. It has been
empirically found that such a data smoothing regular-
ization works. Readers are referred to a recent outline at
the end of Sect. 4.2 in Ref. [1] and to historical remarks
made in Sect. 23.7.4 of Ref. [42].

Learning regularization is also adjusted by p(R|X)
that regularizes Ying modeling indirectly via an
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appropriate structure of p(R|X), which will be further
addressed as one demanding issue in Sect. 3.4.

3.3.2 All in one formulation: Unsupervised,
supervised, and semi-supervised learning

Conventionally, a learning that bases on merely input
samples is called unsupervised. Instead, a learning that
bases on samples in input-output pairs is called super-
vised. There are many cases that merely a part of in-
put samples is paired with their corresponding output
samples, on which studies are made under the name of
semi-supervised learning [45] in a sense that it consists
of a supervised part and a unsupervised part. Readers
are refereed to Sect. 4.4 in Ref. [1] for a recent outline
of the studies on the BYY harmony learning along this
direction.

The BYY system provides a unified framework
to accommodate unsupervised, supervised, and semi-
supervised learning all in one formulation. Four typical
scenarios are summarized in Table 2, differing in spe-
cial settings on one or more of the ingredients in a BYY
system. Further details are explained as follows:
• Type H (hidden representation based) We con-

sider each input-output pair ξt → ζt as an assem-
bled sample xt = [ξt, ζt] of XN = {xt} and maxi-
mize H(p||q) to implement BYY harmony learning
[25,35,46–48]. Specifically, q(XN |R) = q({ξt, ζt}|R)
is decomposed into either of two factorizations that
lead to typical supervised learning models. Read-
ers are referred to Ref. [38] for a recent tutorial
on these studies and also one further development
called subspace-based function (SBF) that actually
extends radial basis function (RBF) by locating
Gaussian kernels on local subspaces, see Sect. 4.4
of Ref. [1] for a latest outline. These studies share
the feature of getting a help from hidden represen-
tations, and thus shortly named Type H.

• Type R (inner regularization based) Given sam-
ples of {xt, yt}, we estimate q(Y |θ) by the sam-
ples of {yt} as a part of q(R), and then incorpo-
rate the obtained q(Y |θ) into H(p||q), e.g., as Eq.
(69) in Ref. [3], the BYY harmony learning is imple-
mented with the inner representation Y regularized
by q(Y |θ), thus shortly named Type R. Here, one
weak point is that each pairing information {xt, yt}
has not been taken in consideration directly.

• Type C (combining and constraining) One is sim-
ply the one by Eq. (12), originated from Eq. (7.14)
in Ref. [26]. Its general form is given in Table 2.
Also, Eq. (13) is rewritten in its general form un-
der the name of Super-Bayes Combining. This name
comes from a discussion made in one paragraph
after Eq. (16), that is, γδ�,j∗t makes the resulted
p(�|xt, θ) becomes a super-Bayes (see a further dis-

cussion around Eq. (46) and Item (A) in Sect.
3.4.2.). Actually, both the two combining types may
be regarded as special cases of mixture-of-experts,
i.e., β(xt|ϕ) = γ and β(xt|ϕ) = γ/(γ + q(xt|θ))
with simply q(ϕ) = γ. Also, the parameter ϕ may
be estimated by learning with help of a prior q(ϕ).
Finally, another option is also proposed in Table 2
for yt of real values by constraining the regression
function ηY (X,Φ) of p(Y |X, θ) to satisfy the given
pairing XN → YN .

• Type S (switching between two modes) The Yang
machine switches between two modes. For the mode
that has only xt available, we let the regression
ηy|x(xt) to be given by the parametric structure
ηy(xt,Φ). For the other mode that has a given
input-output pair xt → yt, we simply let ηy(xt) =
yt. Actually, Type S is a special case of Type C,
with its combination switching between two ex-
treme ends γ = 0 and γ = 1, which can be ob-
served from Ep(Y |XN )(y) = γEp(Y |XN ,θ)(y) + (1 −
γ)Eδ(Y −YN )(y).

3.4 Historical remarks and demanding topics

3.4.1 Historical remarks

Conventionally, a model that describes observed sam-
ples XN as generated from its inner coding is called a
generative model or latent factor model since the in-
ner coding Y is hidden behind the integral q(XN ) =∫
q(XN |Y )q(Y )dY . On the other hand, a model that

maps XN into its inner coding YN is called a represen-
tative or recognition model. Each of two model types
has been widely studied in the literature of statistics
and machine learning. Moreover, the maximum likeli-
hood learning on q(XN ) =

∫
q(XN |Y )q(Y )dY involves

the Bayes inverse p(Y |XN ) = q(XN |Y )q(Y )/q(XN ) for
the mapping XN → Y . Naturally a question rises on
why we still need to consider a BYY system as shown in
Fig. 2.

Both types of models are parts of a BYY system. The
BYY system considers not only two types jointly and
systematically, but also includes other ingredients that
have not been or seldom involved in the studies of either
generative models or representative models.

Started from Ref. [2] in 1995, efforts in the early pe-
riod were mainly made on showing that a BYY system
provides a unified framework that leads to many existing
learning approaches, with architectures of BYY system
classified into three types. Referring to Fig. A2 in Ref.
[1], main streams of efforts are outlined as follows:
• Backward architecture (B-architecture): q(X |Y )

and q(Y ) are given by parametric structures; while
p(Y |X) is free of structure, such that not only
minimizing the Kullback-Leiber (KL) divergence
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Table 2 Supervised and semi-supervised Bayesian Ying-Yang harmony learning

makes p(Y |XN ) = q(XN |Y )q(Y )/q(XN ) and leads
to those existing learning approaches as indicated
by the path of Box 1© → Box 2© → Box 3© in Fig.
A2, but also maximizing H(p||q) further leads to
those maximum a posteriori studies, as indicated
by the path of Box 1© → Box 4© on Fig. A2.

• Forward architecture (F-architecture): p(Y |X) and
q(Y ) are given by parametric structures, while
q(X |Y ) is free of structure, such that not only min-
imizing the KL divergence leads to those existing
approaches as indicated by the path of Box 5© →
Box 6© on Fig. A2, but also maximizing H(p||q)
further degenerates into two separated paths. One
is the path of Box 7© → Box 2© → Box 3©, while
the other is the path of Box 7© → Box 11©.

• Bi-directional architecture (BI-architecture): both
p(Y |X) and q(X |Y ) are given by parametric struc-
tures, for which minimizing the KL divergence leads
to the Helmholtz free energy or variational function
as indicated by the path of Box 8©→ Box 9© on Fig.
A2; while maximizing H(p||q) leads to a framework
with a new mechanism for model selection, as indi-
cated by the Box 10© on Fig. A2.

Readers are further referred to Sects. 22.9 and 23.7 of
Ref. [42] for detailed historical remarks on studies made
before 2003, and also to Appendix A of Ref. [1] as well as
Sects. 4.2.2 and 4.2.3 of this paper for recent overviews.

The second period of studies on the BYY system
is mainly featured by examining the role of each of
four components p(X), p(Y |X), q(Y ), and q(X |Y ), the
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structures for each component, and the order of consid-
ering the four components. One key point is identifying
what types of dependence among samples to be mod-
eled. As summarized Fig. 22.1 in Ref. [42], the types of
dependence include modular dependence, temporal de-
pendence, and topological dependence. Then, q(Y ) is
designed to describe one of these types, and accordingly
the structure of q(X |Y ) is designed. Further details are
referred to Sects. 22.4 and 22.9 in Ref. [42], Sect. II in
Ref. [5], and the previous two subsections in this paper.

In Ref. [6], the issue of BYY system design is further
re-elaborated from a perspective of two intelligent abili-
ties and three inverse problems. Particularly, as shown in
its Tables 2–5, each of the components p(R|X), q(X |R),
q(R) are factorized into several parts with each in one of
typical choices. Subsequently in Ref. [38], three design
principles for a BYY system are proposed, namely least
redundancy principle for q(R), divide and conquer prin-
ciple for q(X |R), and uncertainty conversation principle
or variety preservation principle for p(R|X). Readers are
further referred to Sects. 4.2 and 4.4 in Ref. [1] and Sect.
3.2 of this paper for latest overviews and particularly for
further developments on semi-supervised learning, and
also to Sects. 2 and 4 of Ref. [3] for a new configuration
of the BYY system featured with a hierarchy of co-dim
matrix pairs.

3.4.2 Demanding topics

Next, we summarize challenging issues that wait to be
solved and future topics that deserve to be explored.

• On Ying structure design

(a) As addressed at the beginning of Sect. 3.2.1, the
first topic is featured by different choices that
trade off the roles between q(Y ) and q(X |R) un-
der the guideline of a least complexity principle.
The structure of q(Y ) and the structure of q(X |R)
are considered according to what types of depen-
dence there are within the d × N data matrix
XN = [x1, x2, . . . , xN ] and its corresponding inner
representation YN = [y1, y2, . . . , yN ] of an m × N
data matrix. We consider a post bi-linear system
X = ηx + E by Eq. (10) in Ref. [3] with ηx com-
ing from an element-wise monotonic scalar mapping
from X̃ Typically, X̃ comes from linear map of Y ,
with two typical examples as follows:

– x̃t = Ayt is mapped homogenously per column
and yt is inter-dimensional independent, as
given by Eq. (22) in Ref. [3], i.e., YN is inde-
pendent across its rows, while the dependence
cross the rows of XN is modeled by A;

– The dependence cross the columns of XN

is modeled by certain dependence structure
across the columns of YN , e.g., a line struc-

ture (i.e., temporal dependence) by Eq. (30)
or a graph Laplacian by Eq. (107).

Usually, the row dependence of XN and column de-
pendence of XN are assumed to be decomposable,
with the former modeled by q(X |R) and the latter
by q(Y ). Following the least complexity principle,
an informal discussion has been made after Eq. (30)
to support this treatment in a special case. Gener-
ally, it remains to be a challenge issue to investigate
under which situations this decomposition assump-
tion can be justified and whether such a formulation
on the structures of q(X |R) and q(Y ) entertains the
least complexity principle.

(b) The FA by Eqs. (25) and (26) is one special case of
the above formulation. As discussed after Eq. (27),
the linearity of Ayt leads to an equivalent family of
q(Y ) structures in term of the maximum likelihood
learning, i.e., the FA-D family by Eq. (27) in Ref.
[3]. In term of model selection (e.g., determining the
row dimension of XN), however, there is at least an
optimal one that is better than others. This nature
has been verified by extensive experiments on FA-a
versus FA-b in Ref. [34] and also analytically justi-
fied by discussions made after Eqs. (28) and (29) in
Ref. [3]. Generally, such a nature should be applica-
ble to the above general post bi-linear system too.
Further investigations are deserved on comparing
the model selection performances of the following
paired models:

– Local factor analysis (LFA) by Eqs. (28) and
(29) versus a mixture of factor analysis fea-
tured with yt,� ∼ G(y|0, I) as used in Refs.
[27,36,37];

– Temporal FA (TFA) by Eqs. (25) and (30),
versus its counterpart featured with εt ∼
G(εt|0, I), which will be further discussed in
Sect. 5.2.1 of this paper.

– Manifold learning with q(Y ) by Eq. (66) in Ref.
[3] versus its counterpart featured with q(Y )
by Eq. (107), which will be further discussed
in Sect. 5.2.1 of this paper.

(c) Efforts also deserve to be made beyond the above
formulation. Beyond a row-column decomposition,
we may consider the dependence among elements
of XN in other choices. Instead of x̃t = Ayt, we
may generally consider vec[X̃] = Avec[Ỹ ], which
degenerates to x̃t = Ayt for a special structure
A = diag[A, . . . , A]. There need further efforts on
explore other special structures of A. Also, we may
proceed beyond that X̃ comes from linear map of
Y . E.g., x̃t is a quadratic regression from yt by
Eq. (80) in Sect. 5.1 of this paper, which is help-
ful to verify whether the interaction between the
corresponding two SNPs in GWA studies (see Sect.
6.1 of this paper). Following the least complexity
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principle, we prefer that each quadratic term is
taken in consideration only when we have to. Hence,
efforts are needed to seek a learning mechanism that
extra parameters are pushed towards zeros such
that the coefficients of quadratic terms are pushed
more strongly than the coefficients of linear terms.

(d) Further investigation is also needed on the struc-
ture of inner representation q(R) = q(Y )q(θ) by
Eq. (21). In general, each sample xt is encoded by
both a discrete representation and a real inner rep-
resentation. One example is LFA by Eqs. (28), (29),
and (21), where we have q(YN ) = q({�t, yt}Nt=1). We
may further extend LFA to model temporal/column
dependence among XN as follows:

– Modeling temporal dependence among {yt}Nt=1

by Eq. (30) but still regarding {�t}Nt=1 as i.i.d.
samples, each FA is replaced by TFA, by which
{xt}Nt=1 is regarded as a mixture of several sta-
tionary process;

– Modeling temporal dependence among {�t}Nt=1

by a Markov chain but still regarding {yt}Nt=1

as i.i.d. samples, we get a hidden Markov
model with each of hidden states associated
with a FA model, by which {xt}Nt=1 is regarded
as a temporal process that switches across sev-
eral clusters of i.i.d. samples.

– Modeling temporal dependence among {yt}Nt=1

by Eq. (30) and among {�t}Nt=1 by a Markov
chain, we are lead to an HMM gated TFA mod-
eling that will be further introduced in Sect.
5.2.2 and Fig. 9, by which {xt}Nt=1 is regarded
as a nonstationary process that switches across
different stationary segments. Moreover, the
hidden states are connected in one of the struc-
tures shown in Fig. 10, to ensure the unidirec-
tional nature and to probabilistically describe
a random length per segment.

We need a comparative study on the above ways
of temporal modeling, and also a further investiga-
tion on the coordination role of an appropriate prior
q(θ) in q(R), e.g., a comparative study on Jeffreys
priors versus the so-called induced bias cancellation
(IBC), see Eq. (21) in Ref. [39], Sect. II(A) of Ref.
[40], and the last part of Sect. 4.2 in Ref. [1].

• On Yang structure design

(A) As addressed at the beginning of Sect. 3.2.2, the
task of Yang structure design is mainly design-
ing the probabilistic structure of p(R|X), under
the guideline of the variety preservation principle.
We need a measure U(p) to describe the variety of a
distribution p, e.g., using either Shannon or Renyi
entropy as shown in Fig. 4(c) in Ref. [38]. In Fig.
1, we say p(�|x, θ) is more selective than p̃(�|x, θ)

if U(p(�|x, θ)) < U(p̃(�|x, θ)), or p̃(�|x, θ) is less se-
lective than p(�|x, θ). Moreover, we take the Bayes
inverse of Ying machine as a standard reference. We
say a structure of p(R|X) is super-Bayes if it is more
selective than this standard reference, or inversely
sub-Bayes if it is less selective than the reference.
One extreme end Esup of super-Bayes structures is
p(R|X) = δ(R −R∗), while one other extreme end
Esub of sub-Bayes structures is a uniform distri-
bution of p(R|X) on its supporting domain. As a
whole, the possible structures of p(R|X) could be a
spectrum

Esup ←→ Bayes · inverse←→ Esub. (46)

Towards Esup, it becomes easier to handle the in-
tegral over R (e.g., θ, Y ) and the integral actually
disappears at Esup with p(R|X) = δ(R−R∗). Also,
it tends to consider a few representations aroundR∗

such that Ying has a best fitting on the given sam-
ple set XN while it is weak on generalization (i.e.,
fitting new data from a same underlying regular-
ity). Away from Esup towards Bayes · inverse and
then further to Esub, computing cost increases and
fitting error trades off improvements on generaliza-
tion, for which further investigations are needed.
Efforts are also needed on seeking a good measure
for variety and on whether Bayes · inverse provides
an optimal structure of p(R|X)

(B) Existing studies have been mainly made on p(R|X)
within the range Esup ←→ Bayes · inverse, sup-
ported by an empirical finding that an optimal
structure likely falls within this range. It is not
clear whether the range Bayes · inverse ←→ Esub

is useful. Some experiments show that it improves
generalization to initialize p(R|X) within the range
Esub ←→ Bayes · inverse and gradually move into
the range Esup ←→ Bayes · inverse towards Esup.
Further investigations are needed on these empiri-
cal findings. Controlling the structure of p(R|X) in
such a way is also named structural regularization
since it regularizes the Ying machine indirectly via
the structure of p(R|X). Further efforts are needed
on how this structural regularization is appropri-
ately controlled in a coordination with Ying-based
model selection and also in a coordination with data
smoothing regularization via Eq. (20) by controlling
an appropriate strength h.

(C) The structure of Bayes inverse is featured by
p(R|X) ∝ q(X |R)q(R), that is, the Yang has a
linear relation with the Ying. One way of control-
ling p(R|X) to vary among the spectrum Esup ←→
Bayes · inverse ←→ Esub is extending this linear
relation to become nonlinear. For an example,
in Fig. 1 we may let p(�|x, θ) ∝ q

1/λ
bayes(�|x, θ),

see Eq. (23.50) in Ref. [42], which varies within
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Esup ←→ Bayes · inverse if λ � 1, and varies
within Bayes · inverse ←→ Esub if 1 > λ > 0.
In general, we consider p(R|X) ∝ [q(X |R)q(R)]1/λ.
Alternatively, we may also keep the linear relation
p(R|X) ∝ q(X |R)q(R) merely within an apex zone,
e.g., one of Eqs. (32), (34), and (42), incurring a
nonlinearity when p(R|X) is cut-off to zero outside
of the apex zone. Accordingly, we control the size of
the apex zone for controlling p(R|X) to vary among
Esup ←→ Bayes ·inverse. Further investigation de-
serves to be made on both of these issues.

(D) Both the factorization by Eq. (23) and the factor-
ization by Eq. (41) have only been partially studied
yet. Most of existing studies on Eq. (23) use p(θ|X)
approximately with Πq

θ|Y,X as Πq
θ|X in the place of

the one in Eq. (39). To be addressed in Sect. 4.2 of
this paper, we may get an improvement by directly
handing the integral in Eq. (39) either analytically
or by means of Eq. (40). On the other hand, ef-
forts have been made on solving the integrals in
Eq. (42) analytically for a Gaussian mixture, with
q(X |R) = G(x|μj ,Σj) and q(α), q(μj), and q(Σj)
respectively in DNW priors [7]. Further investiga-
tion may be made on handling the integrals that
are not analytically trackable. E.g., similar to Eq.
(39), we consider Eq. (43).

(E) Finally, semi-supervised learning comes from a spe-
cial structure of p(Y |XN , θ) that simply combines a
supervised teaching pairing δ(Y −YN ) with a Bayes
inverse type structure. Several choices are summa-
rized in Table 2 under Type C. A comparative study
needs to be further conducted on these types of
combinations. Further investigation is also needed
on an appropriate value of γ, which controls the su-
pervised strength and may also be learned via max-
imizing H(p||q) with help of an appropriate prior
q(γ), e.g., a beta distribution.

4 Topics on BYY harmony learning

4.1 Measuring bi-entity proximity

4.1.1 Harmony functional: A unified scheme

As outlined in Fig. 4, we start from typical measures
for bi-entity proximity (see Box 1©). The task of learn-
ing is making a learner (a parametric model) to describe
the regularity underlying a set of samples in a world of
the learner’s observation, under the guidance of a learn-
ing principle or theory that measures a proximity of the
regularity described by the model to the regularity un-
derlying samples, or how the learner’s behavior is close
to what observed in its world.

Mathematical formulation of a proximity measure de-

pends on which space is considered. In an Euclidean
space and a Hilbert space, a proximity between two enti-
ties could be measured from either a perspective of best
agreement (e.g., equal, inner-product, similarity, corre-
lation, projection), or a perspective of least difference
(e.g., error, residuals, distance). Two perspectives are
closely related but usually different though they become
equivalent in certain special cases. Further details are
referred to Appendix A of Ref. [1].

For learning by probabilistic models, we consider enti-
ties in a probability space or generally a measure space.
Let P,Q, μ to be σ-finite measures on the same mea-
sure space (X,Σ), we observe the proximity between
P,Q under μ as a common background. With help of
Radon-Nikodym derivatives [49], we consider a product
f(dQ/dμ)dP/dμ that measures every local agreement
between P,Q calibrated by μ, with a scalar function f(r)
that indicates Q in a primary consideration. This f(r)
has the following two natures:
• f(r) monotonically increases with r and d2f(r)/dr2

< 0 such that the contributions from those local re-
gions with large values of dQ/dμ are appropriately
discounted, and that there could be a large dynamic
range on which the behavior of Q can be evaluated
more homogenously.

• Taking those local regions in consideration every-
where, we have the harmony functional Hμ(P ||Q)
given in Fig. 5, which is triple-relation among dP ,
dQ, and dμ. The scalar function f(r) should have a
matching nature such that maxq Hμ(P ||Q) subject
to a given p pushes q towards to p or preferably
reaching p = q. One typical example is

f(r) = ln r. (47)

In such a setting, Q takes a primary role with a large
behaving range that can be evaluated in details, while P
takes a secondary role that maximizing Hμ(P ||Q) makes
P to concur with or harmonize to Q on those major
regions that Q behaves.

Oppositely, if we are given one f(r) that monotoni-
cally increases with r and d2f(r)/dr2 > 0, such that
focuses are put on those local regions with large values
of dQ/dμ. Reversely, P becomes a primary consideration
while Q takes a secondary role that coheres to P . This
abnormal case is less useful since it concentrates only on
those regions with large values of dP/dμ.

Generally, Hμ(P ||Q) is a functional of P,Q, μ as a
measure for a proximity between two entities P,Q from a
best agreement perspective with a common background
μ. When f(r) = r, Hμ(P ||Q) is also an inner product in
the Hilbert space, since P,Q belonging to the probability
space implies that P,Q belong to the class L2. Gener-
ally, when f(r) �= r, H (p ‖q ) may be neither an inner
product of p and q since q and f(q) are not exchangeable
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nor an inner product of p and f(q) because f(q) may not
belong to the class L2 especially when q is on an infinite
support. As suggested in Sect. III of Ref. [4], such an
asymmetric inner-product can be regarded as a special
case of a general concept “projection” that is no longer
symmetric, e.g., projecting one vector onto another vec-
tor in the Euclidean space. Hμ(P ||Q) may be regarded
as a generalized projection in a measure space.

Interestingly, as shown in Fig. 5, Hμ(P ||Q) provides a
unified scheme that covers the following three branches:
• When Q = P in a complete match, Hμ(P ||Q)

becomes a bi-relation Hμ(P ||P ) as shown in Box
3©a, Box 3©b, and Box 3©c, which describes the
compactness of the configuration of dP/dμ or den-
sity p(x). For finite measures P, μ, maximizing
Hμ(P ||P ) makes dP/dμ or p(X) more compacted
or concentrated.

• When μ = P , Hμ(P ||Q) becomes another bi-
relation HP (P ||Q) that describes an agreement by
f(dQ/dP ) measured with dP (a re-scaled projec-
tion of differential ratio onto dP ) as shown in Box
2©a or the negation of the well-known KL diver-
gence in the Box 2©b when f(r) = ln r and μ is

Lebesgue. Here, the calibration role of μ is shut
off by P , seeking a best agreement between P and
Q is equivalent to seeking a least disagreement or
difference between P and Q, both of which ap-
proaches P = Q.

• Generally, as shown in Box 1©a, Box 1©b, and Box
1©c, maximizing a triple-relation Hμ(P ||Q) consists
of both maximizing Hμ(P ||P ) to make dP/dμ or
p(X) more compact and minimizing KL(P ||Q) to
approach P = Q.

4.1.2 Why taking the name harmony functional

According to a Chinese philosophical concept called
harmoniousness, a good pattern for a relation between
two coexisting individuals or entities is featured with
acknowledgment of individual differences (usually one
primary and one secondary, being mutually complemen-
tary), respect of each own value, avoidance of mutual
confrontation, and harmony with their common back-
ground world. The harmony functional Hμ(P ||Q) echoes
this sprit in that not only each entity has its own mea-
sure with a re-scaling f(r) to signify one in a primary
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consideration but also two measures P,Q coordinate in
a positive side because of maximizing Hμ(P ||Q). More-
over, a harmonious interaction with their background
world is considered via a common calibration by μ.

Also, it follows from the discussion on the 2nd column
of page 299 in Ref. [1] that one must not confuse H(p||q)
with a terminology called cross entropy, used in the liter-
ature of signal processing and information theory under
the name of minimum cross entropy (MCE). Actually,
the name “cross entropy” mixed up two scenarios:

• One is a special case of the Box 4©a in Fig. 5 with
a fixed reference distribution p, where maxH(p||q)
and minKL(p||q) with respect to q equivalently
leads to q = p. Moreover, if the fixed p is simply em-
pirical distribution, it becomes equivalent to maxi-
mum likelihood (ML), marginal Bayes, and BIC, as
shown by the Box 4©b and the Box 4©c in Fig. 5.

• The other scenario is to optimize p against a fixed
q, for which maxp H(p||q) leads to p(x) = δ(x−c) if
p is free of constraint. This was regarded as a use-
less degenerated case, and thus no further effort has
been made along this direction. Instead, the MCE
studies have been widely made on minpKL(p||q)
with a fixed q subject to a set of known constraints
on p [8], as illustrated by the Box 5©a and the Box

5©b in Fig. 5. Moreover, as illustrated by the Box
5©b, it includes the maximum entropy approach as
a special case [9,10]. Also, the Box 3©c leads to the
minimum entropy approach as a special case in the
Box 5©c.

With a fixed q, maxpH(p||q) and minpKL(p||q) are
not equivalent, and thus referring both of them by the
MCE name had ever created some confusion. In the liter-
ature of signal processing and information theory, there
have been already some authors attempting to resolve
the inconsistency by reassigning the terminology “cross
entropy” to merely indicating KL(p||q).

Therefore, we name H(p||q) as a harmony functional
instead of cross entropy. Not only Hμ(P ||Q) provided
a unified paradigm that covers other special cases, but
also the above mentioned useless nature p(x) = δ(x− c)
of maxpH(p||q) becomes useful and important when p, q
are given by a Ying-Yang system, which will be further
discussed in Sect. 4.2.3 (see the fourth aspect).

4.2 Best Ying-Yang harmony principle

4.2.1 Measuring unidirectional proximity

Considering the Bayesian Ying-Yang system in Fig. 2(a),
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measuring bi-entity proximity can be handled from dif-
ferent perspectives, as outlined by the Box 2© in Fig. 4.
Existing efforts usually consider bi-entity proximity from
a unidirectional perspective, that is, either a top-down
direction or a bottom-up direction.

From a top-down direction, the proximity between a
system and a setXN of samples is considered via q(X) =∫
q(X |R)q(R)dR for a best match to p(X) = δ(X−XN)

by H(p||q) =
∫
p(X) ln q(X)dX = ln q(XN ). Two typi-

cal examples are outlined by the Box 4©b and the Box
4©c in Fig. 5. One is q(X |θ) =

∫
q(X |Y, θx|y)q(Y |θy)dY ,

widely studied under the name of the maximum like-
lihood learning for a latent modeling, while the other
is q(X |k) =

∫
q(X |θ)q(θ)dθ that was previously used for

developing the BIC criterion [11] and intensively studied
under the name of the marginal likelihood based Bayes
studies in the literature of machine learning [12–14].

From a bottom-up direction, the proximity is consid-
ered at getting p(Y ) =

∫
p(Y |X)p(X)dX for a best inner

encoding that matches a structural specification of q(Y ),
typically by minimizing KL(p||q). As outlined in the
Box 5©b of Fig. 5, one instance is the previous discussed
MCE with q being a fixed prior. The other instance is
that q(Y ) is mutually element-wise independent, which
leads to the studies under the name of the minimum mu-
tual information (MMI) [15]. Specifically, one limit case
is the maximum information (INFORMAX) [16] when
q(Y ) is uniform or noninformative. Both MMI and IN-
FORMAX have been widely adopted in the studies of
independent component analysis (ICA) [17]. With p(Y )
and p(Y |X) subject to some constraints, we may also es-
timate unknown parameters of p via minimizing entropy
or INFORMIN, as listed in the Box 5©c of Fig. 5.

In addition to observing the proximity at the ingredi-
ent q(Y ), studies from a bottom-up direction also include
observing the proximity to the ingredient p(Y |X). We
may use δ(Y −YN (XN )) to represent a pairing YN , XN of
samples. The proximity between the ingredient p(Y |X)
and the pairing of samples is considered via maximizing
H(δ(Y − YN (XN ))||p(Y |X)) = ln p(YN |XN ). Particu-
larly, we consider p(Y |X) ∝ q(X |Y, θx|y)q(Y |θy) when
q(X |Y, θx|y) and q(Y |θy) are available. In the literature
of speech recognition, maximizing ln p(YN |XN ) is stud-
ied also under the name of the maximum mutual in-
formation (MMI) as a discriminative training criterion
[18,19], which is actually different from the above men-
tioned MMI [15] though a same name is used.

Given XN = {X(1), X(2), . . . , X(N)} as an observa-
tion sequence and YN = {Y (1), Y (2), . . . , Y (N)} as the
corresponding word-sequence / phone-sequence / state-
sequence, i.e., the segment X(r) corresponds to the word
/ phone / state Y (r), the detail formulae of this discrim-
inative training MMI criterion and its further extensions
[50–53] are given as follows:

FMMI(YN , XN , θ) =
R∑

r=1

ln p(Y (r)|X(r), θ),

FMCE(YN , XN , θ) =
R∑

r=1

s

(
1− 1

p(Y (r)|X(r), θ)

)
,

FFPE(YN , XN , θ) =
R∑

r=1

∑
Y

p(Y |X(r), θ)L(Y, Y (r)),

p(Y (r)|X(r), θ) =
q(X(r)|Y (r), θx|y)q(Y (r)|θy)∑
Y ∈D

(r)
Y

q(X(r)|Y, θx|y)q(Y |θy)
,

(48)

where D(r)
Y is a set of candidates that X(r) may be clas-

sified into, and s(r) is a sigmoid function, and L(Y, Y (r))
is the loss function of word sequence Y against the ref-
erence Y (r).

Each of the above studies is featured by measuring
a bi-entity proximity along one direction. Applying to
the Bayesian Ying-Yang system in Fig. 2(a), such a bi-
entity proximity only focuses on a part of the system
while lacks of an appropriate coordination with other
parts within the system. One way to improve is com-
bining a top-down measure and a bottom-up measure
to jointly consider bi-entity proximity at more than one
parts. However, an inappropriate combination may pro-
duce some inconsistency.

4.2.2 Ying-Yang best matching: A unified perspective

A system oriented learning principle is obtained by
measuring bi-entity proximity between Ying machine
q(X |R)q(R) and Yang machine p(R|X)p(X), for which
we consider the harmony functional Hμ(P ||Q) in Fig.
5, where the first branch considers a degenerated case
Q = P that needs not to be discussed separately, but
will be covered during discussions on other branches.

As outlined by the Box 2©a and the Box 2©b in Fig. 5,
the second branch is featured with μ = P such that
maximizing HP (P ||Q) or equivalently minimizing the
KL divergence KL(P ||Q) targets at P = Q, which is
shortly named as Ying-Yang best matching or Bayesian
Ying-Yang (BYY) best matching.

To get some insights, we start from the standard KL
divergence given by the Box 2©b in Fig. 5, namely we
move to the Box 3© in Fig. 4. According to Appendix A
of Ref. [1] and particularly the road map given by its Fig.
A2, this BYY best matching acts as a general framework
that unifies existing learning principles as follows:
• Minimizing KL(p(Y |X)p(X)||q(X |Y )q(Y )) with

respect to a structure free p(Y |X) leads to
KL(p(X)||q(X |θ)), as shown by the Box 3©a in
Fig. 4. When p(X) = δ(X − XN ), we are lead
to the maximum likelihood on a latent model by
q(X |θ) =

∫
q(X |Y )q(Y )dY , for which the imple-

mentation by Eq. (18) degenerates into the well
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known EM algorithm [2]. Moreover, we are lead to
their extensions with a data smoothing regulariza-
tion when p(X) = ph(X |XN) by Eq. (20).

• Minimizing KL(p(θ|X)p(X)||q(X |θ)q(θ)) with re-
spect to a free p(θ|X) leads to minimizing
KL(p(X)||q(X)), as shown by the Box 3©b in Fig.
4. When p(X) = δ(X −XN ), we get the marginal
likelihood q(X) =

∫
q(X |θ)q(θ)dθ, from which we

are lead to the Box 4©c in Fig. 5, that is, BIC [11]
or MDL [54]. Again, we are lead to their exten-
sions with a data smoothing regularization when
p(X) = ph(X |XN ) by Eq. (20).

• For the Box 3©c in Fig. 4, the minimiza-
tion of KL(p(Y |X)p(X)||q(X |Y )q(Y )) with both
a parametric p(Y |X) and a parametric q(X |Y )
leads to the classic Helmholtz free energy [55]
from a different perspective, while minimizing
KL(p(θ|X)p(X)||q(X |θ)q(θ)) with respect to a
parametric p(θ|X) leads to a formulation that be-
comes equivalent to the variational Bayes [13,31].

• Minimizing KL(p(Y |X)p(X)||q(X |Y )q(Y )) with
respect to a free structure q(X |Y ) leads to
minKL (p(Y ) ‖q(Y ) ), as shown by the Box 3©d in
Fig. 4. Similar to the previous discussions on the
Box 5©b of Fig. 5, we are again lead to MCE, MMI,
and INFORMAX.

Finally, we move to the Box 5© in Fig. 4. As
introduced in Sect. 3.1, the inner representation
R = {Y, θ, k,Ξ} in the Ying domain actually has a
three-layer hierarchy {{{Y }, θ}, k,Ξ} with Y on the
deepest layer and k,Ξ on the top layer. Accordingly,
q(R) in Eq. (21) and p(R|X) in Eq. (23) may also be
considered in such a hierarchy. As introduced in Sect.
5.2 of Ref. [1], Ying-Yang best matching has a bottom-
up decoupling nature that makes the tasks of learning
hierarchical layers be decoupled sequentially bottom-up
such that the tasks of handling latent variables, param-
eter learning, and model selection be decoupled sequen-
tially step by step. E.g., for the factorization by Eq. (23)
we have

min
a free p(Y |X,θ)

KL(p(R|X)p(X)||q(X |R)q(R))

⇒ minKL(p(θ|X)p(X)||q(X |θ)q(θ)),
q(X |θ) =

∫
q(X |Y )q(Y )dY,

min
a free p(θ|X)

KL(p(θ|X)p(X)||q(X |θ)q(θ))
⇒ minKL(p(X)||q(X)),

q(X) =
∫
q(X |θ)q(θ)dθ. (49)

Also, as introduced in Sect. 5.1 of Ref. [1], Y may be
divided into multiple layers and such a bottom-up de-
coupling nature still applies.

On one hand, this decoupling nature facilitates learn-
ing unknowns bottom-up layer by layer. On the other

hand, learning within one layer becomes insensitive to
the lower layers (especially their complexity). Conse-
quently, it becomes poor on determining the complexity
k of Y and its hierarchical configuration. Abandoning
such a decoupling nature, the BYY best harmony learn-
ing makes automatic model selection become possible on
each layer and each step.

4.2.3 Ying-Yang best harmony: Novelty and features

We further switch to the Box 4© in Fig. 4 to introduce
Ying-Yang best harmony via maximizing Hμ(P ||Q). Re-
ferring to Appendix A and Fig. A2 in Ref. [1], we start
from observing how the special cases of maximizing
Hμ(P ||Q) leads to the following learning principles:
• Maximizing H(p(Y |X)p(X)||q(X |Y )q(Y )) with re-

spect to a structure free p(Y |X) leads to the
maximum a posteriori (MAP) maxY [q(X |Y )q(Y )],
as shown by the Box 4©a in Fig. 4. One example is
competitive learning discussed around Eq. (4).

• Maximizing H(p(θ|X)p(X)||q(X |θ)q(θ)) with re-
spect to a free p(θ|X) leads to Bayes learning θ∗ =
argmaxθ[q(X |θ)q(θ)], as shown in the Box 4©b in
Fig. 4. For a uniform or noninformative prior q(θ), it
degenerates to the maximum likelihood again, shar-
ing with Ying-Yang best matching.

• Maximizing H(p(Y |X)p(X)||q(X |Y )q(Y )) respect
to a structure free q(X |Y ) leads to minimizing
KL(p(Y )||q(Y )) with p(Y ) =

∫
p(Y |X)p(X)dX , as

shown by the Box 4©d in Fig. 4, from which we are
again lead to MCE, MMI, INFORMAX in the Box
3©d, sharing with Ying-Yang best matching again.

• In another special case q(X |Y ) = q(X), we have
H(p(Y |X)p(X)||q(X)q(Y )) = H(p(X)||q(X)) +
H(p(Y )||q(Y )). MaximizingH(p(Y )||q(Y )) with re-
spect q(Y ) leads to q(Y ) = p(Y ) and maximizing
H(p(Y )||p(Y )) or equivalently minimum entropy, as
shown by the Box 4©c in Fig. 4. It is a counterpart
of INFORMAX and thus called minimum informa-
tion transfer (INFORMIN), covering those studies
under the name of minor component or subspace
analysis (MCA and MSA) [56,57], and further ex-
tensions to minor ICA (M-ICA) [47]. Readers are
referred to a recent review [17].

In addition to the above degenerated cases, what is
even important is that H(p||q) or generally Hμ(P ||Q)
provides a favorable new learning principle when both
p(R|X) and q(X |R) take parametric structures. The
novelty of this principle can be observed from several
different aspects, which are further addressed as follows.

First, Ying-Yang best harmony aims at a best Ying-
Yang matching in a BYY system with a least complexity.
Specifically, maxq H(p||q) for a fixed p forces the Ying
machine q(X |R)q(R) to best match p(R|X)p(X). Due
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to a finite size N and other existing constraints (if any),
the limit q(X |R)q(R) = p(R|X)p(X) may not be really
reached. Still there is a trend towards this equality by
which H(p||q) (as illustrated by the Box 3©c in Fig. 5),
becomes the negative entropy, and its further maximiza-
tion will minimize the system complexity, which makes
the Ying-Yang pair in a least complexity.

Second, the least complexity nature may also be
understood from the nature that q(Y ) is in a scale
sensitive position within Hμ(p(R|X)p(X)||q(X |R)q(R))
via q(R) = q(Y |θY )q(θ). More specifically, H(p||q)
contains one term that increases monotonically with∫
p(Y ) ln q(Y )dY that tends to

∫
p(Y ) ln p(Y )dY , for

which a best harmony prefers one q(Y ) with a least en-
tropy.

Generally, we say q(Y ) in a scale sensitive position
within a cost function F( · , q(Y )) if this F( · , q(Y ))
varies monotonically as the scale/complexity of q(Y )
varies such that maximizing or minimizing F( · , q(Y ))
pushes this q(Y ) towards a least complexity. On the
contrary, q(Y ) is not in such a scale sensitive position
when F( · , q(Y )) is a likelihood function ln q(X |θ) =
ln
∫
q(X |Y, θX|Y )q(Y |θY )dY . Observing the example of

the factor analysis by Eqs. (25) and (26), we have
q(X |θ) = G(x|μ,Σ) via Σ = σ2I + AΛAT, where Σ
is insensitive to the dimension of y. Also, q(Y ) is not
in such a scale sensitive position when F( · , q(Y )) is
given by KL(p(Y |X)p(X)||q(X |Y )q(Y )), which can be
observed from the previous discussion that minimizing
KL(p(Y |X)p(X)||q(X |Y )q(Y )) with respect to a free
structure p(Y |X) actually becomes equivalent to maxi-
mizing ln q(X |θ).

For q(Y ) in a scale sensitive position, as addressed in
Sect. 4.1 and Fig. 5 of Ref. [1], we can observe the scale
kY of Y . Also this kY is usually a primary part of the
entire scale set k. For many typical learning problems,
e.g., Gaussian mixture in Fig. 1 and factor analysis by
Eqs. (25) and (26), the task of model selection is just de-
termining this complexity kY . Therefore, we are actually
provided with a favorable new mechanism for model se-
lection (particularly automatic model selection). Read-
ers are referred to Sect. 2.2 and Fig. 5 in Ref. [1] for
further details.

In summary, q(Y ) takes a role of at least equal impor-
tance to q(θ) for model selection, which thus provides
favorable improvements on both model selection criteria
and automatic model selection.

Third, the novelty of Hμ(P ||Q) is also observed from
that Hμ(P ||Q) differs from KLμ(P ||Q) in the following
aspects:

• Hμ(P ||Q) is a triple-relation while it follows from
the Box 2©a in Fig. 5 that KLμ(P ||Q) is a degen-
erated case at dμ = dP for measuring a bi-relation.

• It follows from the Box 1©b and Box 1©c in Fig. 5
that maximizingHμ(P ||Q) consists of not only min-
imizing KL(P ||Q) for a Ying-Yang best match but
also minimizing the information −H(P ||P ) that is
transferred by Yang. That is, Ying and Yang seeks
a best agreement in a most tacit manner via a least
amount of information communication.

• The bottom-up decoupling nature by Eq. (49)
makes q(Y ) have no contribution to model selection.
Instead, we are lead to q(X |k) and accordingly the
Box 4©c in Fig. 5, that is, BIC [11] or MDL [54]. On
the contrary, Hμ(p(R|X)p(X)||q(X |R)q(R)) con-
siders q(R) = q(Y )q(θ) with the following features:

– The roles of q(Y ) and q(θ) are observed by
p(R|X) = p(Y, θ|X) per instance of Y and per
instance of θ. Not only the complexity k is ob-
served via q(θ), but also the complexity kY is
observed via q(Y ), such that Ying-Yang best
harmony is able to make automatic model se-
lection on each layer.

– Without the above decoupling nature, the
maximization of Hμ(P ||Q) with respect to
p(R|X) also makes p(Y, θ|X) more selective to
harmonize q(X |R)q(R) via the best inner rep-
resentations.

Fourth, we further observe the novelty of Hμ(P ||Q)
from its following differences from MCE [8–10]:

• As previously addressed at the end of Sect. 4.1, the
name MCE was ever confusingly used in the litera-
ture of signal processing and information theory to
refer both maxpH(p||q) and minpKL(p||q) with a
fixed q. Actually, the MCE studies have been widely
made on minpKL(p||q) with a fixed q. In contrast,
maxp H(p||q) leads to p(x) = δ(x − c) when q is
fixed while p is free of constraint, which has been
regarded as a useless degenerated case, with no fur-
ther effort made along this direction.

• The above apparent useless singular nature be-
comes useful and important when p, q are given
by a BYY system. Because p = p(R|X)p(X) in-
cludes p(X) = ph(X |XN) by Eq. (20), maxpH(p||q)
for a fixed q can not push p(R|X)p(X) to en-
tirely becomes a δ distribution, but push p(R|X)
into a most compact form under the constraint
by p(X) = ph(X |XN) and also by some structure
of p(R|X) (if any). Moreover, maxq H(p||q) for a
fixed p forces the Ying machine q(X |R)q(R) to best
match p(R|X)p(X) and accordingly become more
compact too.

• For those MCE studies [8–10], a set θ of unknown
parameters in pθ is estimated via minθ KL(pθ||q)
with a fixed q subject to a set of known constraints
on p, which needs task dependent efforts to get
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these constraints manually. In a BYY system, the
set XN of samples is directly input to the system
as p(X) = ph(X |XN) by Eq. (20), which is a gen-
eral formulation that learns from its environment
automatically.

Fifth, the following two aspects also provides insights
on the novelty of Hμ(P ||Q):

• Another information-theoretic perspective of BYY
harmony learning can be found in Sect. II(C), Sect.
II(E), and Fig. 3 of Ref. [4], which provides a three-
level encoding scheme for optimal communication,
being different from both the conventional MDL
and the bit back MDL [58].

• As discussed around Eq. (25) in Ref. [1] and also
around Eq. (10) in Sect. 2.1.5 of this paper, the gra-
dient flow ∇ϕH(p||q) modifies the updating flow of
the M-step in the EM algorithm for the maximum
likelihood learning and Bayesian learning such that
the learning dynamics has a mechanism similar to
RPCL learning [24,59] as previously introduced in
Sect. 2.2. Similar to that Δπ�,t in Eq. (10) has two
equivalent choices, Δπ (X,Y ) in Eq. (25) of Ref.
[1] corresponds to choice 1) of Δπ�,t in Eq. (10)
that describes the top-down fitness Y → X . Also,
we have its bottom-up equivalence to choice 2) of
Δπ�,t as follows:

Δπ(X,Y ) = −EY |X(θy|x)

+
∫
p
(
Y |X, θy|x

)
EY |X(θy|x)dY,

EY |X(θy|x) = − ln p
(
Y |X, θy|x

)
. (50)

In other words, the correcting term Δπ(X,Y ) to the
updating flow of the M-step in the EM algorithm
can be interpreted from both a top-down perspec-
tive and a bottom-up perspective.

4.3 Learning implementation: Apex approximation,
manifold shrinking, and balanced operation

4.3.1 Hierarchical implementation and apex
approximation

After designing a BYY system as discussed in Sect. 3.2,
the task of learning is determining all the unknowns in
the BYY system by maximizing Hμ(P ||Q). For simplic-
ity and without losing generality, we focus on H(p||q)
given by Eq. (1).

Generally speaking, the maximization seeks the opti-
mal inner representation R∗ = {Y ∗, θ∗,Ξ∗, k∗}, featured
by a hierarchical implementation. First, H(p||q) by Eq.
(1) is a function of the complexity k and also the hyper-
parameter set Ξ if a prior q(θ) in Eq. (21) and its coun-
terpart p(θ|X) in Eq. (23) contains hyper-parameters Ξ.

Accordingly, we denote H(p||q) by H(k,Ξ), namely an
objective function with respect discrete variables in k

and continuous variables in Ξ. Its maximization needs
two stages similar to Eq. (17), that is,

Stage I: enumerating k for a set of instances and
getting Ξ∗

k = arg maxΞH(k,Ξ),
Stage II: k∗ = argmink J(k) = −H(k,Ξ∗

k). (51)

In fact, the function H(k,Ξ) is not directly available,
but needs to be computed from Eq. (1) via making three
levels of integrals.

Moreover, we may replace X by X,h and put
p(X,h) = ph(X |XN ) by Eq. (20) into Eq. (1), from
which we have

H(p||q) = Hh0(k,Ξ|XN ). (52)

For simplicity, we start to consider the case with h0 = 0,
for which p(X,h) = p(X) = δ(X −XN ) and the above
Hh0(k,Ξ|XN ) becomes

H(k,Ξ) = H0(k,Ξ|XN ) = Hh0=0(k,Ξ|XN )

=
∫
p(Y, θ|XN )π(XN , Y, θ)dY dθ

=
∫
p(θ|XN )H(p||q, θ)dθ,

H(p||q, θ) =
∫
p(Y |XN , θ)π(XN , Y, θ)dY,

π(XN , Y, θ) = ln[q(XN |Y, θ)q(Y |θ)q(θ)], (53)

for which we need to handle the integrals of types
∫

[·]dθ
and

∫
[·]dY . The integrals sum up all the evidences for

each possible scenario that Y, θmay take. For some tasks,
the integrals are analytically trackable and thus solved
manually, and then this problem reduces to just handling
Eq. (51).

In order to avoid the difficulty of handling in-
tegrals over Y, θ, we start from considering the
following optimal values:

Y ∗ = arg max
Y

π(XN , Y, θ),

θ∗ = arg max
θ
H(p||q, θ), (54)

and further pursuit along one of two typical directions.
One is approximately considering the integrals∫

θ∈Dρ
θ∗

[·]dθ,
∫

Y ∈Dρ
Y ∗

[·]dY,

within apex zones Dρ
θ∗ by Eq. (32) and Dρ

Y ∗ by Eq. (42).
When all the elements in Y are discrete, this apex

approximation is relatively easy to handle. One simple
example is Jκ

t in Eq. (14), and the other example is
Cκ

t (xt) by Eq. (20) in Ref. [1] for BFA, where each ele-
ment y in Y is a binary vector and thus Cκ

t consists of
those ones that differ from y∗ by one bit. For θ and also
Y that takes real values, we approximately consider Dρ

θ∗

and Dρ
Y ∗ as hyper-spheres in some radius.
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Another direction is considering the integrals centered
around Y ∗, θ∗ with help of the following Taylor expan-
sion around u∗ up to the second order:
∫
p (u)Q (u) du ≈ Q(u∗)− 1

2
Tr[εuε

T
u Π(u∗) + Γu

Π],

u∗ = arg max
u

Q (u) , εu = ηu − u∗,

Γu
Π = ΓuΠ(u∗), Π(u) = −∂

2Q(u)
∂u∂uT

, (55)

where ηu,Γu are the mean and the covariance of p(u).
This Taylor expansion was firstly used in Eq. (19) of Ref.
[4], which is modified from a variant that makes Taylor
expansion around the mean ηu up to the second order:

∫
p (u)Q (u) du ≈ Q(ηu)− 1

2
Tr[Γu

Π], (56)

which was previously used in Sect. 2.4 of Ref. [60] and
Eq. (18) of Ref. [61].

Using Eq. (55) on the integral in Eq. (53), we get

H(p||q, θ) = π(XN , Y
∗, θ)− 1

2
Tr[εY ε

T
Y Πq

Y |X,θ + ΓY |X
Π ],

εY = vec[Y ∗ − ηY (XN )],
ΓY |X

Π = Γp
Y |X,θΠ

q
Y |X,θ,

H(p||q) = H(p||q, θ∗)− 1
2
Tr[Γθ

Π],

Γθ
Π = Γp

θ|XΠH
θ|X ,

ΠH
θ|X = − ∂2H(p||q, θ)

∂vec[θ]∂vec[θ]T
= Πq

θ|Y,X +
1
2
ΠΔ

θ ,

ΠΔ
θ =

∂2Tr[εY ε
T
Y Πq

Y |X,θ + ΓY |X
Π ]

∂vec[θ]∂vec[θ]T
, (57)

where Πq
θ|Y,X is given by Eq. (43), and Γp

Y |X,θ,Γ
p
θ|X ,

Πq
Y |X,θ are given by Eq. (39), as well as ηY (X), ηθ(XN )

are defined by Eq. (35). Specifically, we have ηY (X) =
ηY (X,Φ) given by Eq. (37).

Hierarchically, H(p||q) by Eq. (1) could be maximized
in a multi-stage alternation as shown in Eq. (18). First,
its Step Y gets Y ∗ by Eq. (54) and then removes the
integral over Y to approximately get H(p||q, θ) by Eq.
(57). Second, Step θ gets θ∗ by Eq. (54) and then remove
the integral over θ to get H(p||q) by Eq. (57). Next, Step
Ξ (also Stage I in Eq. (51)) gets Ξ∗ by Eq. (57). Finally,
Step k (also Stage II in Eq. (51)) selects one best k∗

with the obtained Ξ∗. These steps are iteratively imple-
mented and at each step we update one type of variables
with the rest types fixed at their newest available values.

Generally, the case by Eq. (52) with h �= 0 leads to

H(p||q) = Hh0(k,Ξ|XN )
= H(p||q, θ,XN , h0) +H(h0),

H(h0) =
∫
p(h|h0) ln q(h|XN )dh,

H(p||q, θ,XN , h0) =
∫
p(h|h0)H(p||q, θ,XN , h)dh,

H(p||q, θ,XN , h) =
∫
ph(X |XN )H0(k,Ξ|X)dX.

(58)

In the above H(p||q, θ,XN , h), ph(X |XN) takes the
role of p(u) and H0(k,Ξ|X) takes the role of Q(u), it
follows from Eq. (56) that

H(p||q, θ,XN , h0) = H0(k,Ξ|XN )− 1
2
h2

0Tr[ΠX ],

ΠX = − ∂2H0(k,Ξ|X)
∂vec[X ]∂vec[X ]T

. (59)

With h2
0 given, the multi-stage alternation by Eq. (18)

needs to be modified in Step θ, Step Ξ, and Step k

with H(p||q, θ) replaced by the above H(p||q, θ,XN , h0).
Moreover, we add the following step for updating h2

0:

Step h0 : h2∗
0 = argmax

h0
{H(h0)− 1

2
h2

0Tr[ΠX ]},

where q(h|XN ) ∝
{

1/
∑N

t=1 ph(xt), (a)

1/p(XN |XN , h), (b)
(60)

where ph(x) and p(X |XN , h) are given by Eq. (20), and
p(h|h0) could be an exponential distribution with its
mean h0 or a Gamma distribution with a parameter h0.

4.3.2 Manifold shrink: Automatic model selection

Typically, a learning process for θ∗ is a process of
optimizing an objective function with respect θ, with
solution obtained as the objective function reaches its
maximum (< ∞) or minimum value (> −∞). Learn-
ing dynamics is finally stabilized or converged both to
the value of unknown variables and to the value of the
objective function.

However, the learning process for θ∗ by maximizing
H(p||q) is quite different, which may consist of sev-
eral sub-processes and each sub-process is featured by
H(p||q) → ∞ as one or a part of elements in θ tends
zero (or a particular value).

Without losing generality, we consider the samples of
XN = {xt} that are independent and identically dis-
tributed (i.i.d.). In such cases, H(p||q, θ) in Eq. (53) and
Eq. (57) is simplified into

H(p||q, θ) =
∑

t

Ht(p||q, θ),

Ht(p||q, θ) =
∫
p(y|xt)π(xt, y, θ)dy

≈ π(xt, y
∗
t , θ)−

1
2
Tr[εtε

T
t Πq

y|x,θ + Γy|x
Π ],

π(xt, y, θ) = ln[q(xt|y, θx|y)q(y|θy)q(θ)],
y∗t = argmax

y
π(xt, y, θ),

Γy|x
Π = Γp

y|x,θΠ
q
y|x,θ,

εt = y∗t − ηy(xt), (61)

where Γp
y|x,θ, Πq

y|x,θ, and ηy(xt) are given in Table 2 for
Type S, which covers both having only xt available and
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knowing a given input-output pair xt → yt with help of
simply ηy(xt).

Taking the factor analysis by Eqs. (25) and (26) as an
example, we have

π(xt, y, θ) = ln [G (xt |Ay + μ,Σ)G(y|ν,Λ)q(θ)] ,
Πy|x = ATΣ−1A+ Λ−1, (62)

and the approximation ≈ in Eq. (61) becomes exactly =.
Readers are referred to Eq. (17) in Ref. [1] for a detailed
expression of H(p||q, θ) in Eq. (53).

Here, Λ = diag[λ1, λ2, . . . , λm] takes the role of the
SR parameters θSR as previously introduced in Sect.
2.2, with λj = 0 indicating that the jth dimension
y
(j)
t is extra. It follows from observing lnG(y|ν,Λ) in
πt (θ, y) that λj = 0 is actually a singular point that con-
tributes one ∞ to H(p||q, θ). When the sample variance
of y(j)

t is not zero, we observe dH(p||q, θ)/dλj → +∞
such that the singular point λj = 0 is unstable and
the learning dynamics will push λj away from zero.
When the sample variance of y(j)

t becomes zero, we have
H(p||q, θ)/dλj → 0 while d2H(p||q, θ)/d2λj → −∞ as
λj → 0 such that λj = 0 and H(p||q, θ)→∞ is a stable
trap of “black hole” like for the learning dynamics.

Due to this particular nature of singularity, a learn-
ing dynamics starts from a manifold with a large enough
dimension m and evolves as illustrated roughly in Fig.
6. When one inner dimension y

(j)
t is extra, the value of

y
(j)
t will take a zero or constant, and the sample variance

of y(j)
t becomes zero, there will be one or more “black

hole” like traps that capture learning dynamics. Once
falling into such a trap, learning dynamics on H(p||q, θ)
is buried because H(p||q, θ)→∞. One trick is to remove
this trap by simply discarding the variable λj and the
corresponding part to restore learning dynamics.

Fig. 6 Learning dynamics with black hole like traps

As a whole, the learning process proceeds as illus-
trated in Fig. 6 until all the extra dimensions of y have
been removed. In other words, automatic model selection
happens during this learning process. Finally, the learn-

ing dynamics is stabilized or converged to the maximum
of H(p||q, θ) (< ∞) in a way similar to one standard
optimization process.

For some learning tasks, there may be apparently no
such a “black hole” like trap. For Gaussian mixture in
Fig. 1, the harmony functional by Eq. (1) gets a detailed
expression given by Eq. (10) in Ref. [1]. Discarding the
data smoothing part by letting h = 0, we have

H(p||q, θ) =
∑
t,j

q(j|xt, θ) ln[G(xt|μj ,Σj)αjq(θ)], (63)

where α1, α2, . . . , αk takes the role of the SR parameters
θSR as previously introduced in Sect. 2.2, with αj = 0
indicating that the jth Gaussian component is extra. As
αj → 0, we have

∑
t q(j|xt, θ) lnαj → Nαj lnαj → 0,

which will not cause H(p||q, θ) → ∞. In other words,
αj = 0 is apparently not a singular point of H(p||q, θ),
while this learning process is similar to a standard op-
timization process. Actually, this scenario could be un-
derstood by observing that the density q(Y ) is replaced
by a discrete probability q(y = j) = αj with an infinite
ln δ(y = j) discarded already before we get Eq. (62).

Learning dynamics of maximizing H(p||q, θ) may be
roughly depicted as a process of manifold shrinking.
Starting from one point on a high dimension manifold,
learning searches within this manifold and may be cap-
tured by a “black hole” like trap with an infinite energy
or potential. Releasing such an infinite energy makes the
manifold collapse or shrink into a lower dimension. After
a number of such manifold shrinking, automatic model
selection is achieved, and learning dynamics finally pro-
ceeds within one manifold with a stabled dimension and
eventually stabilizes or converges to one point with a
maximum of H(p||q, θ).

4.3.3 Balanced operation and computing order

Another insight may come from taking Eq. (62) as
an example. The corresponding H(p||q, θ) contains a
term −0.5Tr[Γy|x

Π ] with Γy|x
Π = Γy|xΠy|x. It follows from

the variety preservation principle by Eq. (39) that one
choice is Γy|x = Πy|x −1 and thus Γy|x

Π = I. The
term −0.5Tr[Γy|x

Π ] = −0.5m becomes not differentiable.
Though it still contributes to Step k in Eq. (18) as
we use a model selection criterion for selecting m, not
only it has no help on learning dynamics for automatic
model selection, but also it makes learning prone to
a local maximum of H(p||q, θ). One remedy is letting
Γy|x = Πy|x −1 + ρ such that Γy|x

Π = I + ρΠy|x with a
diagonal matrix ρ→ 0 gradually, e.g., see Eqs. (17) and
(40) in Ref. [1].

On the other hand, maximizing H(p||q, θ) by Eq. (57)
with respect to μ(x,W ) as a free vector results in εt = 0
and 1

2Tr[εtε
T
t Πy|x] = 1

2ε
T
t Πy|xεt = 0 which also makes
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learning quench to a local maximum of H(p||q). Instead,
learning is made via minimizing εTt Πy|xεt with respect
to W , which makes εt → 0 gradually.

In general, we encounter a similar scenario as we con-
sider the term Tr[ΓY |X

Π ] in Eq. (57). Also, ηY (X) =
ηY (X,Φ) by Eq. (37) takes a role similar to the above
μ(x,W ).

For the integral over θ, there is also a term Tr[Γθ
Π] in

Eq. (57). But Γp
θ|X by Eq. (39) is actually different from

ΠH
θ|X . From ln

∫
q(XN |Y, θ)q(Y |θ)dY = 0.5dY ln(2π) +

ln[q(XN |Y ∗, θ)q(Y ∗|θ)] −0.5 ln |Πq
Y |X,θ|, it follows that

Πq
θ|X = Πq

θ|Y,X +
1
2
ΠDet

θ ,

ΠDet
θ =

ln |Πq
Y |X,θ|

∂vec[θ]∂vec[θ]T
.

From Γp
θ|X = Γq

θ|X = Πq −1
θ|X in Eq. (39), even when we

get ΠΔ
θ = 0 as εY = 0 and ΓY |X

Π = I, we still have Γθ
Π =

Γp
θ|XΠH

θ|X = [Πq
θ|Y,X + 1

2ΠDet
θ ]−1[Πq

θ|Y,X + 1
2ΠΔ

θ ] �= I.

In other words, the term Tr[Γθ
Π] in Eq. (57) does con-

tribute to H(p||q) for updating Ξ∗ in Eq. (51) or Eq.
(18), which is one development from the previously stud-
ies, e.g., as introduced in Fig. 5 and Eq. (36) in Ref. [1],
where it was roughly assumed that Γp

θ|X ≈ Πq −1
θ|Y,X with

ΠDet
θ ignored. That is, the term Tr[Γθ

Π] = dθ is the num-
ber of free parameters in θ, which contributes to Step k
in Eq. (18), but has no help to updating Ξ.

To make the term Tr[Γθ
Π] helpful to updating Ξ, one

other way is letting Γp
θ|X ≈ Πq −1

θ|Y,X + ρ and controlling
a diagonal matrix ρ→ 0 gradually. Also, another way is
letting Θμ(Ξ) to be the value of Θ∗ at a past time such
that Θμ(Ξ)−Θ∗ → 0 as learning proceeds, e.g., Eq. (33)
and Fig. 5 in Ref. [62].

Instead of Eq. (58), it follows from the factorization
of p(Y, θ|X) = p(Y |X)p(θ|Y,X) by Eq. (41) that we can
alternatively rewrite Eq. (53) into

H(k,Ξ) = H0(k,Ξ|XN ) = Hh0=0(k,Ξ|XN )

=
∫
p(Y |XN)p(θ|Y,XN )π(XN , Y, θ)dY dθ

=
∫
p(Y |XN)H(p||q, Y )dY,

H(p||q, Y ) =
∫
p(θ|Y,XN )π(XN , Y, θ)dθ,

π(XN , Y, θ) = ln[q(XN |Y, θ)q(Y |θ)q(θ)]. (64)

One choice is considering q(θ) and p(θ|Y,XN ) in a con-
jugated pair such that the integral over θ or the integrals
over both θ and Y can be analytically solved, e.g., con-
sidering the DNW conjugated pair for Gaussian mixture
in Ref. [7].

The other choice is removing the integral over Y ap-
proximately as follows:

H(p||q) = H(p||q, Y ∗)− 1
2
Tr[εY ε

T
Y ΠH

Y |X + ΓY |X
Π ],

εY = vec[Y ∗ − ηY (XN )],
ηY (XN ) = Ep(Y |XN )(Y ),

Y ∗ = argmax
Y

H(p||q, Y ),

ΓY |X
Π = Γp

Y |XΠH
Y |X , Γp

Y |X = Πq −1
Y |X ,

ΠH
Y |X = − ∂2H(p||q, Y )

∂vec[Y ]∂vec[Y ]T
, (65)

where Πq
Y |X is given by Eq. (43). Approximately, we

have∫
q (X |R) q (R) dθ

=
∫
q(XN |Y, θ)q(Y |θ)q(θ)dθ

= π(XN , Y, θ
∗)− 0.5 ln |Πq

θ|Y,X |+ 0.5dY ln(2π),
θ∗ = argmax

θ
π(XN , Y, θ). (66)

It further follows from Πq
Y |X in Eq. (43) that we have

Πq
Y |X = Πq

Y |X,θ +
1
2
ΠDet

Y ,

ΠDet
Y =

ln |Πq
θ|Y,X |

∂vec[Y ]∂vec[Y ]T
. (67)

The third choice is getting H(p||q, Y ) by removing the
integral over Y approximately as follows:

H(p||q, Y ) = π(XN , Y, θ
∗)− 1

2
dθ, (68)

where dθ = Tr[Γθ|Y,X
Π ] and it follows from Eq. (43)

that Γθ|Y,X
Π = Γp

θ|Y,XΠq
θ|Y,X = I. Putting the above

H(p||q, Y ) into Eq. (65), we simply get

ΠH
Y |X = − ∂2H(p||q, Y )

∂vec[Y ]∂vec[Y ]T
= Πq

Y |X,θ. (69)

For the general case by Eq. (52) with h �= 0, we need to
add one term 0.5h2

0Tr[ΠX ] in Eq. (59) and update h by
Eq. (60).

Additionally, we consider a partition θ = θa ∪ θb, θa ∩
θb = ∅ with q(θ) = q(θa)q(θb|Ξq), i.e., one part has
hyper-parameters while the other part has no hyper-
parameters (e.g., Jeffreys priors). Accordingly, we have

H0(k,Ξ|XN ) = Parta +Hb(Ξ),

Hb(Ξ) =
∫
p(θb|XN ,Ξp) ln q(θb|Ξq)dθb, (70)

where Ξ = {Ξp,Ξq}. We handle Parta in a way same as
H0(k,Ξ|XN ), plus the contribution by Hb(Ξ).

4.4 Historical remarks and demanding topics

4.4.1 Historical remarks

Jointly considering the Yang machine and Ying machine
in a Bayesian Ying-Yang system, the learning princi-
ple is featured by a measure for bi-entity proximity be-
tween the probabilistic structures of p(R|X)p(X) and
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q(X |R)q(R). Studies on both Ying-Yang best matching
by minimizing KL(p||q) and Ying-Yang best harmony
by maximizing H(p||q) were initialized in 1995 [2].

On one hand, the KL divergence, as shown by the
Box 2©b in Fig. 5, was widely used to measure the dis-
crepancy between two distributions in the areas of in-
formation theoretical approaches, and also brought to
the areas of machine learning as one popular learning
principle. Naturally, this KL divergence was adopted
for measuring Ying-Yang matching in Ref. [2]. Actually,
one focus of the early period of BYY learning studies is
exploring how minimizing the KL divergence between
p(Y |X)p(X) and q(X |Y )q(Y ), with four components
q(X |Y ), q(Y ), p(Y |X), and p(X) in different structures,
leads to a number of existing approaches of unsupervised
learning and supervised learning [2,46,63–66], under the
names of Bayesian-Kullback Ying-Yang (BKYY) learn-
ing/machine or BYY KL learning, etc.

Moreover, extension has also been suggested from KL
divergence based BYY matching to non-KL divergence
based BYY matching with ln r extended to a general
convex function [67]. Also, under the name of Bayesian
Convex Ying-Yang (BCYY) learning, a re-weighted EM
(REM) algorithm is developed in Ref. [68] for Gaussian
mixture, which is empirically shown to be more robust
to outliers. Readers are referred to Sects. 22.9.1, 22.9.2
and 22.6.3 of Ref. [42] for detailed historical remarks on
studies made before 2003, and also to Appendix A of Ref.
[1] and Sect. 4.2.2 of this paper for additional efforts.

On the other hand, explorations on Ying-Yang best
harmony by maximizing H(p||q) also started from the
above early period of the BYY learning studies. Partic-
ularly, efforts were made on Gaussian mixture in Sects.
4, 5, and 6 of Ref. [2], which has actually started the
following threads of studies on the BYY best harmony
learning:
• The hard-cut EM algorithm in Table 1 (or WTA-

BYY harmony in Fig. 7 of Ref. [1]) was firstly pro-
posed in Sect. 4.2 of Ref. [2], where Eqs. (19) and
(20) are equivalent to the following simplified ver-
sion of H(p||q):

H(p‖q) =
∑

t

∑
�

p(�|xt, θ) lnG(xt|μ�,Σ�)

+
∑

�

α� lnα�,

p(�|xt, θ) = δ�,�∗(xt) is given by Eq. (6), (71)

which comes naturally via maximizing H(p||q) by
Eq. (11) with respect a free p(j|xt, θ). In Sect. 4.2 of
Ref. [2], Eq. (71) came from the corresponding KL
divergence KL(p||q) by heuristically imposing the
constraint p(�|xt, θ) = δ�,�∗(xt), motivated by the
winer-take-all competition used in the classic min-
imum mean square error clustering or equivalently
vector quantization. It is this motivation that leads

us from considering KL(p||q) to move into consid-
ering the above special case of H(p||q) by Eq. (71).

• Actually, such a link between KL(p||q) and H(p||q)
is an example of putting certain constraints to
the general relation between KL(p||q) and H(p||q)
as shown by the Box 1©c in Fig. 5. This general
relation was also firstly studied in the notation
KL(p||q) = H −Q+D by Eqs. (8), (11), and (12)
in Ref. [2]. A more general constrained linkage is
further presented by Eq. (45) in Ref. [4].

• Applied to the classic minimum mean square error
(MSE) clustering, Eq. (20) in Ref. [2] is further sim-
plified into a criterion J(k) by Eq. (24) in Ref. [2]
for selecting the number of clusters, which is actu-
ally the first example of new model selection cri-
teria obtained from H(p||q). Subsequently in 1996
[64,69], this J(k) was experimentally verified and
further extended to supervised learning, and then
generalized and investigated both theoretically and
experimentally in 1997 [68].

• The basic idea of BYY harmony learning based au-
tomatic model selection was also firstly presented
in Sect. 5.2 of Ref. [2]. For the two features of au-
tomatic model selection addressed in Sect. 2.2.2,
the first one (e.g., αl → 0 and Σl → 0) was ba-
sically addressed, while the second one was par-
tially discussed via a special observation that the
first feature emerges during learning by the above
mentioned hard-cut EM algorithm or WTA-BYY
harmony learning.

• Also, a preliminary effort was made on building up
a link between RPCL learning and the BYY har-
mony learning in Sect. 6.2 of Ref. [2].

Started from 1997, a general expression of harmony
measureH(p||q) =

∫
p(Y |X)p(X) ln[q(X |Y )q(Y )]dXdY

is suggested as a general model selection criterion under
the notation J2(k), see Eqs. (3.8) and (3.9) in Ref. [26],
Eqs. (13) and (15) in Ref. [63], and Eq. (12) in Ref. [68].
Also, this general criterion has been applied to several
typical learning models. Readers are referred to histori-
cal remarks given in Sect. 23.7.1 of Ref. [42] for studies
made before 2003, and also to Table 3 in Ref. [35], Table
3 in Ref. [47], Fig. 2 in Ref. [4], Sect. 3.4.4 in Ref. [41],
as well as Eqs. (42)–(45), (60), and (65) in Ref. [5] for
additional efforts.

Since 1999, studies have proceeded to using this gen-
eral formH(p||q) for both parameter learning and model
selection, see Eqs. (3) and (4) in Ref. [70], Eqs. (5) and
(6) in Ref. [71], Eqs. (5) and (8) in Ref. [60], as well as
Eqs. (8) and (10) in Ref. [61], including parameter learn-
ing with automated model selection (see Eqs. (28) and
(29) in Ref. [39]). In the subsequent decade, extensive
efforts have been systematically conduced on the BYY
best harmony learning [4,5,25,35,38,40,41,47,48,72],
covering not only theoretical analysis and deeper
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understanding on fundamental issues of this learning
principle and its relations to other existing typical learn-
ing principles and approaches, but also developments of
system design principles and implementing techniques,
as well as learning algorithms for a number of typical
learning tasks. Readers are referred to historical remarks
given in Sects. 23.7.3 and 23.7.4 of Ref. [42] for studies
made before 2003, and also to Ref. [1] and Sect .4.2.3 of
this paper for recent reviews.

Both KL(p||q) and H(p||q) includes p(X) = δ(X −
XN ) that comes directly from a sample set XN , which
incurs for the problem of a small size of samples when N
is not large enough. In addition to select a model with
an appropriate complexity, learning regularization tack-
les this problem by adding some constraint to make its
model complexity reduced effectively. In a BYY system,
learning regularization has been made with some con-
straint added to each of four components q(X |Y ), q(Y ),
p(Y |X), and p(X) under the following notations:
• Data smoothing regularization: each sample is as-

sumed to come from a local smooth structure such
that p(X) is constrained to be a mixture of local dis-
tributions with each centered at one sample, e.g.,
p(X) = ph(X |XN ) by Eq. (20). The idea started
from Eq. (5) in Ref. [2] and Eq. (1) in Ref. [64]. In
1997, it was further named data smoothing (see Eq.
(3.10) in Ref. [26]), with an appropriate h learned
via the KL learning by Eq. (7) in Ref. [33]. Also,
data smoothing is suggested in Ref. [63] for super-
vised learning of three-layer forward net and mix-
ture of experts. Moreover, a smoothed EM algo-
rithm is given for Gaussian mixture (see Eq. (18)
in Ref. [63]). Additionally, the second order approx-
imation by Eqs. (56) and (59) was further developed
in Sect. 2.4 of Ref. [60].

• Normalization regularization: It follows from Eq.
(31) that the constraint

∫
q(u|θ)du = 1 breaks down

on a finite set of samples {ut}. To re-ensure con-
straint, in Refs. [39,40,61] we normalize q(u|θ) into

q̃(u|θ) = q(x|θ)/Z(θ), Z(θ) =
∑

t

q(ut|θ), (72)

which causes a conscience de-learning that not only
introduces a regularization to the ML learning, but
also makes the BYY harmony learning behave sim-
ilar to the RPCL learning.

• Structural regularization: as addressed by Items
(A), (B), and (C) in Sect. 3.4.2, an appropriate
structure for p(Y |X) actually provides a type of
regularization, which was firstly suggested in 1997
(see Item 3.4 in Ref. [26]).

Also, regularization emerges effectively with f(r) = ln r
by Eq. (47) replaced by a convex function f(r), as
demonstrated by experiments on Gaussian mixture [68].
Moreover, we may regard KL(p||q) as a regularized ver-

sion of H(p||q), and then make learning gradually shift
from minimizing KL(p||q) to maximizing H(p||q) with
help of a simulated annealing procedure.

Readers are referred to Sect. 23.7.4 of Ref. [42] for his-
torical remarks on these types of learning regularization,
and also to Items (a) and (b) of the next subsection for
further discussions. Additionally, these types of learning
regularization also provided new variants and extensions
to those KL-divergence based learning approaches, see
Sect. 22.9.2 in Ref. [42].

4.4.2 Demanding topics

Similar to Sect. 3.4.2, we summarize a number of topics
about both challenging problems and interesting issues
for future efforts.
(a) As addressed in Sects. 4.1.1 and 4.1.2, one most im-

portant case of the harmony functional Hμ(P ||Q)
is featured with f(r) = ln r by Eq. (47). On one
hand, maxpH(p||q) leads to p(x) = δ(x − c). This
feature applies to any f(r) �= r that monotonically
increases with r. On the other hand, maxq H(p||q)
leads to q = p (i.e., a feature of best matching) for
f(r) = λ ln r + c with any constant c and a con-
stant λ > 0. However, we no longer have q = p

when f(r) is a general convex function d2f(r)/dr2

< 0 [73]. E.g., maximizing H(p‖q) =
∑N

t=1ptf(qt)
with respect to q results in

qt =
f ′
(

1
pt

)
∑N

t=1 f
′
(

1
pt

) , f ′(r) = df(r)/dr, (73)

which was given by Eq. (83) in Ref. [47] and Eq.
(22.49) in Ref. [42]. Moreover, f(r) may be classified
as super-ln (e.g., one is the so-called α-function) if
its f ′(r) decreases with r in a rate slower than 1/r,
or otherwise as sub-ln (e.g., a negated α-function).
Similar to Eq. (46), we get an alternative spectrum
for further investigations. Different types of f(r)
lead to different relation between p, q, which indi-
cates that these types of f(r) need to be included
into those topics in Sect. 3.4.2 in coordination with
Yang structure design.

(b) It follows from the Box 1©b of Fig. 5 that Hμ(P ||Q)
with f(r) = ln r has the following simple additive
decomposition

Hμ(P ||Q) = Hμ(P ||P ) +HP (P ||Q)
= Hμ(P ||P )−KL(P ||Q). (74)

Alternatively, we may redefineHμ(P ||Q) by extend-
ing this nature to a general case that even f(r) be-
comes super-ln or sub-ln, e.g., see Sect. 2 in Ref.
[70], Sect. 2.2 in Refs. [71] and [74], as well as
Sect. II(B) and Eq. (8) in Ref. [61]. We need to
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further investigate whether this simple combination
still works or otherwise how the two terms in Eq.
(74) are better combined. One way is a linear com-
bination by Eq. (23.49) in Ref. [42], Eq. (49) in
Ref. [46], Eq. (8) in Ref. [66], and Eq. (22) in Ref.
[65]. Investigations are needed not only on justifying
whether such a linear combination works but also
how weighting coefficients are appropriately deter-
mined. Further effort may also be put on a sim-
ulated annealing procedure that making learning
gradually shift from minimizing KL(p||q) to maxi-
mizing H(p||q).

(c) Hμ(P ||Q) in Fig. 5 or H(p||q) by Eq. (1) is for-
mulated with both p, q in density functions, which
is appropriate when all the variables in R are real
numbers. However, H(p||q) by either of Eq. (11),
Eq. (63), and Eq. (71) considers a discrete distri-
bution function q(y = j) = αj , which comes from
putting a density function q(Y ) that actually con-
tains an infinite ln δ(y−j) term into H(p||q) by Eq.
(1). Similar to Fig. 6, this infinite ln δ(y − j) term
is discarded by an external option, which leads to
H(p||q) by Eq. (11) and Eq. (63). Such an exter-
nal treatment needs further theoretical justification.
Also, such a density based H(p||q) incurs the diffi-
culty of handling the integrals. In a real implemen-
tation, this H(p||q) can not be computed exactly
but evaluated approximately on a set of discrete
points of samples.

Alternatively, H(p||q) may be re-defined with
both p, q in discrete distribution functions. It avoids
to handle integrals (see Eqs. (21) and (22) in Ref.
[39] and Sect. II(A) of Ref. [40]). However, for a
density function q(u|θ) of a continuous variable u,
we need to turn it into a discrete distribution by
Eq. (72) for being put into H(p||q), which incurs
approximations too. Usually, we have only a set of
samples for X . It remains to be a challenge prob-
lem to get a set of samples about Y, θ to handle
p(Y |X, θ), p(θ|X). Particularly, only turning the
components of Ying machine q into discrete distri-
butions by Eq. (72), we get a distribution based
H(p||q) that differs from its density based coun-
terpart in merely one extra term − lnZ(θ), which
can be interpreted as a prior q(θ) as previously dis-
cussed around Eq. (31). In such a case, two for-
mulations of H(p||q) meet. Still, investigations are
needed on exploring their further relations. More-
over, both of them need certain approximation to
implement, which naturally rises a question to ask
which formulation is better, and whether we can
combine the advantages of each.

(d) Tackling the task of learning the regularity under-
lying a small size of samples XN , the purpose of
both model selection and learning regularization is

controlling an appropriate model complexity for a
better generalization performance, which is usually
featured by the following two points:

– Stability: though the generalization perfor-
mance of a learned model will deteriorate as N
reduces, we desire that it deteriorates as slowly
as possible. That is, we prefer that the gener-
alization performance is as stable as possible.

– Optimality: we desire the generalization per-
formance of a learned model is as close as pos-
sible to the best generalization performance.

However, it remains an open challenge on how the
harmony measureH(p||q) is related to the best gen-
eralization performance. Conceptually, knowing the
best generalization performance needs examining
all the samples that are out of XN but share the
same regularity underlying XN . Thus, it is very dif-
ficult to evaluate such a best performance. Though
a very rough bound may be theoretically estimated
subject to certain impractical assumptions, whether
we should directly target at this optimality is ac-
tually itself an open question too. Instead, further
efforts are deserved on taking the above stability in
consideration of maximizing the harmony measure
H(p||q), together with a systematical comparison
on those efforts introduced in Sect. 4.4.1, such as
data smoothing regularization, normalization regu-
larization, and structural regularization.

(e) It is insightful to make a comparative investigation
on those discriminative training criteria in Eq. (48),
for which Eq. (1) is simplified as follows:

HBYY(YN , XN , θ)
=

∑
r,Y ∈D

(r)
Y

p(Y |X(r), θ) ln [q(X(r)|Y, θx|y)q(Y |θy)],

(75)

which is written in a same format as Eq. (48). It
differs from FMMI(YN , XN , θ) that is equivalent to
maximizing the Yang passway p(YN |XN ) and also
differs from FMCE(YN , XN , θ) [50–53] that is re-
garded as an extension of FMMI(YN , XN , θ) with
ln p(Y (r)|X(r), θ) replaced by s(1 − 1

p(Y (r)|X(r),θ)
).

Though FMCE(YN , XN , θ) conceptually shares with
RPCL [24,59] the idea that enhances the winner and
penalizes the rivals, the two are considerably differ-
ent both in formulae and implementation. RPCL
learning in Table 1 can be regarded as an approx-
imate implementation of HBYY(YN , XN , θ). Com-
paring HBYY(YN , XN , θ) with FFPE(YN , XN , θ),
we observe that ln [q(X(r)|Y (r), θx|y)q(Y |θy)] and
L(Y, Y (r)) locate at a same position but very dif-
ferent in their details, which leads to differences in
their implementing algorithms and learning perfor-
mances [75]. Still, it deserves a further comparative
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investigation.
(f) Conventionally, a process of parameter learning on

a parametric model q(x|θ) is formulated as a pro-
cess of optimizing an objective function with re-
spect to θ, with a learning dynamics finally stabi-
lized or converged both to the value of unknown
variables and to the value of the objective func-
tion. Further mathematical analysis on such type of
learning processes can be made with help of infor-
mation geometry theory [76]. However, the learning
process for θ by maximizing H(p||q) is very differ-
ent, as outlined in Sect. 4.3.2 and illustrated in Fig.
6. Neither the conventional optimization theory nor
the existing information geometry theory can be ap-
plied. Details about this learning dynamics need to
be explored. Not only unclear points are waiting for
clarification, but also a new information geometry
theory is expected.

(g) As illustrated in Fig. 6, parameter learning and
model selection is a joint process that consists of
both continuous optimization and discrete opti-
mization. A conventional two stage implementation
decouples this joint process into an outer loop of
discrete optimization and an inner loop of continu-
ous optimization, which becomes conceptually im-
plementable but practically costs extensive compu-
tations. Instead of being intrinsic, such a decoupling
has actually removed all “black hole” like traps
in Fig. 6 without justifications, which makes the
nature of automatic model selection lost unfavor-
ably. Motivated from Sect. 4.3.2, efforts are needed
on how to handle the joint process while avoid-
ing to make two types of optimization decoupled
unfavorably. Observing one example in Sect. 4.3.3,
H(p||q, θ) for the FA contains a term −0.5Tr[Γy|x

Π ]
that degenerates to a not differentiable discrete
number −0.5m (like a quantized energy) when
Γy|x = Πy|x −1, i.e., it has been decoupled into a
part of discrete optimization and thus has no help
on learning dynamics for automatic model selection.
Efforts are needed on how to interpret this quantiz-
ing phenomenon and how to avoid such types of
unfavorable decoupling. E.g., the implementation
by Eq. (64) differs from the implementation by Eq.
(58) in that the term Tr[ΓY |X

Π ] is still functioning
within H(p||q) without becoming a discrete num-
ber.

(h) The implementing technique by Eq. (55) takes an
important role in removing the integral over Y and
the integral over θ. However, this implementation
also leads to a term 0.5Tr[Γu

Π] that may becomes a
discrete number. Alternatively, p(Y |X, θ) was sug-
gested as either a mixture of several analytically
solvable conditional distributions (e.g., Eq. (10) in

Ref. [65]) or a mixture of experts (e.g., Eq. (14) in
Ref. [39] and Eq. (22.21) in Ref. [42]), which needs
a further study too. Moreover, we also need to seek
some new optimization techniques for a maximiza-
tion of H(p||q).

5 Insights on inner dependence structures

From the least complexity principle introduced in Sect.
3.1 and especially Eqs. (21) and (22), the simplest struc-
ture of inner representation R is, in the cases with-
out any given knowledge, that all elements in R are
mutually independent and each element is featured by a
probabilistic structure, while the dependence structures
among the observed samples in XN are described by a
structure of q(X |R).

For many learning tasks, there is some priori knowl-
edge about dependence structure among XN , and thus
we actually describe the dependence by some corre-
sponding structure in the inner representationR. Several
types of basic dependence have been discussed in Sect.
3.2 as a part of Ying structure design. This section pro-
vides further insights on several composite structures.

5.1 Lattice mode-switching factor analysis

5.1.1 Independent FA: Gaussian FA, NFA, and BFA

As shown in Fig. 7, each observation x comes from its
de-noised counterpart x̂ that is generated from latent
factors, and each factor comes from a column of cells on
a lattice, with each cell featured by both a real random
variable yr

j� from q(yr
j |θj�) and a binary random variable

yz
j� that takes either 1 to activate or 0 to switch off the

corresponding cell. The variables of yr
j� are independent

from each other across different cells. Each column sums
up the outputs of activated cells to generate x̂. The ac-
tivating binary variables come from

q(yz |αz) =

⎧⎪⎨
⎪⎩

Q
j,� αz

j�
yz

j�

P
yz

j�
∈Y z

s

Q
j,� αz

j�

yz
j�
, for yz

j� ∈ Y z
s ,

0, otherwise,
(76)

which consists of independent contributions from differ-
ent cells and also a global constraint by the denominator
that not only normalizes each individual contribution
but also shapes a gating structure Y z

s .
We start from the following typical case:

Y z
s = {yz

j� :
∑

�

yz
j� = 1}, (77)

which gates the cells of each column as a stochastic
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switch, resulting in

q(yr) =
∏
j

q(yr
j ),with yr

j ∈ R from

q(yr
j ) =

∑
�

q(yr
j |θj�)αz

j�,

∑
�

αz
j� = 1, 1 � αz

j� � 0. (78)

One most widely considered case is

q(yr
j |θj�) = G(yr

j�|μj�, λj�). (79)

Subject to an additive white noise e, the observation x

is generated from the factors yr = {yr
j} via a post-linear

system x = η(x̂) + e as shown in Fig. 7, see Sect. 2 in
Ref. [3] for a recent systematic introduction.

In the special case η(x̂) = x̂ with e from G(e|0,Ψ)
and q(aij |ya

ij) = q(aij) (i.e., without gated by ya
ij), we

are lead to a general formulation for several types of in-
dependent factor analysis.

Fig. 7 Mode-switching lattice factor analysis

The simplest case κ = 1 has q(yr) = G(yr|μ,Λ) with
Λ = diag[λ1, λ2, . . . , λm], which leads to FA-b by Eqs.
(25) and (26), and to FA-a when μ = 0,Λ = I.

A general formulation with κ � 1 has been previously
studied under the name of non-Gaussian factor analysis
(NFA). Details about NFA are referred to a paragraph
between Eq. (82) and Eq. (83) in Ref. [40], and also to
Sect. 5.2 in Ref. [47] and Sect. IV(C) in Ref. [4].

When κ = 2 and � = 1, 2, it degenerates to a BFA
[47,65,77] at a special setting that μj,1 = 1, μj,0 = 0,
and λj,1 = λj,0 = 0. With λj,1, λj,0 further becoming
unknown parameters, we are lead to a noisy BFA, fea-
tured with that yr

j taking binary values 0, 1 becomes
taking real vales from Gaussians centered at 0 and 1,
respectively. Moreover, two Gaussians may be placed
elsewhere with μj,1, μj,0 to be learned, which leads to
a bipolar extension of FA-a and FA-b.

The two parts in x = x̂ + e may be extended. First,
a post-linear function η(r) may be element-wisely added
on x̂ = Ay + c, like those of the exponential family in
the studies of generalized linear model [78], e.g., see Eqs.
(21) and (22) in Ref. [3]. Second, the linear x̂ = Ay + c

may be extended into a quadratic function:

x̂ = [x̂(1), x̂(2), . . . , x̂(d)]T,
x̂(i) = c(i) +

∑
j

aijy
r
j +

∑
j,�

b
(i)
j� y

r
jy

r
� . (80)

5.1.2 Semi-blind learning and semi-blind FA

As suggested in Sect. 1 (see page 89) of Ref. [3], the
term semi-supervised learning refers to efforts that put
attention on a general scenario of knowing partially ei-
ther or both of system and latent factors. One simplest
case is that some elements in A are zero while others
are unknown to be estimated, which leads to variants of
networks component analysis (NCA) [20,21]. Moreover,
with help of the following prior:

q(A,L) =
∏
ij

q(aij |�ij)q(�ij),

q(�ij = 1) = βij , q(�ij = 0) = 1− βij , (81)

a hard switching off aij = 0 is further relaxed to prob-
abilistical switching between the mode βijq(aij |�ij = 1)
and the mode (1− βij)q(aij |�ij = 0).

Also, there are scenarios of knowing partially latent
factors. One example is discrete feature based classi-
fication, that is, building a classifier yt → xt with
xt taking class labels and with a feature vector yt =
[y(1)

t , y
(2)
t , . . . , y

(m)
t ]T consisting of several discrete fea-

tures. Such tasks are widely encountered in statistical
data from social studies and gene analysis.

Traditionally, each discrete feature y(j)
t is treated as

a real valued variable and discriminative boundaries are
built in a real vector space Rm. One way is simply using
y
(j)
t = 1, 2, . . . , κ as the values. However, such a uni-

formly spaced integer may not describe the class struc-
ture well. A better way is letting y

(j)
t to take one of

rj1, rj2, . . . , rjκ real values. However, a difficulty is how
to specify these real values.

Here, we reformulate this supervised learning into a
simplified NFA learning given in Fig. 7. We encode xt to
take class labels by

[x(1)
t , x

(2)
t , . . . , x

(d)
t ]T, with

x
(i)
t =

{
1, xt = i,

0, otherwise,
and

∑
i

x
(i)
t = 1, (82)

and such a vector comes from q(xt|yr, θx|y) =
q(xt|u, θx|y)|u=yr as follows:

q(xt|u, θx|y) =
∏

i

η(i)(x̂t)x
(i)
t , x̂t = Au+ a0,
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η(x̂t) = [η(1)(x̂t), η(2)(x̂t), . . . , η(d)(x̂t)]T,

η(i)(x̂t) =
1

1 +
∑

j �=i e
x̂
(j)
t −x̂

(i)
t

. (83)

It follows from Eqs. (78) and (79) that a discrete fea-
ture y(j)

t = 1, 2, . . . , κ corresponds to yz
j�,t taking 0 or 1,

subject to
∑

� y
z
j�,t = 1. That is, we let

yz
j�,t =

{
1, y

(j)
t = �,

0, otherwise,
(84)

while there are the following options for considering
rj1, rj2, . . . , rjκ:
• Let μj� = �, � = 1, 2, . . . , κ, and every λj� to be zero

or a small positive number. This setting simulates
a discrete feature to take y(j)

t = 1, 2, . . . , κ but with
probabilities αz

j�, � = 1, 2, . . . , κ;
• Still set every λj� to be zero or a small positive

number, but let each rj� = μj� to take a real value
estimated via learning;

• Relax each μj� and λj� to take real values estimated
via learning, such that rj� stochastically comes from
G(yr

j�|μj�, λj�).

5.1.3 Lattice Gaussian mixture and local FA

We consider another typical case as follows:

Y z
s = {yz

j� :
∑
j�

yz
j� = 1}, (85)

which gates all the cells on the lattice as a stochastic
switch, with each cell associated with a random vector
yr

j ∈ Rn from a Gaussian distribution by Eq. (79) and
accordingly A = [aij ] is extended into A = [ai�j ]. At the
case η(x̂) = x̂+ c, it follows from Eq. (85) that

x̂ = Ajy
r
j + c,

with yr
j from G(yr

j |μj�,Λj�) if yz
j� = 1, (86)

and we observe that x = x̂+ e comes from the following
lattice Gaussian mixture:

q(x) =
∑
j�

αz
j�G(x|cj�,Σj�),

∑
j�

αz
j� = 1, 1 � αz

j� � 0, (87)

which is actually a two-layer hierarchical Gaussian mix-
ture (e.g., see Fig. 12 in Ref. [1]), and further degener-
ates to a standard Gaussian mixture when κ = 1. Some
insights are obtained from the following special cases:
• The simplest one comes from the special case that

n = d, c = 0, ai�j =

{
1, if i = �,

0, otherwise,
(88)

at which we have

cj� = μj�, Σj� = Ψ + Λj�. (89)

• A may be relaxed as follows

Aj = A, for all j, (90)

which leads to a lattice Gaussian mixture on a sub-
space spanned by the column vectors of A, that is,
Eq. (89) becomes

cj� = Aμj�, Σj� = Ψ +AΛj�A
T. (91)

• Equation (90) may be further relaxed by letting
each Aj to be free individually, which leads to m

subspaces with each spanned by the columns of its
own Aj . The probability of yz

j� = 1 is αz
j�, at which

yr
j comes from Eq. (86) as the input of

q(x|yr, yz, θx|y) = G(x|Ajy
r
j ,Ψ). (92)

Therefore, Eq. (91) is written into

cj� = Ajμj�, Σj� = Ψ +AjΛj�A
T
j . (93)

• Actually, this case together with Eq. (79) forms a
lattice mixture of m× κ local FA models with each
located at Ajμj� and spanned by the columns of Aj .
When κ = 1, it degenerates to an LFA previously
introduced in Eq. (28).

• Instead of locating on each local subspace, we may
also consider that all the Gaussian centers locate
on another subspace, that is, we may also consider
c �= 0 that

μj� = 0, cj� = Aνj� + c, (94)

with unknown parameters A, νj�, c all estimated
during learning [79]. On one hand, it releases the
constraint that each Gaussian center is bundled
with one local FA model. On the other hand, it
reduces the number of free parameters when the
dimension of x is very high.

5.1.4 BYY harmony learning

Given q(yr, yz) and q(xt|yr, θx|y) in Fig. 7, it follows
from Eq. (61) that

Ht(p||q, θ) =
∑

yz∈D∗
ηz

∫
p(yr, yz|xt, θp)πt(yr, yz)dyr

≈
∑

yz∈D∗
ηz

pγ(yz|xt)πt(y∗r
t , yz)

−1
2

∑
yz∈D∗

ηz

pγ(yz|xt)Tr[εtε
T
t Πq

y|x,θ + Γy|x
Π ],

p(yr, yz|xt, θp) = pγ(yz |xt)p(yr|yz, xt),
πt(yr, yz) = ln[q(xt|yr, θx|y)q(yr|yz, θr

y)q(y
z |αz)q(θ)],

[y∗r
t , y∗z

t ] = arg max
yr,yz

πt(yr, yz),
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εt = y∗r
t − ηy(xt),

Γy|x
Π = Γp

y|x,θΠ
q
y|x,θ, (95)

where Γp
y|x,θ, Πq

y|x,θ, and ηy(xt) are given in Table 2
of Type S, covering both only xt available and a given
input-output pair xt → yt.

Taking a same role as j∗t in Eq. (14), we have

ηz =

{
y∗r

t , with only xt available,

yt, for each supervised pair xt, yt.
(96)

Accordingly, D∗
ηz is the apex-zone centered at ηz with

yz taking values in a neighborhood of ηz . One extreme
end is that D∗

ηz merely consists of ηz , while the other
extreme is that D∗

ηz is the entire domain of yz.
Similar to qγ(�|xt, θ) in Eq. (14), we have

pγ(yz|xt) =
γδyz,y∗z

t
+ q(yz |αz)q(xt|yz, θx|y, θr

y)
γ +

∑
yz q(yz|αz)q(xt|yz, θx|y, θr

y)
,

q(xt|yz, θx|y, θr
y)

=
∫
q(xt|yr, θx|y)q(yr|yz, θr

y)dy
r

≈ |Πr(yz)|−0.5[q(xt|yr, θx|y)q(yr|yz, θr
y)]yr=y∗r

t (yz),

y∗r
t (yz) = arg max

yr
[q(xt|yr, θx|y)q(yr|yz, θr

y)], (97)

where γδyz,y∗z
t

is a generalized format of γδ�,j∗t in Eq.
(14). Again, the precision parameter γ in pγ(yz|xt) con-
trols the teaching degree in semi-supervised learning,
with unsupervised learning at one extreme γ = 0 that
the teaching label becomes completely useless and with
supervised learning at the other extreme γ =∞ that the
teaching label is precisely correct. This pγ(yz |xt) simply
provides a common formulation that facilitates to train
a traditional supervised learning task via implementing
semi-supervised learning.

Furthermore, q(θ) is an appropriate prior and it fol-
lows from the least redundancy principle that we assume
the independence of parameters in each component as
follows:

q(θ) = q(θx|y)q(θr
y)q(αz)q(ρ)q(γ),

q(θr
y) =

∏
j�

q(θj�) =
∏
j�

[q(μr
j�)q(λj�)],

q(θx|y) = q(Ψ)q({aij}, c) = q(c)
∏
ij

q(aij)
∏

i

q(ψi),

q(αz) =
∏
j

q(αz
j�, � = 1, 2, . . . , κ),

q(ρ) =
∏
j

q(ρj), (98)

where we have respectively

Inverse Gamma : q(λj�), q(ρj), q(ψi),
Gamma : q(γ),
Dirichlet : q(αz

j�, � = 1, 2, . . . , κ),
Gaussian : q(c), q(aij), with zero mean, e.g., N(0, 1),

Laplacian : q(aij) for sparse learning [80,81].

From Eqs. (61) and (95), we can get a Ying-Yang al-
ternation algorithm for learning implementation. Some
insights may be obtained from the following two exam-
ples. First, we start from the special case of Eq. (87) at
κ = 1, i.e., a standard Gaussian mixture. In this case, it
follows from Eqs. (61) and (95) that we have

H(p‖q, k, θ,Ξ) =
∑

t

∑
j∈Jκ

t

qγ(j|xt, θ)πt(θj)

+ ln [q(γ)
∏
j

q(θj)], (99)

where qγ(j|xt, θ), πt(θj), Jκ
t are same as the ones in

Eq. (14). Considering the gradient∇ϕH(p‖q, k, θ,Ξ), we
have

∇ϕH(p‖q, k, θ,Ξ) =
∑

t

∑
j∈Jt

pj,t∇ϕπt(θj)

+∇ϕ ln [q(γ)
∏
j

q(θj)], (100)

from which we obtain p�,t in Eqs. (10) and (14). Learn-
ing is implemented by iteratively getting this p�,t and
putting it to update θ∗ by Eq. (3). Also, we may learn
an appropriate γ with help of a prior q(γ) of Gamma
distribution.

Next, we observe another example of putting
q(x|yr, θx|y) = G(x|Ayr + c,Ψ) into Eq. (86), which
leads to the previous studies under NFA (e.g., see
Sect. IV(C) in Ref. [4]). One key problem is to solve
maxyr,yz πt(yr, yz). E.g., getting y∗r

t (yz) and solving

y∗z
t = arg max

yz
[q(y∗r

t (yz)|yz , θr
y)q(y

z |αz)]. (101)

While y∗r
t (yz) is analytically obtained as follows:

y∗r
t (yz)

= [ATΨ−1A+ Λ−1
yz ]−1[ATΨ−1(x− c) + Λ−1

yz μyz ].

(102)

Beyond the previous studies, we are also provided with
the following features:
• the regularization roles of εTt Πq

y|x,θεt and Tr[Γy|x
Π ]

in consideration;
• a prior q(θ) in consideration;
• an extension of the linear x̂ = Ay into the quadratic

function in Fig. 7.

5.2 Piecewise stationary temporal structure

5.2.1 TFA and extensions

Equations (95) and (61) come from Eqs. (53) and (57)
for the samples of XN = {xt} that are independent and
identically distributed (i.i.d.). For samples with tempo-
ral dependence, as discussed around Eq. (30), it is pre-
ferred to use q(Y ) with temporal structure for this pur-
pose though we may use either or both of q(Y ) and
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q(X |R) to capture this type of dependence. Typically,
q(Y ) is considered to be Markovian (e.g., the first order
Markovian) while q(X |R) is still instantaneous as in Eq.
(61). That is, we consider

q(Y |θ) = q(y0)
∏
t�1

q(yt|yt−1, θy),

q(XN |Y, θ) =
∏
t�0

q(xt|yt, θx|y),

H(p||q, θ) = H0(p||q, θ) +
∑
t�1

Ht(p||q, θ),

Ht(p||q, θ) =
∫
p(yt, yt−1|xt)πt(yt, yt−1, θ)dytdyt−1,

πt(yt, yt−1, θ) = ln[q(xt|yt, θx|y)q(yt|yt−1, θy)q(θ)].

(103)

For a sample set with a large N , we may ignore the term
H0(p||q, θ) =

∫
p(y0|x0) ln[q(x0|y0, θx|y)q(y0|θy)q(θ)]dy0.

As suggested at the end of Sect. 5.1 in Ref. [1], the
integral over dytdyt−1 can be solved
• analytically when q(xt|yt, θx|y) and q(yt|yt−1, θy)

are both Gaussian, and thus it follows from Eq.
(60) in Ref. [1] that p(yt, yt−1|xt) = q(yt, yt−1|xt) is
also Gaussian,

• or in help of apex approximation by Eq. (55), e.g.,
by the schematic algorithm as shown in Fig. 13 in
Ref. [1].

One typical example of q(xt|yt, θx|y) is still the instan-
taneous linear relation by Eq. (25), while q(yt|yt−1, θy)
is given by Eq. (30), as shown in Fig. 8. It has been
referred under the name of TFA or independent state
space (ISS) models. Originated from Refs. [63,66], TFA
studies [5,40,47,61,71,74] extend the classic FA model by
Eq. (25) through taking temporal dependence into con-
sideration by Eq. (30) with both B,Λ being diagonal
in order to keep the cross-dimensional independence of
yt. Taking the observation noise in consideration by Eq.
(25), TFA also differs from those efforts for implement-
ing temporal independent component analysis (TICA),
e.g., joint diagonalization, context sensitive ICA, and
temporal BYY harmony learning based temporal ICA,
etc. Details are referred to Sect. 6.1 in Ref. [47].

Fig. 8 Temporal factor analysis

Without constraining B,Λ to be diagonal, Eqs. (25)
and (30) will become a general state space model (SSM)
or a linear dynamical system (LDS) widely studied in the
literature of control theory and signal processing [82]. In
a period that is more or less the same period as the
studies on TFA [61,63,66,71,74], there was a renewed in-
terest on the general SSM or LDS, featured by using the
EM algorithm for parameter estimation under the max-
imum likelihood principle [83,84]. This EM algorithm
was originally derived by Shumway and Stoffer [85,86],
and re-introduced in the early 1990’s [86,87]. Being obvi-
ously different from those studies of control system the-
ory, how to make a model become identifiable and stable
was unfortunately out of consideration in these renewed
efforts, though parameter estimation was occasionally
mentioned under the term system identification [83,84].

On the contrary, TFA studies [5,40,47,61] aim at a
model with a guaranteed stability and an improvement
on identifiability. Favorably, it has been shown in Sects.
III and IV of Ref. [61] that Eqs. (25) and (30) indeed
improve the identifiability of the FA model by Eq. (25)
because the notorious rotation indeterminacy of the clas-
sic FA has been removed due to Eq. (30) with a diagonal
matrix B �= 0. In Ref. [72], not only the stability of TFA
is ensured with each diagonal element of B satisfying
|bi| < 1, but also an identifiable family of TFA struc-
tures has been investigated.

Applied to radar automatic target recognition based
on high-resolution range profile (HRRP) as shown in Fig.
9, it has been empirically shown (see Table 4 in Ref. [88])
that the recognition performance of the general SSM or
LDS is actually even inferior to that of the classic FA due
to many extra free parameters, which makes identifia-
bility become even worse. On the contrary, TFA obtains
better recognition and rejection performances than the
classic FA because of considering temporal correlation.

Also, there is another difficult task of selecting an
appropriate hidden dimension m of yt, the studies in
Refs. [83–87] use the EM algorithm to implement the
maximum likelihood learning, for which selecting an ap-
propriate m needs a computational intensive two-stage
implementation with help of a model selection crite-
rion such as AIC or BIC. In contrast, the TFA stud-
ies [5,40,47,61] perform the BYY harmony learning, by
which model selection is made either automatically dur-
ing learning or still in a two-stage implementation but
with an improved performance by a BYY harmony selec-
tion criterion. On HRRP radar target recognition, it has
also been empirically shown in Ref. [88] that the BYY
harmony learning based FA and TFA further outperform
the two-phase learning based TFA in both estimation ac-
curacy and computational efficiency.

Moreover, we may consider the following TFA ex-
tensions with q(xt|yt, θx|y) and q(yt|yt−1, θy) in other
choices:
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1) Temporal BFA: When yt,� is a binary vector
with each element y(j)

t,� taking either 0 or 1. Instead of
yt = Byt−1 + εt, we consider

q(yt|yt−1, θy) =
∏
j

sy
(j)
t (ŷ(j)

t )[1− s(ŷ(j)
t )]1−y

(j)
t ,

ŷ
(j)
t =

κ∑
τ=1

bj,τy
(j)
t−τ + b0,τ , (104)

where 0 < s(r) < 1 is a sigmoid function, see the algo-
rithm given in Fig. 8 of Ref. [1].

2) Temporal NFA: When yt,� comes from a mixture
of scalar Gaussians, i.e., by Eqs. (78) and (79), we get a
temporal extension of NFA. Readers are further referred
to Refs. [4,5].

3) Efforts may also be made on extensions via differ-
ent choices of q(xt|yt, θx|y), e.g., the linear x̂ = Ay + c

may be extended into considering a quadratic function
given by Eq. (80) as shown in Fig. 7.

Fig. 9 Radar automatic target recognition

5.2.2 HMM gated TFA and extensions

The TFA or ISS modeling shown in Fig. 8 targets at sta-
tionary temporal dependence among samples. In many
real applications, we encounter temporal dependence
that is stationary within a certain length of segment but
switches to different statistical properties across differ-
ent segments. Taking the task in Fig. 9 as an example,
radar HRRP returns are featured by three types of de-
pendence. One is spatial dependence along radial direc-
tion, i.e., inter-dimensional dependence of xt. As radar
rotates, HRRP returns are divided into a number of sec-
tions, called aspect frames. There is a stationary tempo-
ral dependence among samples that come from a same
aspect frame. However, statistical property may alter
or even suddenly change across different aspect frames.
We need an intrinsic framework for modeling a tempo-
ral sequence x1, . . . , xt, . . . , xN that is divided into many
segments such that inter-dimensional dependence of xt,
stationary temporal dependence among samples within

an aspect frame, and long range across-frame temporal
dependence are all appropriately modeled.

For the above modeling framework, we consider HMM
gated TFA modeling. As shown in Fig. 9, an HMM
model is considered for modeling long range across-
frame temporal dependence, with each hidden state
associated with a TFA model for both stationary tem-
poral dependence among samples within a segment and
inter-dimensional dependence of xt. This HMM gated
TFA modeling probabilistically covers different segments
without an explicit segmentation.

The hidden states are connected in certain structure,
e.g., a line tri-phone structure shown in Fig. 10(a) with
one or more Gaussians under each state, as widely used
in speech recognition [89]. Also, such a structure may
be used as shown in Fig. 10(b) for modeling the HRRP
data in Fig. 9. This structure uses a self-circle per state
to probabilistically describe a random length per seg-
ment, and uses a jump from one state to the next one
to ensure the unidirectional nature.

Fig. 10 Hidden states: Line versus cyclic structure

Alternatively, we may use a cyclic structure shown in
Fig. 10(c) to model the circumferential feature of the
HRRP data. All the unknown parameters in the HMM
and each TFA model, as well as the number of hidden
states and the state space dimension of each TFA model,
are all learned from a given sequence x1, . . . , xt, . . . , xN

by the BYY harmony learning.
The implementation of the BYY harmony learning on

the above HMM gated TFA modeling is a special case
of a general formulation given by Eqs. (57) and (58) in
Ref. [1]. Ignoring the prior q(θ) and shutting off the data
smoothing by letting h = 0, this formulation is simplified
into H(p||q, θ) =

∑
tHt(p||q, θ) with

Ht(p||q, θ)
= HHMM

t (p||q, θ) +
∑
�t

p(�t|xt, θ)H ltfa
t (p||q, �t, θ),

H ltfa
t (p||q, �t, θ)
=
∫
p(yt, yt−1|�t, xt, θ) ln q(xt, yt|yt−1, �t, θ)dyt−1dyt,

HHMM
t (p||q, θ) =

∑
�t,�t−1

p(�t, �t−1|xt, θ) ln q(�t, �t−1|Q),

q(xt, yt|yt−1, �t, θ)
= q(xt|yt, �t, θx|y,�t

)q(yt|yt−1, �t, θy,�t). (105)
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Maximizing H(p||q, θ) is made via ∇ϕHt(p||q, θ) =
∇ϕH

HMM
t (p||q, θ) +

∑
�t
H ltfa

t (p||q, �t, θ)∇ϕp(�t|xt, θ)+∑
�t
p(�t|xt, θ)∇ϕH

ltfa
t (p||q, �t, θ), where ∇ϕp(�t|xt, θ)

=
∑

�t−1
∇ϕp(�t, �t−1|xt) and ∇ϕH

HMM
t (p||q, θ) comes

from ∇ϕ ln q(�t|�t−1, Q) and ∇ϕp(�t, �t−1|xt, θ), in a way
similar to handling ∇ϕ lnαj|� and ∇ϕq(lt, lt−1|θ) by
the Box 2© and Box 3© in Fig. 14(b) of Ref. [1] via
p(lt, lt−1|θ) = q(lt, lt−1|θ) in choice (c). Specifically,
∇ϕH

ltfa
t (p||q, �t, θ) for each �t is handled in the same

way as ∇ϕHt(p||q, θ) in Eq. (103).
Moreover, different structures of q(xt|yt, �t, θx|y,�t

)
and q(yt|yt−1, �t, θy,�t) may lead to other types of the
HMM gated temporal modeling. One typical example is
q(xt|yt, �t, θx|y,�t

) by Eq. (28) and q(yt|yt−1, �t, θy,�t) by

yt,� = B�yt−1,� + εt,�, Eyt−1,�ε
T
t,� = 0,

εt,� ∼ G(εt,�|0,Λ�),
B� = diag[b�,1, b�,2, . . . , b�,m]. (106)

Putting them into Eq. (105), we make the BYY har-
mony learning on the HMM gated TFA modeling, where∫
[·]dyt−1dyt becomes analytically solvable.
Furthermore, efforts are also needed on extensions to

the HMM gated temporal BFA modeling and the HMM
gated temporal NFA modeling as well as other choices
as discussed around Eq. (104).

5.3 Hierarchical and graphical structure

5.3.1 Hierarchical structures

Also, we may consider an HMM gated mixture of non-
stationary segments, while each nonstationary segment
is itself modeled by a HMM gated mixture of stationary
segments, which leads to a tree or hierarchical struc-
ture. Even for a set of i.i.d. samples without temporal
dependence, a hierarchical structure is still helpful for
effectively describing a complicated distributions.

As illustrated at the center in Fig. 11, we consider
a two-level hierarchical mixture of Gaussians. For each
sample xt, we get a teaching label to assign xt to a
Gaussian mixture, which belongs to supervised learn-
ing. However, it becomes an unsupervised learning task
as we further assign xt to one particular Gaussian com-
ponent in this mixture. This problem can be regarded
as a semi-supervised learning task in a sense that each
sample has two teaching labels. One is known while the
other is unknown to be determined. Alternatively, it may
be regarded as an example of unsupervised learning in
a sense that each xt missed its information from which
Gaussian component.

The two-level hierarchical mixture of Gaussians in Fig.
11 is equivalent to the lattice Gaussian mixture by Eq.

Fig. 11 A two-level hierarchical mixture of Gaussians and its Ying-Yang alternation learning algorithm
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(87), simply with j indexing the top layer while � index-
ing the bottom layer, as well as αz

j� in place of αjα�|j
and G(x|μj�,Σj�) in place of G(x|μ�|j ,Σ�|j).

Learning can be made by a Ying-Yang alternating al-
gorithm as illustrated in Fig. 11 that implements hierar-
chically, with help of the chain rule for derivatives. The
details are referred to Sect. 5.1 in Ref. [1] and especially
its equation (55). As shown in Fig. 12 of Ref. [1], the
learning algorithm is implemented by a hierarchical har-
mony flow from bottom-up by the Yang-step and top-
down by the Ying-step. Precisely, learning a three-level
hierarchical Gaussian mixture of is illustrated in Fig. 12
of Ref. [1].

Here, we simplify it to suit for a two-level hierarchy in
Fig. 11. Still, updating α�|j, μ�|j ,Σ�|j is similar to Eq. (3)
except the indexes in a different notation. The key point
is updating p�,j,t by the Ying-step in two levels. The top
level makes supervised learning, while the bottom level
makes unsupervised learning.

Moreover, we can combine the two-level hierarchical
Gaussian mixture in Fig. 11 with the HMM gated TFA
modeling introduced in the previous subsection, from
which we get the following two temporal-hierarchical
structures for further investigations:

1) Gaussian mixture based HMM and local FA mix-
ture based HMM: Modifying the HMM gated TFA
modeling by Eq. (105) with each local TFA modeling
q(xt|yt, �t, θx|y,�t

)q(yt|yt−1, �t, θy,�t) replaced by a two-
level hierarchical mixture of Gaussians in Fig. 11 (i.e.,
under each hidden state there is a two-level hierarchical
Gaussian mixture), we are lead to a Gaussian mixture
based HMM model, as widely used in speech recognition
literature [89]. Moreover, we may replace each Gaussian
at the bottom level by a local FA model given by Eqs.
(28) and (29), which leads to a further extension called
local FA mixture based HMM. Readers are referred to
Sect. 5.3 and Fig. 14 of Ref. [1] for an introduction and
the corresponding BYY harmony learning algorithm.

2) HMM gated TFA models: We may further
let the above local FA model replaced by a local
TFA model with q(xt|yt, �t, θx|y,�t

) by Eq. (28) and
q(yt|yt−1, �t, θy,�t) by Eq. (106) for describing each sta-
tionary but non-Gaussian segment. Alternatively, we
may also let each local FA modeling to be replaced by
another HMM gated TFA modeling for describing non-
stationary temporal dependence in a hierarchical way.

5.3.2 Graphical structures

Beyond tree or hierarchical structures, another type of
dependence is described by graphical structure. One typ-
ical example considers local topology described by a
nearest neighbor graph, which has attracted lots of at-
tentions in the past decade under the name of manifold

learning. Given a sample data setXN = [x1, x2, . . . , xN ],
the key point is to get a graph Laplacian matrix L from
a nearest neighbor graph G with each node denoting one
column of XN . Then, we define q(Y ) based on L. One
example is given by Eq. (66) in Ref. [3].

As introduced in Sect. 2.2 and Fig. 5 of Ref. [1], up-
dating q(Y ) takes an important role on automatic model
selection by the BYY harmony learning.

In Ref. [3], when L is given, q(Y ) by Eq. (66) has
no free parameter to be adjusted, such that the con-
tribution by q(Y ) to automatic model selection is lost.
This situation can actually be regarded as an extended
counterpart of FA-a by Eqs. (25) and (27). Following
the discussions made after Eq. (27), we are further mo-
tivated to consider the extended counterpart of FA-b by
Eqs. (25) and (26). Considering a diagonal matrix Λ to
take a role similar to that in G(yt|0,Λ), we propose to
replace Eq. (66) in Ref. [3] with the following one:

q(Y ) =
1

Z(L,Λ)
exp{−1

2
Tr[Y LY TΛ−1]},

Z(L,Λ) =
∫

exp{−1
2
Tr[Y LY TΛ−1]}dY. (107)

Making manifold learning with Eq. (66) in Ref. [3] is
accordingly replaced by Eq. (107), with help of a ma-
trix L that is either a graph Laplacian matrix from XN

or a matrix that describes certain connectivity among
columns of Y .

6 Gene analysis applications

6.1 Genome-wide association study

One recent popular topic in gene analysis is search-
ing for genetic factors that influence common complex
traits and the characterization of the effects of those
factors. Most efforts are made on how SNPs influence
complex traits (especially diseases) under the name of
GWA study [90–93], where SNP is a shorthand of sin-
gle nucleotide polymorphism. There are three genotypes
for each SNP, and each SNP is represented by a dis-
crete variable y(j) that takes one of three labels or dis-
crete variables y(j), j = 1, 2, . . . ,m, with m = 3, while
whether a trait or disease manifests can be expressed by
a binary variable x = 0, 1.

Typically, a logistic regression is used for modeling the
probability of having a disease (i.e., x = 1) as follows:

p(x = 1) = η(x̂), x̂ =
∑

j

ajy
(j) + a0,

η(u) =
1

1 + e−u
. (108)

The parameters a0, a1, . . . , am are estimated by the ML
learning, based on paired samples of {yt, xt}. Beyond
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the ML learning, we may simply treat this problem by
a simplified NFA model by Eq. (83) at the special case
d = 1, featured with each discrete variable y(j)

t replaced
by a real value μj� or yr

j�.
Moreover, we may modify Eq. (83) as follows:

q(xt|u, θx|y) =
∏

i

η(x̂(i)
t )x

(i)
t [1− η(x̂(i)

t )]1−x
(i)
t ,

x̂t = Au + a0, (109)

and then extend this simplified NFA learning for ana-
lyzing the relations between a set of SNPs and multiple
complex traits, from which we observe how some SNPs
simultaneously affect more than one traits or diseases.

Also, efforts have been extensively made on consid-
ering whether a complex trait is influenced by interac-
tions between two SNPs. That is, a linear regression
x̂ =

∑
j ajy

(j) + a0 is extended to x̂ =
∑

j ajy
(j) +∑

ij bijy
(i)y(j) + a0 with the second order terms. Statis-

tical test is made on checking whether bij = 0 to verify
whether the interaction between the corresponding two
SNPs has influenced the trait.

According to the least complexity principle, each
quadratic term is considered only when we have to. Ef-
forts are needed to seek a learning mechanism that extra
parameters are pushed towards zeros such that the coef-
ficients of the quadratic terms are pushed more strongly
than the coefficients of the linear terms are pushed. One
way is considering appropriate priors q(aj) and q(bij).

Again, the above simplified NFA learning can be ap-
plied, with help of x̂ given by Eq. (80). Together with
Eq. (109), we may further observe how such interactions
between two SNPs simultaneously affect more than one
traits or diseases.

Moreover, checking bij = 0 for every SNP pair
is computationally extensive. Alternatively, the above
simplified NFA learning can be implemented via
sparse learning on bij , with

∏
ij q(aij) replaced by∏

ij q(aij)
∏

ij� q(b
(i)
j� ) such that the automatic model se-

lection nature pushes most of parameters {b(i)j� } towards
zero.

As illustrated in Fig. 12, we consider samples of two
SNPs represented by discrete variable taking three la-
bels. The logistic regression by Eq. (108) works on sam-
ples of linear separable as illustrated in Fig. 12(a1) but
fails on samples of not linear separable as illustrated
in Fig. 12(a2). Samples illustrated in Figs. 12(b1) and
12(c1) are also not linear separable, on which the logis-
tic regression by Eq. (108) fails too. However, the above
semi-blind NFA learning will estimate μj� to move sam-
ples slightly away from knots such that samples become
separable as illustrated in Figs. 12(b2) and 12(c2).

Not only this semi-blind NFA learning improves the
performance of the logistic regression by Eq. (108), but
also finding and verifying such an improvement provides

an alternative way that indicates whether the interaction
between two SNPs has influenced the trait.

In implementation, we may first get the logistic re-
gression by Eq. (108), and then make the semi-blind
NFA learning by setting the resulted coefficients of {aj}
as an initialization of A. Moreover, the updating direc-
tion of μj� can be modified towards its corresponding
class, e.g., towards its class center along a projection
of ∇μj�

H(p‖q, k, θ,Ξ) on the sample. In this way, this
semi-blind NFA learning actually identify a subset of
quadratic separable ability.

Fig. 12 Linear separable and extensions

Another method for GWA study is using a three-layer
network for learning a mapping ξt → yt → xt from
paired samples {ξt, xt}, again with help of the BYY har-
mony learning. A latest outline is referred to Sect. 4.4
and especially Eq. (51) in Ref. [1].

Such a three-layer network is learned as a special
type of binary FA, with q(yz |αz) by Eq. (76) and
q(xt|yz, θx|y) = q(xt|u, θx|y)|u=yz by Eq. (109). For � =
1, 2, we have

yz
j = yz

j1, y
z
j2 = 1− yz

j , j = 1, 2, . . . ,m,
αz

j = αz
j1, α

z
j2 = 1− αz

j , j = 1, 2, . . . ,m. (110)

Simplified from Eq. (95), we further have

Ht(p||q, θ) ≈
∑

yz∈D∗
yz

p(yz|ξt)πt(yz),

πt(yz) = ln[q(xt|yz, θx|y)q(yz|αz)q(θ)],
q(θ) = q(θx|y)q(αz)q(W,w),
y∗z

t = arg max
yz

πt(yz),

q(yz|αz) =
∏
j

[αz
j ]

yz
j [1− αz

j ]
1−yz

j ,

p(yz|ξt) =
∏
j

η(r(j)t )yz
j [1− η(r(j)t )]1−yz

j ,

rt = Wξt + w, η(r) =
1

1 + e−r
,

η(ξt) = [η(r(1)t ), η(r(2)t ), . . . , η(r(m)
t )]T, (111)

where D∗
yz is the apex-zone centered around y∗z

t by one
or a few bits.
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Alternatively, from Eq. (55) we approximately have

Ht(p||q, θ) ≈ πt(y∗z
t )− 1

2
Tr[εtε

T
t Πq

y|x,θ + Γp
y|x,θΠ

q
y|x,θ],

εt = y∗z
t − ηy(ξt),

η(ξt) = [η(r(1)t ), η(r(2)t ), . . . , η(r(m)
t )]T,

Πq
y|x,θ = −∂

2πt(yz)
∂yz∂yzT

,

Γp
y|x,θ = diag[η(r(1)t ), η(r(2)t ), . . . , η(r(m)

t )]
−η(ξt)η(ξt)T. (112)

Again, an algorithm can be developed to maximize
H(p||q, θ) =

∑
tHt(p||q, θ) for implementing the BYY

harmony learning. After learning, the mapping ξt →
yt → xt can be implemented via

p(xt|ξt) =
∑
yz

q(xt|yz, θx|y)q(yz|αz)p(yz|ξt), (113)

or approximately via

f(ξ) = η(u), η(u) = [η(u(1)), η(u(2)), . . . , η(u(m))],
u = A diag[αz

1, α
z
2, . . . , α

z
m] η(Wξ + w) + a0. (114)

Moreover, the BYY harmony learning pushes (1 −
αz

j )α
z
j → 0 if the dimension yz

j is extra, which is thus
discarded during learning. If the mapping ξt → yt → xt

improves the standard logistic regression by Eq. (108)
and there keep more than one hidden dimensions, we in-
fer that there are contributions more than the one from
Eq. (108), which is an indicator to observe whether there
is interaction between two SNPs simultaneously.

6.2 Classification versus testing p-value

In the GWA study, a common practice is testing whether
the following null hypothesis H0 is rejected:

H0 : this SNP is irrelevant to the disease. (115)

The test bases on a test statistic s calculated from sam-
ples of the genotypes of this SNP. There is a “null value”
s0 (typically, s0 = 0) such that a value of s close to s0
presents the strongest evidence in favor of the null hy-
pothesisH0, whereas a value of s far from s0 presents the
strongest evidence against H0. One key issue of consid-
ering a test statistic is that we must be able to determine
its distribution q(s|H0) under the null hypothesis, which
allows us to calculate the so called p-value from a sample
set, as shown in Fig. 13(b). If H0 is valid, samples of the
genotypes of this SNP contain no information about the
disease, the value ŝ calculated from this sample set is not
large, and the corresponding p-value is not small. Thus,
H0 is not rejected. On the contrary, rejecting H0 indi-
cates that samples of this SNP contain some information
about the disease.

Practically, the null hypothesis H0 by Eq. (115) is not
easy to implement. There could be different choices for

considering an implementable alternative. One typical
example could be as follows:

H0 : pS1 is not different from pS0 , (116)

where pS�
, � = 0, 1, is a sample distribution of the geno-

types of this SNP obtained from a set S1 of case samples
with the disease and a set S0 of control samples without
the disease, respectively. Still, there are different choices
for getting a statistic and conducting its corresponding
testing. One example is the Pearson’s chi-squared test.

Fig. 13 Classification versus testing statistic p-value

Instead of testing H0 by Eq. (116), we may classify
each sample into a confusion table T as shown in Fig.
13(a), e.g., by the following Bayes classifier:

yt is classified to C1 if α1pS1(yt) > α0pS0(yt), (117)

where yt is the genotype of one sample about the SNP
in consideration, α0, α1 are proportions that can be
simply estimated by α0 = N0/(N0 +N1) and α1 =
N1/(N0 +N1). The discrepancy of the resulted confu-
sion table from the desired result diag[N1, N2] describes
the performance of classification, which is a common
practice in the literature of pattern recognition.

Being different from testing H0 by Eq. (116) that pro-
vides a collective decision on whether H0 should be re-
jected, the confusion table by Eq. (117), shortly denoted
by TB, comes from a decision to each individual sample
on whether or not this sample is associated with this
disease. Moreover, this TB also serves as a reference or
a baseline for making comparisons with confusion tables
obtained by different classifiers, e.g., by using either one
of three techniques in Sect. 6.1, namely, a logistic re-
gression by Eq. (108), a simplified NFA learning by Eq.
(109), and a BYY harmony learning based three layer
networks by Eq. (113) or Eq. (114).

We consider testing H0 by Eq. (115) based on a con-
fusion table T . When H0 by Eq. (115) is valid, we have

H0 : N01 = N00, N11 = N10,

or equivalently T = T0,

where T0 =

(
N1 0

0 N2

)(
1
2

1
2

1
2

1
2

)
, (118)

from which we may either use Pearson’s chi-squared test
and Fisher’s combined probability test, or develop a new
statistic s to test the discrepancy of T from T0.
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However, rejecting H0 by Eq. (118) is not enough for
us to reject H0 by Eq. (115), since a rejection of Eq.
(118) may be not due to that the information contained
in the set S1 of case samples is discriminative from the
one in the set S0 of control samples, but come from a
system bias of the classifier that outputs this confusion
table T . Taking such a system bias in consideration, we
train a pair of classifiers as follows:
• Detector C(θ): a classifier trained from a set S0 of

control samples and a set S1 of case samples, with
the resulted confusion table denoted by T ;

• Reference C(θ∗): a classifier trained from the above
same set S0 of control samples but with the set S1

replaced by another set S∗
1 of control samples, with

the resulted confusion table denoted by T ∗.
The detector and reference share a same statistical
model C(θ). This C(θ) includes a parametric model in
a conventional sense. Moreover, a nonparametric model
may be expressed in a form of C(θ), e.g., for pS0 and pS1

given by Eq. (117) with each specific � and each specific
y, pS�

(y) can be regarded as one unknown parameter
that is estimated by sample frequency. All such parame-
ters form θ that is estimated from S0 and S1. Similarly,
the above θ∗ comes from replacing pS1 by pS∗

1
that is es-

timated from S∗
1 . Accordingly, we get a confusion table

TB by Eq. (117) and its counterpart T ∗
B by replacing pS1

in Eq. (117) with pS∗
1
.

Moreover, to estimate the unknown parameters, C(θ)
and C(θ∗) share a same learning principle or an error
function to be minimized. The difference lays in the spec-
ified values of θ and θ∗ that comes from different sample
sets. E.g., either pS1 or pS∗

1
is estimated by frequency

counting, which actually follows from the maximum like-
lihood learning principle.

Instead of testing H0 by Eq. (118) merely on one con-
fusion table T , we make the following paired testing:

Step T ∗ : testing H0 by Eq. (118) based on T ∗ to check
if H0 is not rejected at a significant level α
with its statistic ŝ� sα and a large value
p∗ as shown in Fig. 13(c); otherwise quit.

Step T : testing H0 by Eq. (118) based on T to check
if H0 is rejected at a significant level α
with a small p value; otherwise fail. (119)

Step T ∗ checks whether the statistical model and the
learning principle makes a system bias to cause the null
hypothesis rejected even when samples contains no in-
formation about the disease. As illustrated in Fig. 13(c),
a significant level α specifies a boundary point sα, we
prefer the statistic ŝ � sα such that the corresponding
p∗ value is large, which indicates having a large proba-
bility that the discrepancy of T from T0 is not too large
to incur a big system bias. However, when ŝ > sα, we
reject H0 and quit with failure because we are unable to
judge whether a rejection of H0 at the next step comes

from this system bias or some discriminative informa-
tion contained in the set S1 of case samples. In such a
case, we may either increase the samples sizes of S0 and
S∗

1 to re-train the classifier or select a better statistical
model and a better learning principle.

Getting a success at Step T ∗, we move to test Step
T . We prefer that H0 is rejected at the given significant
level with a p value as smaller as possible, together with
ŝ� sα and a large value of p∗ at Step T ∗.

Efforts are also suggested to put on comparisons with
the implementation of Eq. (119) by T = TB and T ∗ =
T ∗

B, which serves as a baseline or a bridge. On one hand,
it links to those confusion tables obtained by different
classifiers. On the other hand, it links to the null hy-
pothesis H0 by Eq. (116). Accordingly, we may observe
whether a pS0 , pS1 based null hypothesis can be further
improved via seeking a better classifier.

The last but not least, the classification associated
with the test H0 by Eq. (115) is a special type of two
class problem, with the “case” class in a major consid-
eration while the “control” class distributed flatly as a
background. That is, it is actually an one-class decision
problem, which motivates us to prefer a classifier de-
signed particularly for such an one-class decision. Taking
the simplified NFA learning in Sect. 6.1 as an example,
we may modify Eq. (109) with η(ξ̂(i)t ) replaced by the
following one:

η(u) =
2

1 + eu2 , (120)

which puts the class ξ = 0 as the one-class to be focused.

6.3 SNP analysis versus exome sequencing analysis

Typically, the SNP analysis considers statistical test on
each SNP, and each sample of the SNP is a label or dis-
crete number that represents the genotype of the SNP.
Accordingly, the computation of p-value involves merely
a summation or integral of one variate. Recent efforts on
SNP based analysis further proceed to exome sequenc-
ing analysis, as shown in Fig. 14(a). Each exon sequence
may contain multiple SNPs plus other information. It
is no longer enough to use one label to represent an exon

Fig. 14 Exome sequencing analysis and dimension reduction
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sequence. Thus, a sample vector of multiple elements is
used to encode information about not only each of SNPs
but also interactions among these SNPs and across the
rest parts of the exon. Accordingly, the counterpart of
the null hypothesis H0 by Eq. (115) becomes

H0 : this exon sequence contains no information
about the disease. (121)

However, it becomes more difficult to get the distribu-
tion q(s|H0) in Fig. 13(b). In the sequel, this difficult is
tackled along two directions.

One direction is getting confusion tables T and T ∗

by one of classifiers in Sect. 6.1 or one of other classifiers
with a good generalization ability. Then, we conduct the
null hypothesis H0 by Eq. (121) with help of the im-
plementation of Eq. (119). Summarized below are some
guidelines on further investigations:
(a) For an exon sequence that contains one SNP plus

other features, we get confusion tables T and T ∗ by
using a classifier on a sample set YN = {yt}, where
each yt is a vector consisting of a number of features
extracted from the exon sequence in consideration.
Then, the implementation of Eq. (119) is made on
these T and T ∗ in comparison with its implemen-
tation on T = TB and T ∗ = T ∗

B as a baseline. Also,
we may test a null hypothesis H0 that T does dif-
fer from TB. Accordingly, we can observe whether a
pS0 , pS1 based null hypothesis by Eq. (116) can be
further improved with help of making such a clas-
sification on samples from the exon sequence.

(b) For an exon sequence that contains a number of
SNPj , j = 1, 2, . . . , κ, plus other features, we may
get one classifier same as in the above (a) to obtain
T and T ∗. Then, we test H0 by Eq. (121) with help
of the implementation of Eq. (119) on the obtained
T and T ∗, in comparison with

– testing H0 by Eq. (116) on each of SNPj , j =
1, 2, . . . , κ,, we combine the p-values of individ-
ual tests (e.g., by Fisher’s combined probabil-
ity test).

– Getting T
(j)
B by Eq. (117) on each of

SNPj , j = 1, 2, . . . , κ, individually, we get a
combination

T com
B = F (T (j)

B , j = 1, 2, . . . , κ), (122)

where F (·) is a combining rule, a simplest ex-
ample is taking the average, and other possible
combining rules are referred to Ref. [94]. Then,
we make the implementation of Eq. (119) on
T = TB and T ∗ = T ∗

B.
– Getting sample distributions p(j)

S0
, p

(j)
S1

on each
of SNPj, j = 1, 2, . . . , κ, individually, we
develop a classifier by considering all sample
distributions jointly and get confusion tables

T com
B and T com∗

B . Then, we make the imple-
mentation of Eq. (119) on T = T com

B and
T ∗ = T com∗

B .
The other direction is making a dimension reduction

from a high dimensional vector y to a low dimension sam-
ple s that is either directly used as a statistic or easy to
form a statistic. As shown in Fig. 14(a), an SNP analy-
sis can be regarded as a degenerated case that y reduces
into a discrete number representing the SNP’s genotype.
To map y into s, we may use one of existing dimension
reduction methods as a pre-processing. However, a sep-
arated pre-processing may lose useful information for a
subsequent classification.

Instead, we suggest a dimension reduction y → s by
p(s|y, ψ) to be learned together with the Ying-Yang sys-
tem as shown in Fig. 14(c). From Eq. (61), we have

Ht(p||q, θ)
=
∑

ξ

∫
p(ξ|s, θξ|s)p(s|ψ) ln [q(s|ξ, θs|ξ)q(ξ)q(θ)]ds,

p(s|ψ) =
∫
p(y|YN )p(s|y, ψ)dy. (123)

Typically, from p(y|YN ) = 1
N

∑
t δ(y − yt) and p(s|y, ψ)

= δ(s−Wy − c), we have

Ht(p||q, θ)
=

1
N

∑
ξ

p(ξ|Wyt + c, θ) ln [q(Wyt + c|ξ, θ)q(ξ)q(θ)],

with p(s|ψ) =
1
N

∑
t

δ(s−Wyt − c). (124)

Approximately, we may regard that st = Wyt + c comes
from a Gaussian, which is justified when the dimension
of yt is high and the elements of yt are mutually inde-
pendent. When H0 by Eq. (121) is valid, both case and
control samples of yt come from a same distribution,
and thus both case and control samples of st belong to a
same Gaussian distribution. A practical implementation
is considering the following null hypothesis:

H0 : μ0 = μ1, (125)

where μ0, μ1 are respectively the sample means of the
case and the control samples of st, subject to either a
same variance or different variances. Also, we can make
a comparison with Fisher’s linear discriminant analysis.

The unknown parameters θ = {W, c, μ�, σ
2
� , α�, � =

0, 1} are learned via maximizingHt(p||q, θ) by Eq. (124),
which is further simplified into

Ht(p||q, θ) =
∑

�

p(�|st, θ) ln [G(st|μ�, σ
2
� )α�q(θ)],

subject to st = Wyt + c, (126)

from which we obtain the gradient ∇ϕHt(p||q, θ) and
develop a semi-supervised learning or supervised learn-
ing algorithm, following the developments made in Sect.
2.1.4 and Eq. (99) in Sect. 5.1.4.
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Similar to the consideration made at the end of Sect.
6.1, we may also handle the above problem of one-class
decision via enforcing σ2

0 upper-bounded by a small value
while σ2

1 lower-bounded by a large value, with σ2
1 � σ2

0 .
After learning, we get SN = {st} from YN = {yt} by

st = Wyt + c and obtain confusion tables T and T ∗ by
p(�|st, θ). Then, we test H0 by Eq. (121) with help of the
implementation of Eq. (119) on these T and T ∗. Also,
we may test a null hypothesis H0 that T does differ from
TB. Moreover, we may make a comparative study with
Fisher’s linear discriminant analysis.

6.4 Gene transcriptional regulation

We move to modeling gene transcriptional regulation by
a noisy BFA, that is, a simplified NFA learning at a spe-
cial case that � = 1, 2, for which we have q(yz |αz) given
by Eqs. (111) and (110). Moreover, we have yr

j from
q(yr

j |θj,yz
j
) by Eq. (79) with yz

j in place of yz
j�. At a spe-

cial setting that μj,1 = 1, μj,0 = 0, and λj,1 = λj,0 = 0,
we encounter actually a BFA.

With λj,1, λj,0 becoming unknown parameters, we are
further lead to a noisy BFA when yr

j that takes binary
values 0, 1 becomes to take real vales from Gaussians
centered at 0 and 1, respectively.

Such a noisy BFA is suggested to model gene tran-
scriptional regulation, which leads to further modifica-
tions of networks component analysis (NCA) [20,21].
Specifically, different settings of μj,1, μj,0, and λj,1, λj,0

lead to several scenarios as follows:
• We modify a BFA by setting some elements of A

to be 0, that is, NCA is modified with a new fea-
ture that yr

j = 1 indicates a transcription factor
(TF) activated while yr

j = 0 indicates that there
is no TF activation. When μj,1 = 1, μj,0 = 0 and
λj,1 = λj,0 = 0, it follows that yz

j = 1 implies
yr

j = 1, while yz
j = 0 implies yr

j = 0.
• We further modify this semi-blind BFA by relaxing
μj,1 and λj,1 to be free to take unknown parameters,
while we still set μj,0 = 0 and λj,0 = 0 by which
yr

j from G(yr
j |0, 0) indicates yr

j = 0 (no TF acti-
vation). On the contrary, yr

j from G(yr
j |μj,1, λj,1)

indicates a TF activation with its strength varying
randomly around μj,1 with a variation described by
λj,1. During learning, one scenario is that each yz

j

may be known to take a label yz
j = 1 or yz

j = 0 ac-
cording to whether a TF is known in binding to this
gene. The other scenario is estimating a unknown
yz

j to check whether there is a binding.
• This semi-blind BFA can be regarded as modified

from a standard BFA simply with yt replaced by

yt = yr
t ◦ yz

t = [yr
1y

z
1 , y

r
2y

z
2 , . . . , y

r
my

z
m]T, (127)

and accordingly a learning algorithm can be ob-

tained from a standard BFA algorithm with help of
the following three-step-alternation:

1) Given yz
t , A, and the statistics of noise e, we

estimate yr
t by a weighted BFA xt = Azyr

t + et

with Az = A diag[yz
1 , y

z
2 , . . . , y

z
m];

2) Given yr
t , A, and the statistics of noise e, we

estimate yz
t by a weighted BFA xt = Aryz

t + et

with Ar = A diag[yr
1 , y

r
2, . . . , y

r
m];

3) Get yt by Eq. (127) from given yr
t and yz

t , we
estimate A, and the statistics of noise e from
a standard BFA xt = Ayt + et.

• A further extension considers that elements of A
switches between different modes. One example is
shown in Fig. 4 (particularly Eq. (100)) of Ref. [3],
where A is replaced by A ◦L = [aij�ij ] with �ij = 1
or 0. Learning xt = (A ◦L)yt + et involves optimiz-
ing a binary matrix L per implementation of the
Yang-step.

• To avoid searching a binary matrix, we return to
consider xt = Ayt + et with help of a prior q(θ) in
Eq. (98) that includes q(A,L), typically with

q(aij |�ij = 1) = G(aij |μa
ij , γ

a
ij,1),

q(aij |�ij = 0) = G(aij |0, γa
ij,0), (128)

where aij coming from G(aij |0, γa
ij,0 = 0) is equiv-

alent to setting aij = 0 probabilistically. Alterna-
tively, relaxing γa

ij,0 to take a small value or an
unknown value to be estimated during learning, a
hard switching off aij = 0 is relaxed to taking a
small value randomly as if some background noises.
On the contrary, aij from G(aij |μa

ij , γ
a
ij,1) indicates

the connectivity with its strength varying randomly
around μa

ij with a variance γa
ij,1. Moreover, the

connectivity can be further examined via getting
p(�ij |xt) and p(�ij |xt, A).

7 Closing outlines

This paper provides a further supplementary of Refs.
[1] and [3]. From different aspects and with different fo-
cuses, the three sister papers jointly provide a systematic
overview and also a tutorial on the BYY harmony learn-
ing. Generally speaking, Ref. [1] serves as a core reading
on fundamentals and important topics, while this paper
supplements Ref. [1] with the following motivations:
• Important topics are elaborated systematically in

a way that those already addressed in Ref. [1] are
briefly outlined or re-organized (if need), with un-
clear points clarified, some variants provided, and
certain missing issues further addressed.

• Several new topics have been added and addressed
in details, while they were untouched in Ref. [1].

• A number of challenging issues and further topics
are discussed for further investigation.
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• Taking Gaussian mixture as an example, an easy
understanding tutorial in a bird’s-eye view is pro-
vided in comparison with typical algorithms.

In Ref. [3], further insights are provided on a family of
BYY systems that are set up by specific building units,
with each building unit featured by a co-dimensional ma-
trix pair (co-dim matrix pair). The common rank m of
each matrix pair is an intrinsic dimension that could
be estimated by the information from each of the two
matrices, which leads to improved learning performance
with not only refined model selection criteria but also a
modified mechanism that coordinates automatic model
selection and sparse learning. A number of typical latent
variable based models are covered, with the correspond-
ing learning algorithms developed.

For clarity and completeness, the major topics intro-
duced in Refs. [1] and [3], and this paper are summarized
as follows.

• Topics about statistical learning in general

1) Regularization, sparse learning, and model selec-
tion, which are mainly introduced and discussed in
Sect. 2.1 (see page 286) of Ref. [1], with a supple-
mentary discussion made in Sect. 4.4.2 (d) of this
paper. Particularly, the common point and differ-
ence between automatic model selection and sparse
learning as well as their coordination are further
addressed via the co-dim matrix pair based models
in Sect. 2.2 of Ref. [3], especially after Eq. (34).

2) Two stage implementation, stepwise implementa-
tion, automatic model selection, which are mainly
introduced and discussed in Sect. 2.1 (see page 287)
of Ref. [1]. Moreover, detailed formulations of Eq.
(4) of Ref. [1] are further given by Eqs. (35) and
(36) of Ref. [3] for a co-dim matrix pair, and by Eq.
(42) of this paper for a Gaussian mixture.

3) IBC prior, which bases on a belief that a prior con-
sists of canceling out a system bias by a IBC prior
and then adding an informative prior. In Ref. [1], it
is introduced by the last part of Sect. 4.2 on page
303. Details are referred to Sect. 3.4.3 in Ref. [41].

• Topics about BYY system

1) A modern Yin-Yang viewpoint, which is introduced
in Ref. [1] (see the first two paragraphs of Sect. 4.1
and also Appendix B1). In this paper, it is further
outlined by the first two paragraphs of Sect. 3.1.1.

2) Least complexity principle for Ying design, featured
with designing q(Y ) in a least redundancy principle
and designing q(X |R) in a divide-conquer principle.
Further details are referred to Sect. 4.2 (see page
302) in Ref. [1], and Sect. 3.2.1 of this paper.

3) Variety preservation principle for Yang design,
which is introduced in Sect. 4.2 (see pages 302 and

303) of Ref. [1]. Further details are provided in Sect.
3.2.2 of this paper. Not only Πq

Y |X ,Πθ in Eq. (31) of
Ref. [1] is refined into Πq

Y |X,θ and Πq
θ|X in Eq. (36),

but also another factorization of Yang machine is
considered with its corresponding design given by
Eq. (43).

4) Ying-based model selection versus Yang-based regu-
larization, which is introduced in Sect. 2.2 (see page
280) of Ref. [1]. In this paper, it is also outlined by
Sect. 3.3.1, with further discussions on coordination
within Ying and within Yang.

5) Unsupervised vs semi-supervised learning, which is
introduced in Sect. 4.4 (see pages 306–308) of Ref.
[1], where two typical types of BYY supervised
learning are reviewed. In this paper, Sect. 3.3.2 fur-
ther argues that the BYY system acts as a uni-
fied framework to accommodate unsupervised, su-
pervised, and semi-supervised learning all in one
formulation.

6) Semi-blind learning In Ref. [3], Sect. 4.3 presents
a general formulation, together with a semi-blind
learning BFA for a specific linear regression task in
the last part of Sect. 3.2. In this paper, not only this
semi-blind learning BFA has been applied to model-
ing gene transcriptional regulation in Sect. 6.4 with
a three-step alternating implementation, but also
a semi-blind learning NFA has been proposed for
genome-wide association study in Sect. 6.1.

7) Co-dim matrix pair and post bi-linear matrix based
BYY system, which is introduced and addressed by
Sect. 2 of Ref. [3].

8) Hierarchy of co-dim matrix pairs, which is intro-
duced and addressed by Sect. 4.1 of Ref. [3].

• Topics about best harmony learning

1) Bi-entity proximity: equivalent vs different As in-
troduced in Appendix A and Fig. A1 of Ref. [1],
measures of bi-entity proximity come from either
a least difference perspective or a best agreement
perspective. Two perspectives are usually different
though becoming equivalent in some special cases.
Actually, Hμ(P ||Q) evolves from the former while
the Kullback divergence evolves from the latter.

2) Harmony functional: triple-relation vs bi-relation
Radon-Nikodym derivative based harmony func-
tional Hμ(P ||Q) is a triple-relation that not only
includes Kullback divergence and Shannon entropy
(each is a bi-relation) as special cases but also differs
from the minimum cross entropy (MCE), which is
introduced in Sect. 4.1 (see page 299) in Ref. [1]. In
this paper, this issue is systematically re-elaborated
in Sect. 4.1 and Fig. 5, with f(r) further specified to
clarify some unclear issue, and also with further ex-
planation on why the name of harmony functional
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is adopted.
3) Unidirectional learning vs bidirectional learning

As discussed in Sect. 4.1 of this paper, there are
many choices for extending bi-entity proximity to
a BYY system, from both a unidirectional perspec-
tive and a bidirectional perspective, among which
Hμ(P ||Q) is argued as the best.

4) Ying-Yang best harmony It seeks a best Ying-
Yang matching with a least complexity in term
of the system entropy, as introduced in Sect. 4.1
of Ref. [1] (especially the third paragraph on page
299), and also outlined in Sect. 4.2.3 of this paper
(see the first aspect of observation on the novelty).

5) Ying-Yang tacit matching Ying-Yang best har-
mony also means that Ying-Yang seeks a best agree-
ment in a most tacit manner via a least amount
of information communication from Yang, as intro-
duced in Sect. 4.1 of Ref. [1] (especially the para-
graph around Eq. (24) on page 299), and also out-
lined in Sect. 4.2.3 of this paper (see the third aspect
of observation on the novelty).

6) q(Y ) in a scale sensitive position, which is ad-
dressed in Sect. 2.2 and Fig. 5 of Ref. [1]. In this
paper, it is further outlined in Sect. 4.2.3 (see the
second aspect of observation on the novelty).

7) BYY best harmony versus discriminative training,
which is addressed in this paper at the ending part
of Sect. 4.2.1.

8) Manifold shrinking, which is introduced in Fig. 10
on page 300 of Ref. [1], and further addressed in
this paper by the last part of Sect. 4.3.2.

9) RPCL like gradient flow, which is introduced
around Eq. (25) on page 300 of Ref. [1], and a vari-
ant is given by Eq. (22) in Ref. [62].

10) Three-level encoding based optimal communication,
which is introduced in Sect. II(C), Sect. II(E), and
Fig. 3 in Ref. [4], and is outlined by the first para-
graph on page 302 of Ref. [1].

11) Hierarchical learning and bottom-up decoupling
Minimizing KL(P ||Q) has a bottom-up decoupling
nature, while maximizing Hμ(P ||Q) does not have,
as addressed by Sect. 5.2 of Ref. [1] (especially the
third paragraph on page 299) and also outlined in
Sect. 4.2.3 of this paper (see the third aspect of
observation on the novelty).

12) Temporal decoupling nature As addressed at the
end of Sect. 5.2 in Ref. [1], maximizing Hμ(P ||Q)
has a temporal decoupling nature, while minimizing
KL(P ||Q) does not have.

13) A unified framework of statistical learning Maxi-
mizing Hμ(P ||Q) (including minimizing KL(P ||Q)
as a special case) acts as a general framework that
unifies typical learning methods, which is addressed
by the second part of Appendix A and Fig. A2 in
Ref. [1], and also briefly outlined in Sects. 4.2.2 and

4.2.3 of this paper.
As a whole, the above list extends the nine aspects sum-
marized at the end of Sect. 4.1 in Ref. [1], not only on
the novelty and favorable natures of BYY best harmony,
but also on its relation to BYY best matching.

• Topics about BYY learning implementation

1) Apex approximation An integral or summation is
approximated around apex zone, and one key tech-
nique is given by Eq. (35) in Sect. 4.3 of Ref. [1]
(also see Sect. 2.3 in Ref. [3] and Sect. 4.3.1 in this
paper), while a summation is approximated by a
sum over an apex-zone centered around the peak in
one or a few bits, e.g., Eq. (20) in Ref. [1] and Eq.
(111) in this paper.

2) Alternative maximization The key point is al-
ternatively updating unknowns in Yang with Ying
fixed and unknowns in Ying with Yang fixed, see
the end part of Sect. 4.3 in Ref. [1]. Considering
unknowns hierarchically, the alternation consists of
multi-stages hierarchically, see Eq. (43) in Ref. [3]
as well as Eq. (18) and Sect. 4.3.1 of this paper.

3) Partition of priors Priors are divided into an inte-
grable part and a non-integrable part (see Eq. (42)
in Ref. [3]) or alternatively into a part of hyper-
parameters and a part of no hyper-parameters (see
Eq. (70) in this paper).

4) Balanced operation As discussed in Sect. 4.3.3 of
this paper, learning implementation should balance
learning operation on each part of unknowns to
avoid getting trapped at a local maximum. Readers
are further referred to Sects. 2.3 and 3.3 in Ref. [1].

• Exemplar learning tasks and algorithms

1) Gaussian mixture A tutorial on unsupervised
learning algorithms is introduced in Sect. 3.1 and
Fig. 7 of Ref. [1], implementing the BYY harmony
learning in comparison with the EM algorithm for
maximizing the likelihood, RPCL learning, κ-MAP
EM learning, WTA-BYY harmony, where all the al-
gorithms are summarized in a unified Ying-Yang al-
ternation procedure with major parts in a same ex-
pression while differences characterized by few op-
tions in some subroutines. In Sect. 3.1 of Ref. [3],
extension is made to a supervised learning variant.
In Sect. 2.1.5 of this paper, a further extension is
made to semi-supervised learning by Eq. (14).

2) Factor analysis The BYY harmony learning algo-
rithm is also given for the FA in Sect. 3.2 and Fig.
7 of Ref. [1], in comparison with the EM algorithm
for maximizing the likelihood. Moreover, the co-dim
matrix pair featured FA is proposed by Eq. (62)
in Ref. [3] for improving automatic model selection
on the number of factors. Being different from the
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traditional parameterization of FA (shortly FA-a),
another parameterization (shortly FA-b) is consid-
ered for the BYY harmony learning, see Item 9.4 in
Ref. [26] and Sect. 3 in Ref. [33]. Though FA-a and
FA-b are equivalent in term of maximizing the like-
lihood, extensive empirical experiments in Ref. [34]
has shown that the BYY harmony learning and VB
perform reliably and robustly better on FA-b than
on FA-a, while BYY further outperforms VB con-
siderably, especially on FA-b.

3) NFA, BFA, and three-layer networks The learning
algorithm given in Sect. 3.2 and Fig. 7 of Ref. [1]
is actually all in one formulation. Also, the co-dim
matrix pair featured by Eq. (62) in Ref. [3] can be
approximately used for BFA and NFA, as addressed
by the paragraphs from Eq. (62) to Eq. (64) in Ref.
[3]. Partitioning the input of BFA into two parts
leads to a BYY harmony learning implementation
for a classic three-layer network, as outlined by the
paragraphs from Eq. (48) to Eq. (53) in Ref. [1].

4) Mode-switching factor analysis, semi-blind learn-
ing, and semi-blind FA As shown in Sect. 5.1.1
and Fig. 7, mode-switching factor analysis is a gen-
eral formulation that includes Gaussian FA, BFA,
NFA, and their variants of semi-blind learning.

5) Manifold learning As addressed by the paragraphs
from Eq. (65) to Eq. (68) in Ref. [3], the popu-
lar graph Laplacian based manifold learning can
be equivalently reformulated as a co-dim matrix
pair based BYY harmony learning with automatic
model selection and learning regularization. It fol-
lows from Eq. (66) in Ref. [3] that this manifold
learning can be regarded as an extension of FA-a.
In this paper, a further improvement is suggested
to its counterpart of FA-b with Eq. (66) in Ref. [3]
replaced by Eq. (107).

6) LFA and SBF In Sect. 3.2 and Fig. 8 of Ref. [1],
the BYY harmony learning algorithm is developed
for implementing local FA in comparison with the
EM algorithm. In Sect. 4.2 of Ref. [3], a de-noise lo-
cal FA is further proposed and then extended with
each subspace supported by a cascaded linear re-
gression, with the number of subspaces and the di-
mension of each subspace determined during the
BYY harmony learning.

7) Mixture of experts and RBF networks As illus-
trated by the Box 9© in Fig. 11 of Ref. [1], we
are lead to RBF networks and alternative mixture
of experts. Further details are referred to a recent
overview in Ref. [38].

8) TFA, temporal BFA, and temporal NFA Taking
temporal dependence in consideration, FA is ex-
tended to TFA. All in one formulation in Sect. 3.2
and Fig. 7 of Ref. [1] also cover a first order ap-
proximation of the BYY harmony learning on TFA

[40,61]. Without approximation, the implementing
techniques for the BYY harmony learning on TFA
are addressed in Sect. 5.1 and especially Fig. 13 of
Ref. [1]. In Sect. 4.2 and especially Eqs. (92) and
(93) in Ref. [3], the co-dim matrix pairing nature
has been generalized to TFA and the state space
model, and a double loop learning procedure is pro-
posed, sharing the nature of automatic model selec-
tion and sparse learning. Also, TFA has been ap-
plied to HRRP data for radar object recognition
[88].

9) HMM model and HMM gated TFA In Sect. 5.3 of
Ref. [1], learning algorithms are provided not only
for implementing the BYY harmony learning with
automatic model selection on hidden states (see Fig.
12), but also for discriminative learning of multiple
HMM models. In Sect. 5.2.2 of this paper, HMM
model and TFA models are combined to form a
HMM gated TFA for modeling long range across-
frame temporal dependence, with each hidden state
using one TFA model for stationary temporal de-
pendence within each segment.

10) Hierarchical Gaussian mixture In Sect. 5.1 and
Fig. 12 of Ref. [1], a hierarchical Gaussian mix-
ture is addressed with a BYY harmony learning
provided, in comparison with the EM algorithm.
Taking a two-level hierarchical Gaussian mixture as
an example, the learning algorithm is extended to
supervised learning and semi-supervised learning in
Sect. 5.3.1 and Fig. 11 of this paper.

11) Graph matching, covariance decomposition, and
data-covariance co-decomposition In Sect. 3.3 of
Ref. [3], attributed graph matching is formulated
as a decomposition of covariance, which is imple-
mented by optimizing one of two cost functions sub-
ject to an orthostochastic matrix constraint. More-
over, it is further extended to a co-decomposition
of data and covariance for a better performance.

12) PPI network and network alignment A BYY har-
mony learning based bi-clustering algorithm has
been developed for PPI network partitioning with
favorable performances in comparison with sev-
eral well known clustering algorithms [95]. Further
improvements are suggested from the co-dim ma-
trix pair perspective in Ref. [3]. Moreover, net-
work alignment is taken in consideration via graph
matching from a perspective of data-covariance
co-decomposition with help of the BYY harmony
learning, which provides a potential formulation for
integrating data types across several domains.

13) Gene transcriptional regulation In Sect. 3.3 of Ref.
[3], past studies have been summarized in three
streams of advances, and further progresses are
made in help with a co-dim matrix pair perspective
of the BYY harmony learning, especially a general
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formulation for semi-blind learning and its exten-
sion for temporal modeling. In Sect. 6.4 of this pa-
per, a noisy BFA with a three-step alternation pro-
cedure is suggested to improve networks component
analysis [20,21] for gene transcriptional regulation.

14) Genome-wide association study In Sect. 6.1 of
this paper, a formation of semi-supervised learning
is suggested for regression analysis with automatic
selection on variables by which we analyze the rela-
tions between a set of SNPs and multiple complex
traits in GWA study.

15) Exome sequencing analysis In Sect. 6.3 of this pa-
per, our efforts proceed to exome sequencing analy-
sis along two directions. One is getting a confusion
table by one of classifiers with a good generalization
ability, and testing a null hypothesis from this con-
fusion table by an appropriate statistic. The other
direction is making a dimension reduction by learn-
ing a BYY system with its Yang pathway as a clas-
sifier for getting a confusion table.

The last but not least, ten further topics are listed at
the end of Sect. 6 in Ref. [1] for future studies. In this
paper, challenge issues and topics for future studies are
given in Sects. 3.4 and 4.4, plus additional issues scatted
at the ends of subsections of Sects. 5 and 6 as well.
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