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Abstract - Determining the number of clusters is a crucial problem in clustering. Conven-
tionally, selection of the number of clusters was effected via cost function based criteria
such as Akaike’s information criterion (AIC), the consistent Akaike’s information criterion
(CAIC), the minimum description length (MDL) criterion which formally coincides with
the Bayesian inference criterion (BIC). In this paper we study Bayesian Ying-Yang (BYY)
harmony learning for model selection via comparing BYY harmony data smoothing criterion
(BYY-HDS) with several typical model selection criteria, including AIC, CAIC, and
MDL. We empirically investigate model selection on clustering using all these methods on
simulated data sets under different sample sizes and real data sets including the well-known
iris data set and a gene expression data set. The results of experiments illustrate that
BYY-HDS outperforms other methods, especially for small sample size. CAIC and MDL
tend to underestimate the number of clusters, while AIC tends to overestimate the number of
clusters especially in the case of small sample size.
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1. Introduction

Clustering, as a generic tool for finding groups or clusters in multivariate data, has found wide application in
biology, psychology, and economics. In many cases, the number of clusters is not known a priori, model selection
techniques are relied upon to determine the number of clusters based on mixture models [4, 13]. Conventionally,
model selection is implemented in two phases. In the first phase, we obtain a set of candidate models by some
learning principles (usually by maximum likelihood (ML) learning) for a range of models. In the second phase,
we select the appropriate model based on some model selection criterion. Popular examples of model selection
criteria include Akaike’s information criterion (AIC) [1], the consistent Akaike’s information criterion (CAIC) [3],
and the minimum description length (MDL) criterion [7, 2] which formally coincides with the Bayesian inference
criterion (BIC) [8].

Bayesian Ying Yang (BYY) harmony learning [10] was firstly proposed in 1995 and then systematically
developed in past years. Not only a number of existing major learning problems and learning methods are re-
visited as special cases from a unified perspective, but also a harmony learning theory is developed with a new
learning mechanism that makes model selection implemented eitherautomatically during parameter learning or
subsequently afterparameter learning via a new class of model selection criteria obtained from this mechanism.
Moreover, this BYY harmony learning has motivated three types of regularization, namely a data smoothing tech-
nique that provides a new solution on the hyper-parameter in a Tikinov-like regularization, a normalization with a
new conscience de-learning mechanism that has a nature similar to the rival penalized competitive learning, and
a structural regularization by imposing certain structural constraints via designing a specific forward structure in
a BYY system. Specifically, the harmony learning on various specific BYY systems with typical structures lead
to various specific learning algorithms as well as the detailed forms for implementing regularization and model
selection. Readers are referred to [13] for a recent systematical introduction.
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Theoretically, the results of implementing BYY harmony learning model selection criteria in two phases and
the corresponding automatic model selection techniques are equivalent. To facilitate comparison with conventional
model selection techniques that rely on two-phase style model selection, here we focus on one newly proposed
BYY harmony model selection criterion in this paper, named BYY harmony data smoothing learning (BYY-HDS)
criterion [12, 13]. It is based on the smoothing regularized ML estimators of parameters [12, 13, 14].

We investigate these methods empirically using three groups of simulated data sets with respect to sam-
ple size, type of covariance matrix, and data dimension. Moreover, we demonstrate results obtained from two
real world data sets. In implementation, we obtain the ML estimates of model parameters by the expectation-
maximization (EM) algorithm [5]. We obtain the smoothing regularized ML estimates of model parameters and
smoothing parameter by a smoothed EM algorithm [12, 14]. The study has shown that BYY-HDS method being
superior to its counterparts, especially when the sample size is small.

The remainder of this paper is organized as follows. In Section 2, we review the background for the model
based clustering, and three typical model selection criteria. In Section 3, we introduce BYY harmony data smooth-
ing learning (BYY-HDS) criterion. Experiments are given in Section 4. Finally we draw a conclusion in Section
5.

2. Conventional Approaches on Selection of the Number of Clusters

Gaussian mixture model based clustering assumes that the data are distributed according to a mixture of
Gaussian distributions, denoted by

p(x) =
k∑

l=1

αlG(x|ml, Σl) (1)

with αl ≥ 0, l = 1, ..., k, and
∑k

l=1 αl = 1, where and throughout this paper,G(x|m,Σ) denotes a Gaussian
density with mean vectorm and covariance matrixΣ. Let θk ={m1, ..., mk, Σ1, ..., Σk, α1, ..., αk} to be the
set of parameters of the mixture withk components. The task of Gaussian mixture model based clustering is
to estimate the parameters and the numberk based on a finite number of observationsx1, x2, ..., xn. Given the
number of componentsk, we can estimate the parametersθk according to some learning principle. For the ML
learning, we estimate the parameters by maximizing the log likelihood functionL(θk) denoted by

L(θk) = ln
n∏

i=1

p(xi) =
n∑

i=1

ln
k∑

l=1

αlG(xi|ml,Σl), (2)

which can be effectively implemented by the expectation-maximization (EM) algorithm [5].
The problem that remains is how to select the number of components. The two-phase style cluster number

selection can be described as follows. In the first phase, we define a range of values ofk from kmin to kmax which
is assumed to contain the optimalk. At each specifick, we estimate the parametersθk according to some learning
principle. In the second phase, with the resultsθ̂k, k = kmin, ..., kmax obtained in the first phase, we obtain the
estimate of the number of clustersk̂ from kmin to kmax according to

k̂ = argmin
k
{J(θ̂k, k), k = kmin, ..., kmax}, (3)

whereJ(θ̂k, k) is some model selection criterion.
Next we consider several frequently used model selection criteria: AIC, CAIC, and MDL. These criteria are

based on the maximum likelihood (ML) estimators of model parameters. Generally, these three model selection
criteria take the form [9]

J(θ̂k, k) = −2L(θ̂k) + A(n)D(k) (4)

whereL(θ̂k) is the log likelihood Eq. 2 based on the ML estimates of mixture parameters,D(k) is the number of
independent parameters ink-component mixture,A(n) is a function with respect to the number of observations.
According to [4], for arbitrary means and covariancesD(k) = (k−1)+k(d+d(d+1)/2) whered is the dimension
of x. If spherical covariances are considered we simply haveD(k) = (k − 1) + k(d + 1). Different approaches
lead to different choices ofA(n). A(n) = 2 for Akaike’s information criterion (AIC) [1],A(n) = lnn + 1
for Bozdogan’s consistent Akaike’s information criterion (CAIC) [3], andA(n) = ln n for Rissanen’s minimum
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description length (MDL) criterion [7] that formally coincides with Schwarz’s Bayesian inference criterion (BIC)
[8].

These criteria are derived from different theories. One possible interpretation is that the first term is a
measure of lack of fit when the maximum likelihood estimators of the mixture parameters are used, the second
term is a measure of model complexity that penalizes the first term due to the unreliability of the first term.

3. BYY Harmony Data Smoothing Learning Criterion

The BYY harmony learning is a general statistical learning framework, first proposed in 1995 [10], from
which various model selection criteria and automatic model selection methods have been derived [12, 13]. Specifi-
cally we consider the one called BYY harmony data smoothing learning model selection criterion (BYY-HDS) for
Gaussian mixture model based clustering as follows [13, 14]:

JBY Y−HDS(θ̂h
k , k) =

k∑

l=1

α̂l(0.5 ln |Σ̂l|+ 0.5ĥ2Tr[Σ̂−1
l ]− ln α̂l), (5)

whereθh
k = {θk, h}, with θ̂h

k obtained from the data smoothing regularized ML estimates via a smoothed EM
algorithm [12, 13], which alternatingly repeats the following steps:

Step 1 Calculate the posterior probabilitŷP (l|xi)

P̂ (l|xi) =
α̂lG(xi|m̂l, Σ̂l)∑k
l=1 α̂lG(xi|m̂l, Σ̂l)

(6)

for l = 1, ..., k andi = 1, ..., n.

Step 2 Update parameters by

α̂l =
1
n

n∑

i=1

P̂ (l|xi), (7)

m̂l =
1

nα̂l

n∑

i=1

P̂ (l|xi)xi, (8)

Σ̂l =
1

nα̂l

n∑

i=1

P̂ (l|xi)(xi − m̂l)(xi − m̂l)T + ĥ2I (9)

for l = 1, ..., k.

Step 3 Update the smoothing parameterh as follows

hnew = hold + η0g(hold), (10)

whereη0 is a step length constant and

g(hold) =
d

hold
− hold

k∑

l=1

α̂lTr[Σ̂−1
l ]−

∑n
i=1

∑n
j=1 γi,j‖xi − xj‖2

h3
old

(11)

with

γi,j =
e
−0.5

‖xi−xj‖2
h2

old

∑N
i=1

∑N
j=1 e

−0.5
‖xi−xj‖2

h2
old

. (12)

This algorithm not only prevents the covariance matrices from being singular which usually occurs in the EM
algorithm on a small size of samples but also provides a new way to update the smoothing parameter. If we let
h = 0 then this criteria is equivalent to the criterionJg

2 (k) Eq.24 in [11]. Actually, BYY-HDS is an extension of
the criterion proposed in [11] for dealing with the small sample size problems.
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Figure 1. 100 observations generated from 5 elliptic Gaussians (top) and corresponding curves of normalized
values of the criteria AIC, CAIC, MDL, and BYY-HDS (bottom)

4. Experimental Comparison

In this section, we investigate the experimental performances of the model selection criteria: AIC, CAIC,
BIC, and BYY-HDS on both synthetic data sets and real world data sets. We used the EM algorithm to estimate the
mixture parameters for AIC, CAIC, and MDL, and we used the smoothed EM algorithm to estimate parameters
for BYY-HDS. The initial parameter estimates for the EM algorithm and smoothed EM algorithm were obtained
by randomly allocating observations to sub-populations and computing the prior, sample means and covariance
matrices of these initial components. Implemented with the five random starts, the one which gave the largest
value of the log-likelihood was used as the solution. The smoothing parameterh for the smoothed EM algorithm
was initialized byh2 = 1

dn3

∑n
i=1

∑n
j=1 ‖xi − xj‖2.

4.1 Simulated Data Sets

We design three groups simulation experiments to illustrate the performance of each criterion on the data sets
with different sample sizes, different types of covariance matrices, and different data dimensions. The observations
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Table 1. Rates of underestimating (U), success (S), and overestimating (O) by each criteria on the simulation data
sets in 100 replications

Sample AIC CAIC MDL BYY-HDS
Example size U S O U S O U S O U S O

80 0 26 74 69 31 0 48 52 0 11 76 13
Spherical 200 0 48 52 16 79 5 12 85 3 6 84 10

400 0 43 57 12 87 1 8 90 2 5 88 7
100 0 21 79 87 13 0 82 18 0 16 61 23

Elliptic 250 0 34 66 69 31 0 57 43 0 14 59 27
500 0 23 77 41 59 0 37 62 1 12 69 19

High 100 0 27 73 39 48 13 25 51 24 23 55 22
Dimensional 500 0 45 55 32 57 11 27 60 13 17 71 12

1000 0 47 53 10 76 14 8 81 11 8 84 8

are randomly generated from the designed models. Each simulation is repeated 100 times, and model selection
procedure is implemented over the 100 replications. The rates of underestimating, success, and overestimating of
each methods on simulated data sets are shown in Tab. 1. Due to space limitation, only selected results are shown
in figures. To clearly show the curve of each criterion in one figure we normalize the values of each criterion to
zero mean and unit variance and then show the normalized values on figures.

4.1.1 Spherical Clustering

In the first example the data sets of size 80, 200, and 400 were randomly generated from a 4-component
bivariate Gaussian mixture distribution with equal mixture priors, and equal spherical covariance matrices0.01I.
We used a Gaussian mixture model with different spherical covariance matrices and specifiedkmin = 2 and
kmax = 6.

4.1.2 Elliptic Clustering

In the second example, we considered a more general case of Gaussian mixtures with arbitrary covariance
matrices. We randomly generated data sets of size 100, 250, and 500 from a 5-component bivariate Gaussian
mixture. We used a Gaussian mixture with arbitrary covariance matrices and setkmin = 3 and kmax = 7.
The normalized values of each criterion on one simulation with 100 observations and one simulation with 500
observations are shown in Fig. 1 and Fig. 2 respectively. From figures we observe that when the sample size is 100
only BYY-HDS selected the correct number 5, AIC selected the number 7, and CAIC and MDL chose the number
4. When the sample size is 500 all the criteria selected the correct number.

4.1.3 High Dimensional Clustering

In the third example the data sets of size 100, 500, and 1000 were randomly generated from a 4-component
10 dimensional Gaussian mixture distribution with equal mixture priors, and equal spherical covariance matrices
0.036I. We used a Gaussian mixture model with different spherical covariance matrices and setkmin = 2 and
kmax = 6.

4.2 Real World Data

In this subsection we investigate the performances of different methods on two real world data sets: iris data
set and yeast cell cycle data set. For both the two data sets, the optimum number of clusters is known and the
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Figure 2. 500 observations generated from 5 elliptic Gaussians (top) and corresponding curves of normalized
values of the criteria AIC, CAIC, MDL, and BYY-HDS (bottom)
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Figure 3. Iris data in first 3-dimensional view (top) and the curves of normalized values of the criteria AIC, CAIC,
MDL, and BYY-HDS on iris data set (bottom)

sample size is not large.

4.2.1 Iris Data Set

The well-known iris data set, which was used in [6], contains 150 random samples of flowers from the iris
species setosa, versicolor, and virginica (k = 3). From each species there are 50 observations for sepal length,
sepal width, petal length, and petal width in cm (d = 4). Fig. 3 (top) shows the data in first 3-dimensional view.
We expect clustering results to approximate this three clusters. We used a Gaussian mixture model with arbitrary
covariance matrices because visualization of data shows that the clusters are elliptic in shape. We setkmin = 1
andkmax = 5. As shown in Fig. 3 (bottom), AIC chose the number five, CAIC and MDL selected the number
two, and BYY-HDS chose the number three which is the correct number.

4.2.2 Gene Expression Data Set

We used the first subset of the yeast cell cycle data in [15]. The data set consists of the expression levels of
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Figure 4. Yeast cell cycle data in 3-dimensional view (top) and the curves of normalized values of the criteria AIC,
CAIC, MDL, and BYY-HDS on yeast cell cycle data (bottom)

384 genes (n = 384) over 17 time points (d = 17). The expression levels of these genes peak at different time
points corresponding to the five phases of cell cycle (k = 5). We used the normalized data that was shown to be
more suitable for clustering in [15]. A 3-dimensional view of data set is shown in Fig. 4 (top). We used a Gaussian
mixture model with different spherical covariance matrices because to estimate arbitrary covariance matrices of
17-dimensional data only from 384 observations is difficult and the shapes of clusters shown by visualization are
similar spherical. We specifiedkmin = 3 andkmax = 7. As shown in Fig. 4 (bottom), AIC, CAIC, and MDL
chose the number 7, and only BYY-HDS selected the correct number 5.

4.3 Discussions

Let us to summarize the main results of the above experiments. Firstly, we measure the performance of
the various model selection criteria by their overall success rates. BYY-HDS criterion has the best overall success
rate, followed by MDL, CAIC, and AIC. Second, we discuss the properties of these methods with respect to the
sample size. BYY-HDS obviously outperforms the other methods for a small sample size. It is reasonable because
BYY-HDS uses the data smoothing technique which is a regularization technique that aims to deal with the small
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sample size problems [14]. While the other methods usually degenerate from their performances in the large-scale
sample size. When the sample size increases, these methods get improved accordingly. Finally, we investigate the
property of underestimating and overestimating. AIC has high rate of overestimating. CAIC and MDL have a high
risk of underestimating the number of clusters especially in the cases of a small sample size. BYY-HDS has no
obvious tendency of overestimating or underestimating.

5. Conclusion

We have made an experimental comparison of several cluster number selection criteria based on Gaussian
mixture model. The considered criteria include three typical model selection criteria: AIC, CAIC, and MDL/BIC,
and BYY-HDS derived from BYY harmony learning. The experimental results show that BYY-HDS is superior to
its counterparts, especially when the sample size is small.

Acknowledgment: The work described in this paper was fully supported by a grant from the Research Grant
Council of the Hong Kong SAR (project No: CUHK 4225/04E).
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