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Abstract

Efforts toward a key challenge of statistical learning, namely making
learning on a finite size of samples with model selection ability, have been
discussed in two typical streams. Bayesian Ying Yang (BYY) harmony
learning provides a promising tool for solving this key challenge, with new
mechanisms for model selection and regularization. Moreover, not only
the BYY harmony learning is further justified from both an information
theoretic perspective and a generalized projection geometry, but also com-
parative discussions are made on its relations and differences from the
studies of minimum description length (MDL), the bit-back based MDL,
Bayesian approach, maximum likelihood, information geometry, Helmholtz
machines, and variational approximation. In addition, bibliographic re-
marks are made on the advances of BYY harmony learning studies.

23.1 Introduction: A Key Challenge and Existing
Solutions

A key challenge to all the learning tasks is that learning is made on a finite
size set X of samples from the world X, while our ambition is to get the
underlying distribution such that we can apply it to as many as possible new
samples coming from X.

Helped by certain pre-knowledge about X a learner,M is usually designed
via a parametric family p(x|θ), with its density function form covering or
being as close as possible to the function form of the true density p∗(x|·).
Then, we obtain an estimator θ̂(X ) with a specific value for θ such that
p(x|θ̂(X )) is as close as possible to the true density p∗(x|θo), with the true
value θo. This is usually obtained by determining a specific value of θ̂(X )
that minimizes a cost functional

F(p(x|θ),X ) or F(p(x|θ), qX (x)), (23.1)

where qX is an estimated density of x from X , e.g., given by the empirical
density:

p0(x) = 1
N

∑N
t=1δ(x− xt), δ(x) =

{
limδ→0

1
δd , x = 0,

0, x 6= 0,
(23.2)
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where d is the dimension of x and δ > 0 is a small number. With a given
smoothing parameter h > 0, qX can also be the following non-parametric
Parzen window density estimate [23.21]:

ph(x) = 1
N

∑N
t=1G(x|xt, h

2I), (23.3)

When p(x|θ) = p0(x), given by Eq. (23.2), a typical example of Eq. (23.1)
is

min
θ

−F(p(x|θ),X ) = −∫
p0(x) ln p(x|θ)µ(dx), (23.4)

where µ(.) is a given measure. It leads to the maximum likelihood (ML)
estimator θ̂(X ). For a fixed N , we usually have θ̂(X ) 6= θo and p(x|θ̂(X )) 6=
p∗(x|θo). Thus, though p(x|θ̂(X )) best matches the sample set X in the sense
of Eq. (23.1) or Eq. (23.4), p(x|θ̂(X )) may not well apply to new samples
from the same world X.

However, if there is an oracle who tells us the function form of p∗(x|·),
we can conveniently use it as the function form of p(x|·). In this case, it
follows from the large number law in probability theory that the ML estimator
θ̂(X ) → θo and p∗(x|θ) → p∗(x|θo) as N → ∞. Shortly, the estimator θ̂(X )
is said to be statistically consistent. Actually, this large number law can be
regarded as the mathematical formalization of a fundamental philosophy or
principle of modern science that a truth about the world exists independent
of our perception, and that we will tend to and finally approach the truth as
long as the evidences we collected about the truth become infinitely many.
However, assuming knowing the true density form of p∗(x|·) implies actually
a knowledge on a major structure of the world X and what to be precisely
discovered are remaining details. In many realistic problems we have no such
an oracle to tell us the knowledge on the true function form of p∗(x|·) and,
thus, in these cases the large number law may fail even as N →∞.

To avoid the problem, we consider a family F of density function forms
p(x|θj), j = 1, · · · , k, · · · with each sharing a same configuration but its struc-
tural scale increasing with k such that P1 ⊂ P2 ⊂ · · · Pk ⊂ · · ·, where
Pj = {p(x|θj)|∀θj ∈ Θj}. The task of learning is to decide both a best
j∗ and the corresponding best θ∗j∗ for best describing the true p∗(x|θo). For
a finite size set X of samples, F(p(x|θj),X ) by Eq. (23.1) will monotonically
decrease and finally reach 0 as j increases. With a much larger scale, a p(x|θj)
that reaches F(p(x|θj),X ) = 0 is usually far from p∗(x|θo). The smaller the
sample size, the worse the situation is. Still, as N →∞ the resulted p(x|θj)
will approach p∗(x|θo) if it is included in the family F .

Unfortunately, this ML-type principle is challenged by the fact that the
purpose of learning is to guide a learner M to interact with the world that
is usually not only stochastic but also in changing dynamically. Thus, we are
not able to collect enough samples either because not a plenty of resources
or because not an enough speed to catch the dynamic changing of world.
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Therefore, what M encounters is usually finite number N of samples and,
thus, the large number law does not apply.

In past decades, many efforts have been made toward this critical chal-
lenge, forming roughly two main streams.

23.2 Existing Solutions

23.2.1 Efforts in the First Stream

By insisting in that there is a true underlying density p∗(x|θo) that apply to
all the samples, we desire a best estimate by minimizing F(p(x|θ), p∗(x|θo)).
Unfortunately, this is not directly workable, since p∗(x|θo) is not known.
Alternatively, a classic idea is to quantitatively estimate the discrepancy be-
tween F(p(x|θ), p∗(x|θo)) and F(p(x|θ),X ) such that we have

F(p(x|θ), p∗(x|θo)) = F(p(x|θ),X ) + ∆(θ, θo,X ), (23.5)

where ∆(θ, θo,X ) is an estimate of F(p(x|θ), p∗(x|θo)) − F(p(x|θ),X ). This
is usually difficult to accurately estimate without knowing p∗(x|θo). In the
literature, ∆ is usually an estimate on certain bounds of this discrepancy,
which may be obtained from X and the structural features of p(x|θ), helped by
some structural knowledge about p∗(x|θo). Using the bounds, we implement
either one or both of the following two types of corrections on estimates from
Eq. (23.1):

(a) Model Selection We consider a number of candidate models Mj , j =
1, · · · , k, each having its own density function p(x|θj). We estimate each
bound ∆j for the discrepancy between F(p(x|θj ,Mj), p∗(x|θo)) and
F(p(x|θj ,Mj),X ). Over all candidate models, we select the j∗-th model by

j∗ = arg min
j

[F(p(x|θj ,Mj),X ) + ∆j ], (23.6)

which is referred as Model Selection. In the literature, model selection is usu-
ally made up of two stages. At the first stage, parameter learning takes place
on determining θ∗j by empirically minimizing F(p(x|θ),X ). At the second
stage, selection of the best j∗ takes place by Eq. (23.6). The estimated cor-
recting term ∆j relies on the complexity of the model Mj , while it does not
contain any unknown variables of θj .

(b) Regularization If we are able to estimate a tighter bound ∆(θ) that
varies with θ, we can directly get a corrected value θ∗ by

θ∗ = arg min
θ

[∆(θ) + F(p(x|θ),X )]. (23.7)

Such a type of effort is usually referred to as regularization, since it regularizes
certain singularities caused by a finite number N of samples. Given a model
with large enough scale, such a value θ∗ makes the model act effectively as
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one with a reduced scale. This effective model may neither be identical to
that resulted from the above model selection among a number of candidate
models Mj , j = 1, · · · , k, nor necessarily lead to p∗(x|θo). However, we have
no particular reason to insist on which one is a true density p∗(x|θo) for a
small size of samples that actually can be described by many models.

Several approaches have been developed in this stream. One typical ex-
ample is the VC dimension-based learning theory [23.74], which considers F
as the error or loss of performing a discrete nature task, such as classification
or decision, on a set X of samples, with ∆j estimated based on a complexity
measure of the structure of Mj . The second type of example is AIC [23.1], as
well as its extensions AICB, CAIC, etc. [23.2, 23.3, 23.67, 23.11, 23.12, 23.35,
23.36, 23.13], which usually consider a regression or modeling task, with ∆j

estimated as a bias of the likelihood
∫

p0(x) ln p(x|θ)µ(dx) to the information
measure

∫
p∗(x|θo) ln p(x|θ)µ(dx). Another typical example is the so-called

cross validation [23.64, 23.65, 23.66, 23.55]. Instead of estimating a bound of
∆j , it targets at estimating F(p(x|θj ,Mj), p∗(x|θo)) via splitting X into a
training subset Xt and a validation subset Xv. First, one gets an estimate θ̂j

by minimizing F(p(x|θj ,Mj),Xt) and then estimates F(p(x|θj ,Mj), p∗(x|θo))
via jointly considering F(p(x|θ̂j ,Mj),Xt) and F(p(x|θ̂j , Mj),Xv). Moreover,
studies on cross validation relate closely to Jackknife and bootstrap tech-
niques [23.24, 23.25].

Most of studies on these typical approaches are conducted on model se-
lection only, since a rough bound ∆ may already be able to give a correct
selection among a series of individual models that are discretely different from
each other, and, thus, have certain robustness on errors. In contrast, a rough
bound ∆(θ) usually makes minθ ∆(θ) + F(p(x|θ),X ) lead to a poor perfor-
mance. However, to get an appropriate bound, ∆(θ) requires more knowledge
on the true p∗(x|θo), which is usually difficult.

23.2.2 Efforts in the Second Stream

Instead of taking a true underlying density p∗(x|θo) as the target of consider-
ations, the well known Ockham’s principle of economy is used as the learning
principle. If there are a number of choices for getting a model to fit a set X
of samples, we use the one such that p(x|θ) not only matches X well but also
has minimum complexity. This principle can be intuitively well understood.
When X consists of a finite number N of samples, we can have infinite choices
on p(x|θ) that describe or accommodate X well, or better as the complexity
of p(x|θ) increases after satisfying a minimum requirement. That is, learning
is a typical ill-posed problem, with intrinsic indeterminacy on its solution.
The indeterminacy depends on how large the complexity of p(x|θ) is. The
larger it is, the lower is the chance of getting the true underlying density
p∗(x|θo), and, thus, the more likely that the learned choice generalizes poorly
beyond the N samples in X . Therefore, we choose the choice with the min-
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imum complexity among all those that are able to describe X sufficiently
well.

Based on this principle, approaches have been developed for both regu-
larization and model selection.

(a) One example consists of various efforts either under the name ‘regular-
ization’ or via certain equivalent techniques. One of most popular one is the
well known Tikhonov regularization theory [23.30, 23.68], which minimizes
F(p(x|θ),X ), with a so-called stabilizer that describes the irregularity or non-
smoothness of p(x|θ). In the literature of both statistics and neural networks,
there are many efforts that minimize F(p(x|θ),X ), with a penalty term in
various forms. These heuristics take a role similar to that of the Tikhonov
stabilizer [23.60, 23.22]. One critical weak point of these efforts is the lack
of a systematic or quantitative way to guide how to choose the added term
and to control the strength of the term in minimization. In the literature of
statistics, the role of the added term is alternatively interpreted as controlling
a tradeoff between bias and variance for an estimator [23.27, 23.73].

(b) The second type of efforts for implementing the Ockham’s principle
consists of those studies based on Bayesian approach. There are three major
versions [23.42]. One is called maximum a posteriori probability (MAP), since
it maximizes the posteriori probability

p(Mj , θj |X ) = p(X|θj ,Mj)p(θj |Mj)p(Mj)/p(X ). (23.8)

Specifically, its maximization with respect to θj is equivalent to maximizing
ln[p(X|θj , Mj) p(θj |Mj)] = ln p(X|θj ,Mj) + ln p(θj |Mj), with the first term
being a specific example of F(p(x|θj),X ), and ln p(θj |Mj) acting as a regular-
ization term. That is, it provides a perspective that determines the Tikhonov
stabilizer via a priori density p(θj |Mj). Moreover, model selection can be
made by selecting j∗ with the corresponding p(X|θ̂j ,Mj)p(θ̂j |Mj)p(Mj) be-
ing the largest, where each a priori p(Mj) is usually set uniformly and,
thus, ignored, and θ̂j is given by either the above MAP regularization or
an ML estimator, which is equivalent to using non-informative uniform prior
as p(θj |Mj). However, an improperly selected p(θj |Mj) usually leads to a
poor performance.

Instead of basing on a special value θ̂j of θj , the other version of the
Bayesian approach makes model selection by selecting j∗ as the largest of

p(Mj |X ) = p(X|Mj)p(Mj)/p(X ),
p(X|Mj) =

∫
p(X|θj ,Mj)p(θj |Mj)dµ(θj), (23.9)

or, simply, the largest p(X|Mj), with p(Mj) being regarded as uniform and,
thus, ignored. The term p(X|Mj) is called the evidence (EV) or marginal
likelihood, and, thus, it is also referred to as the EV approach. Typical studies
include not only the so-called BIC and variants [23.59, 23.38, 23.48] that were
proposed as a competitor of AIC and variants in the literature of statistics
since the late 1970’s, but also those renewed interests in the literature of
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neural networks in the last decade, exemplified by the study of [23.45, 23.46,
23.19].

Another version of the Bayesian approach is to use the Bayesian factor
(BF)

BFij = p(X|Mi)/p(X|Mj) , (23.10)

i.e., the ratio of evidences, for model comparison via hypothesis testing [23.26,
23.50, 23.40].

A common key problem in all three versions of Bayesian studies is how to
get a priori density p(θ|Mj). Its choice reflects how much a priori knowledge
is used. One widely used example is the Jeffery priori or a non-informative
uniform priori [23.37, 23.9, 23.45, 23.46, 23.48, 23.42]. Moreover, the EV
approach and the BF approach have the problem of how to compute the evi-
dence accurately and efficiently, since it involves an integral. Stochastic simu-
lation techniques such as the importance sampling approach and MCMC are
usually used for implementations [23.48, 23.49, 23.14]. Certain comparisons
are referred to [23.48, 23.23]. Recently, the Variational Bayes (VB) method
has also been proposed in the literature of neural networks as an alternative
way for efficient implementation [23.72, 23.28, 23.56].

The third type of efforts is made toward the implementation of Ockham’s
principle directly. One typical example is called the minimum message length
(MML) theory [23.69, 23.70, 23.71], which was first proposed in the late
1960s’ as an information measure for classification. The message length is
defined via a two part message coding method. First, one needs a length
for coding a hypothesis H (or equivalently called a model), described by
log2 P (H). Second, one needs a length for coding the residuals of using H to
fit or interpret the observed set X , described by log2 P (X|H). The two part
message length

ML = − log2 P (H)− log2 P (X|H) (23.11)

is minimized, which is conceptually equivalent to the posterior probability
P (H)P (X|H), where H denotes either a specific parameter θ with a known
probability function or a model M . The MML theory closely relates to the
MAP approach Eq. (23.8) but actually has a difference. The MML theory
considers the coding length of probability instead of considering density in
the MAP approach [23.71].

The other typical example is the Minimum Description Length (MDL)
theory [23.32, 23.52, 23.53, 23.54]. The basic idea is to represent a family of
densities with an unknown parameter set θ, but a given density via a univer-
sal model that is able to imitate any particular density in the family. Such
a universal model is described by a single probability distribution. Via the
fundamental Kraft inequality, one constructs a code, e.g., a prefix code, for
such a probability distribution, and, conversely, such a code defines a prob-
ability distribution. In this way, we can compare and select among different
families by the code length of each family, which explains the name MDL.
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A specific implementation of the MDL theory depends on how the code
length is described. In the early stage, this length is actually specified via a
two part coding method similar to the MML, and, thus, the corresponding
implementation of the MDL is basically the same as the MML. Later, the
mixture p(X|Mj) in Eq. (23.9) is used as the universal model for the family
of Mj , and, thus, ln p(X|Mj) is used as the code length. In this case, the
corresponding implementation of the MDL is basically equivalent to the EV
or BIC approach, as in Eq. (23.9). However, by selecting a non-informative
uniform prior p(θ|Mj), and approximating the integral in getting the mixture
p(X|Mj) via simplification, an MML code length and the average of all the
MML code lengths for all distributions in a family become no different. Thus,
this MDL implementation usually becomes identical to the MML. In the lat-
est implementation of the MDL, a so-called normalized maximum likelihood
(NML) model is used as the universal model, which leads to an improved
code length and becomes different from both the MML and the EV/BIC ap-
proach [23.54]. Such a NML is also used to get a new estimate on the BF
factor for model comparison.

Both the MML and the MDL can be regarded as specific implementations
of more general algorithmic complexity, addressed by the celebrated Kol-
mogorov complexity. The connections discussed above between MML/MDL
and MAP/EV actually reveal the deep relations between the fields of statis-
tics, information theory, and computational complexity theory. Moreover, re-
lations between the first two main types of efforts have also been explored in
the past two decades, particularly on typical examples of the first type, such
as AIC and cross validation, versus typical examples of the second type, such
as MAP, EV/BIC, BF, etc. [23.62, 23.63, 23.64, 23.65, 23.66, 23.7, 23.15]. Fur-
thermore, various applications of all the studies discussed above can be found
in the literature, including linear regression, time series modeling, Markov
chain [23.41], as well as complicated neural network modeling problems.

23.3 Bayesian Ying Yang Harmony Learning

The Bayesian Ying Yang (BYY) harmony learning was proposed in [23.109],
and systematically developed in past years [23.84, 23.85, 23.82, 23.83, 23.80,
23.81, 23.76, 23.77]. This BYY harmony learning acts as a general statistical
learning framework not only for understanding various dependence struc-
tures, such as generative structures, transform or mapping structures, finite
mixture structures, temporal structures, and topological map structures, but
also for tackling the key challenge, previously discussed, with a new learning
mechanism that makes model selection either automatically implemented dur-
ing parameter learning or subsequently implemented after parameter learning
via a new class of model selection criteria obtained from this mechanism.
Jointly with this BYY harmony learning, new types of regularization have
also been proposed, namely a data smoothing technique that provides a new
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solution on the hyper-parameter in a Tikinov-like regularization [23.68], a
normalization with a new conscience de-learning mechanism that has a nature
similar to that of the rival penalized competitive learning (RPCL) [23.114],
and a structural regularization imposing certain constraints by designing a
specific forward structure in a BYY system, as well as a f -regularization by
replacing ln(r) with a convex function f(r). The details of the f -regularization
has been introduced in the previous chapter in this book. The other three
regularization approaches will be introduced in the following sections.

23.3.1 Bayesian Ying Yang Harmony Learning

As shown in Fig. 23.1, a BYY system considers coordinately learning two
complement representations of the joint distribution p(x, y):

p(u) = p(x, y) = p(y|x)p(x), q(u) = q(x, y) = q(x|y)q(y), (23.12)

basing on p(x) that is estimated from a set of samples {xt}N
t=1, while p(y|x),

q(x|y) and q(y) are unknowns but subject to certain pre-specified structural
constraints. In a compliment to the famous Chinese ancient Ying-Yang phi-
losophy, the decomposition of p(x, y) coincides the Yang concept with the
visible domain by p(x) regarded as a Yang space and the forward pathway
by p(y|x) as a Yang pathway. Thus, p(x, y) is called Yang machine. Similarly,
q(x, y) is called Ying machine with the invisible domain by q(y) regarded as
a Ying space and the backward pathway by q(x|y) as a Ying path.

On one hand, we can interpret that each x is generated from an invisible
inner representation y via a backward path distribution q(x|y) or called a
generative model

q(x) =
∫

q(x|y)q(y)µ(dy) (23.13)

that maps from an inner distribution q(y). In this case, p(y|x) is not explicitly
specified or said being free to be specified, while two pre-specified parametric
models q(x|y) and q(y) form a backward path to fix the observations of x.
We say that the Ying-Yang system in this case has a backward architecture
(shortly B-architecture).

On the other hand, we can interpret that each x is represented as being
mapped into an invisible inner representation y via a forward path distribu-
tion p(y|x) or called a representative model

p(y) =
∫

p(y|x)p(x)µ(dx) (23.14)

that matches the inner density q(y). In this case, q(x|y) is not explicitly
specified or said being free to be specified. Forming a forward path, p(x) is
estimated from a given set of samples and then is mapped via pre-specified
parametric model p(y|x) into p(y) by Eq. (23.14) to match a pre-specified
parametric model q(y). We say that the Ying-Yang system in this case has a
forward architecture (shortly F-architecture).
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p(x,y)=p(y|x)p(x)

q(x,y)=q(x|y)q(y)

 

)y(q

)y|x(q)x|y(p

)x(p

Fig. 23.1. Bayesian Ying Yang System

Moreover, the above two architectures can be combined with p(y|x), q(x|y)
and q(y) are all pre-specified parametric models. In this case, we say that the
Ying-Yang system in this case has a Bi-directional architecture (shortly BI-
architecture).

As discussed in [23.80] and in the previous chapter of this book, types of
representation space of y specify types of learning functions that the BYY
system can implement, while the above three architectures characterize the
performances and computing costs of implementation.

The name of BYY system not just came for the above direct analogy
between Eq. (23.12) and the Ying-Yang concept, but also is closely related
to that the principle of making learning on Eq. (23.12) is motivated from
the well known harmony principle of the Ying-Yang philosophy, which is dif-
ferent from making p(x) by Eq. (23.13) fit a set of samples {xt}N

t=1 under
the ML principle [23.57] or its approximation [23.58, 23.31, 23.17, 23.18] as
well as simply the least mean square error criterion [23.115], and also differ-
ent from making q(y) by Eq. (23.15) satisfy certain pre-specified properties
such as maximum entropy [23.8] or matching the following independent den-
sity [23.6]:

q(y) =
∏m

j=1q(y
(j)). (23.15)

Under this harmony principle, the Ying-Yang pair by Eq. (23.12) is learned
coordinately such that the pair is matched in a compact way as the Ying-Yang
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sign shown in Fig. 23.1. In other words, the learning is made in a twofold
sense that

– The difference between the two Bayesian representations in Eq. (23.12)
should be minimized.

– The resulted entire BYY system should be of the least complexity.

Mathematically, this principle can be implemented by [23.109, 23.82,
23.80]

max
θ,m

H(θ, m), (23.16)

H(θ, m) = H(p‖q) =
∫

p(y|x)p(x) ln [q(x|y)q(y)]µ(dx)µ(dy)− ln zq,

where θ consists of all the unknown parameters in p(y|x), q(x|y), and q(y)
as well as p(x) (if any), while m is the scale parameter of the inner rep-
resentation y. The task of determining θ is called parameter learning, and
the task of selecting m is called model selection since a collection of spe-
cific BYY systems by Eq. (23.12) with different values of m corresponds to
a family of specific models that share a same system configuration but in
different scales. Furthermore, the term Zq imposes regularization on learn-
ing [23.77, 23.80, 23.83], via two types of implementation. One is called data
smoothing that provides a new solution to the hyper-parameter for a Tikinov-
like regularization [23.68], and the other is called normalization that causes a
new conscience de-learning mechanism similar to that of the rival penalized
competitive learning (RPCL) [23.114, 23.83, 23.80].

As described in the previous chapter, considering the harmony measure

H(p‖q) =
∫

p(u) ln q(u)µ(du)− ln zq. (23.17)

Least complexity nature means that maxp H(p‖q) with q fixed pushes p toward
its simplest form

p(u) = δ(u− uτ ). (23.18)

Now, only p(x) is fixed at a non-parametric estimate but p(y|x) is ei-
ther free in a B-architecture or a parametric form in a BI-architecture and,
thus, will be pushed into its least complexity form due to the least complex-
ity nature by Eq. (23.18). For example, in a B-architecture p(y|x) will be
determined by maxp(y|x) H(p‖q), resulting in the following least complexity
form:

p(y|x) = δ(y − y(x)), y(x) = arg max
y

[q(x|y)q(y)]. (23.19)

On the other hand, the matching nature of harmony learning will further
push q(x|y) and q(y) toward their corresponding least complexity forms. In
other words, the least complexity nature and the matching nature collaborate
to make model selection possible such that m is appropriately determined.

As described in [23.80], Eq. (23.16) introduces a new mechanism that
makes model selection implemented
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– either automatically during the following parameter learning with m ini-
tialized large enough:

max
θ

H(θ), H(θ) = H(θ, m), (23.20)

which makes θ take a specific value such that m is effectively reduced to
an appropriate one.

– or via the following type of model selection criteria obtained from this
mechanism:

min
m

J(m), J(m) = −H(θ∗, m), (23.21)

which is implemented via parameter learning for θ∗ at each value of m
that is enumerated from a small value incrementally.

( )
1   reduce  to

 equivalent is 0 be  to 
 of  varianceset the E.g., 

)(

-mto m
yq i

{ } constraintunder     ,, 221 θθθθ =

( )mH ,θ−

vs

*m m

{ } *
2221   ,, θθθθθ ==

(a) (b)

( )mH ,θ−

*m mum

∞−

Fig. 23.2. (a) Model selection made after parameter learning on every m in a
given interval [md, mu], (b) Automatic model selection with parameter learning on
a value m of large enough.

The above feature is not shared by the existing approaches in literature.
By the conventional approaches, parameter learning and model selection are
made in a two-phase style. First, parameter learning is made usually under the
maximum likelihood principle. Then, model selection is made by a different
criterion, e.g., AIC, MDL, etc. These model selection criteria are usually not
good for parameter learning, while the maximum likelihood criterion is not
good for model selection, especially on a small size of training samples.

Specifically, the above parameter learning for getting θ∗ can be imple-
mented in help of either Eq. (23.20) or the following Kullback divergence
based parameter learning:

min
θ

KL(θ) =
∫

p(y|x)p(x) ln
p(y|x)p(x)
q(x|y)q(y)

µ(dx)µ(dy). (23.22)

Moreover, the implementation of both Eq. (23.20) and Eq. (23.22) can be
made by alternatively performing the following two steps:

Ying step: fixing p(x, y),update unknowns in q(x, y),
Yang step: fixing q(x, y),update unknowns in p(x, y), (23.23)
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which is called the Ying-Yang alternative procedure. It is guaranteed that
either of −H(θ) and KL(θ) gradually decreases until becomes converged.
The details are referred to [23.80, 23.75].

As above discussed, parameter learning by Eq. (23.20) usually leads to
an automatic model selection and, thus, there is no need to implement the
selection by Eq. (23.21). However, for certain learning tasks, the inner rep-
resentation is pre-specified to be uniform across both different objects and
different dimensions [23.80]. In these cases, automatic model selection will
not happen during learning by Eq. (23.20) in the first phase, we need to
implement Eq. (23.21) in the second phase.

Particularly, on a B-architecture, the minimization of the above KL(θ)
with respect to a free p(y|x) will result in

p(y|x) =
q(x|y)q(y)

q(x)
, q(x) =

∫
q(x|y)q(y)µ(dy),

KL(θ) =
∫

p(x) ln
p(x)
q(x)

µ(dx), (23.24)

which becomes equivalent to ML learning on q(x) when p(x) = p0(x) is given
by Eq. (23.3) [23.109]. In this case, we actually implement the ML learning in
the first phase and then model selection by Eq. (23.21) in the second phase.

Without the least complexity nature by Eq. (23.18), the implementation
of Eq. (23.22) will not lead to a case of Fig. 23.2(b), and, thus, there is no
need to impose the assumption that q(y) comes from a family with equal
variances among components.

23.3.2 Structural Inner Representations

The inner representation by Eq. (23.15) is a typical example but not an only
example. Actually it is a degenerated case of the multiple modular inner
representation discussed by Eq. (1.16) in the previous chapter. That is,

q(y) = q(y, `) = q(y|`)q(`), q(`) =
k∑

j=1

αj δ̄(`− j), α` ≥ 0,
k∑

`=1

α` = 1,

q(y|`) =
∏m`

j=1q(y
(j)|`), y = [y(1), · · · , y(m`)]T ,

where δ̄(u) =
{

1, ifu=0,
0, otherwise; (23.25)

from which we return to Eq. (23.15) when k = 1.
When k ≥ 2, the above Eq. (23.25) also include the following two useful

special cases:

– q(y) =
∫

q(y|`)q(`)dy = q(`) In this case, we have that q(x) by
Eq. (23.13) becomes the following finite mixture
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q(x) =
k∑

`=1

q(`)q(x|`). (23.26)

which is a weighted sum of k different component densities of q(x|`).
Moreover, maxθ,m H(θ, m) by Eq. (23.16) includes directly maximizing
ln q(y) = ln q(`) that not only contains the information of making k se-
lected in a way similar to Eq. (23.21) but also can drive an extra α` to-
ward zero such that an appropriate k can be automatically decided during
learning.

– q(y) =
∑k

`=1 q(y|`)q(`) In this case, we still have that q(x) by Eq. (23.13)
takes the format of Eq. (23.26) but now with

q(x|`) =
∫

q(x|y)q(y|`)dy. (23.27)

In other words, the k different component densities share a common part
q(x|y) but with differences in q(y|`). Now ln q(y) still contains the infor-
mation that can select k in a way similar to Eq. (23.21), e.g., we have
ln q(y) = − ln k + ln

∑k
`=1 q(y|`) when q(`) = 1/k. However, maximizing

ln q(y) will not necessarily drive an extra individual α` toward zero. Thus,
k will not be automatically decided during learning.

Generally, Eq. (23.25) covers a representation space with k modules and
each module locally consists of m` independent components. As discussed
in [23.80] and also the previous chapter in this book, maxθ,m H(θ, m) by
Eq. (23.16) not only let {k, m`} to be selected in a way similar to Eq. (23.21)
but also can drive both an extra α` and the variance of an extra component
in q(y|`) toward zero such that appropriate {k, m`} can be automatically
decided during learning.

Specifically, when y is real and non-Gaussian, each component density
can be modeled by a Gaussian mixture [23.103, 23.105, 23.82]

q(y(j)|`) =
κj,`∑

i=1

βji`G(y(j)|µji`, λji`),
κj,`∑

i=1

βji` = 1, 0 ≤ βji` ≤ 1. (23.28)

In this case, the information about κj,` is contained in βji` and Eq. (23.21)
can be used for selecting κj,`. For example, when q(`) = 1/k, and βji` =
1/κj,` = κ`, we have ln q(y) = ln q(y, `) with

ln q(y, `) = − ln k −
m∑̀

j=1

lnκ` +
m∑̀

j=1

ln [
κ∑

i=1

G(y(j)|µji`, λji`)], (23.29)

which does include − ln k − ∑m`

j=1 lnκ` that is in favor of smaller size of
k, m`, κ`. However, maximizing ln q(y) is made via maximizing
ln [

∑κj,`

i=1 βji`G(y(j)|µji`, λji`)] that will not necessarily drive an individual
βji` toward zero and, thus, κj,` will not be automatically decided during
learning.
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Automatic selection on κj,` can be made by introducing random variables
zj = 1, · · · , κj,`, j = 1, · · · ,m` and re-organizing the structure of the inner
representation space as follows

q(y) = q(`)
m∏̀

j=1

q(y(j)|`, zj = i)q(zj = i|`),

q(y(j)|`, zj = i) = G(y(j)|µji`, λji`), q(zj = i|`) = βji`. (23.30)

In this case, maximizing ln q(y) consists of directly maximizing ln q(zj = i|`)
= lnβji` such that each κj,` can be selected either via Eq. (23.21) or auto-
matically driving an extra βji` toward zero during learning.

It should be noted that different representation spaces also lead to dif-
ferences on implementing Eq. (23.19). To get a further insight, we here fo-
cus on a special case that k = 1 and q(x|y) = G(x|Ay, Σ), i.e., a linear
factor model x = Ay + e from real independent factors by Eq. (23.25) of
nonGaussians. This is a typical model for the so-called noisy ICA [23.78].
It follows from Eq. (23.28) that q(y(j)) =

∑κj

i=1 βjiG(y(j)|µji, λji) and
the problem of Eq. (23.19) is a continuous nonlinear optimization prob-
lem that has to be tackled by an iterative algorithm [23.82, 23.78]. While
it follows from Eq. (23.30) and Eq. (23.19) that arg maxy[q(x|y)q(y)] =
arg maxy[lnG(x|Ay, Σ) + ln q(y)] and ln q(y) =

∑m
j=1[lnG(y(j)|µjzj

, λjzj
) +

lnβjzj
]. Thus, Eq. (23.19) becomes

max
z
{

m∑

j=1

lnβjzj
+ max

y
Lz(x, y)}

max
y

Lz(x, y) = [lnG(x|Ay, Σ) +
m∑

j=1

lnG(y(j)|µjzj , λjzj )], (23.31)

where z = [z1, · · · , zm]T .
With x and z1, · · · , zm fixed, maxy Lz(x, y) is a quadratic optimization

that can be analytically solved as follow:

yz(x) = [Λ−1
z + AT Σ−1A]−1[AT Σ−1x + Λ−1

z µz],
µz = [µ1z1 , · · · , µmzm

]T , Λz = diag[λ1z1 , · · · , λmzm
]. (23.32)

Then, we can implement the following discrete optimization:

z∗ = max
z

[Lz(x, yz(x)) +
m∑

j=1

lnβjzj
]. (23.33)

As a result, the solution of Eq. (23.19) is simply yz∗(x), z∗.
Being different from an iterative algorithm [23.82, 23.78], the solution

by Eq. (23.33) can be computed analytically. A direct implementation of
Eq. (23.33) needs a number

∏m
j=1 κj of comparisons. However, this cost can be

further reduced by exploring the function structure of Lz(x, y)+
∑m

j=1 lnβjzj
.
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23.4 Regularization Versus Model Selection

23.4.1 ML, HL, and Z-Regularization

As discussed in Sect. 23.1, regularization and model selection are two different
strategies for tackling the problem of a finite size of samples. Model selection
prefers a model that has least complexity for which a compact inner repre-
sentation is aimed at such that extra representation space can be released.
In contrast, regularization is imposed on a model that has a fixed scale of
representation space with its complexity larger than needed such that inner
representation can spread as uniformly as possible over all the representation
space with a distribution that is as simple as possible, which, thus, becomes
equivalent to a model with a reduced complexity.

The harmony learning by Eq. (23.20) attempts to compress the represen-
tation space via the least complexity that is demonstrated with a winner-
take-all (WTA) competition by Eq. (23.19). This type of parameter learning
aims at a compact inner representation with an automatic model selection
by discarding extra representation space during parameter learning. How-
ever, there is no free lunch. The WTA operation by Eq. (23.19) locally per
sample will make the learning become sensitive to the initialization of param-
eters and the way that samples are presented, resulting in that samples are
over-aggregated in a small representation space. It usually leads to a local
maximum solution for Eq. (23.20). Pre-specifying a uniform inner representa-
tion can regularizes the WTA operation. However, the feature of automatic
model selection is also lost since the representation space scale is already
fixed. Thus, model selection should be made by Eq. (23.21) in the second
phase.

With a soft competition by Eq. (23.24) in place of the WTA competition
by Eq. (23.19), the ML learning, or equivalently the Kullback divergence
based learning (shortly KL learning) by Eq. (23.22) with a B-architecture
and an empirical input density by Eq. (23.3), provides a more spread inner
representation that improves the local maximum problem. Again, there is no
free lunch since its model selection ability is weak, especially on a small size
of samples. Thus, making model selection by Eq. (23.21) is needed in the
second phase too.

Instead of the above two phase style, regularization to the WTA by
Eq. (23.19) may also be imposed to the harmony learning (Shortly HL) by
Eq. (23.20) such that automatic model selection still occurs via either some
external help or certain internal mechanism.

Externally, we can combine the KL learning by Eq. (23.22) with the har-
mony learning by Eq. (23.20), in the following three ways:

– The simplest way is to make the KL learning by Eq. (23.22) with the re-
sulted parameters as the initialization of the harmony learning by Eq. (23.20).

– The other way suggested in [23.83] is to let H(θ) in Eq. (23.20) replaced
with (1− λ)H(θ)− λKL(θ) in help of an appropriate λ.
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– Moreover, with λ > 0 gradually reducing toward zero from a given value
such that the regularization role by Eq. (23.22) takes effect at the beginning
and then gradually decades as learning goes. That is, we combine KL and
HL in a simulated annealing way such that KL is implemented in an early
period of learning and is gradually switched to HL as learning goes [23.83,
23.77]. The disadvantage is that the computing cost is very high since
parameter learning has to be repeatedly conducted.

Internally, regularization to the WTA by Eq. (23.19) is imposed during
the HL learning by Eq. (23.20) via either a BI-architecture or the role of zq.

Instead of letting p(y|x) free to be decided by Eq. (23.19), we consider a
BI-architecture with p(y|x) designed in a structure such that it is not able to
become the WTA by Eq. (23.19). Generally, for p(y|x) in the form of

p(u|v) =
n∑

j=1

βj(v)pj(u|v),
n∑

j=1

βj(v) = 1, βj(v) ≥ 0,

pj(u|v) = G(u|fj(v|θu|v,j), Σu|v,j), (23.34)

the harmony learning by Eq. (23.20) will push it toward the following form
of least complexity [23.84, 23.82, 23.80]

p(u|v) =
n∑

j=1

βj(v)δ(u− fj(v, θu|v,j)),
n∑

j=1

βj(v) = 1, βj(v) = 0, or 1,

unless extra constraints are imposed to prevent Σu|v,j → ε2I and ε2 tends to
zero. Moreover, Eq. (23.19) is simplified into

p(y|x) = δ(y − y(x)), y(x) = fj∗(x)(x|θy|x,j∗(x)),
j∗(x) = arg max

j
[q(x|y)q(y)]y=fj(x|θy|x,j), (23.35)

where the maximum is searched by simply enumerating n possibilities. Thus,
regularization can also be observed from the perspective that the number of
local maxima considerably reduces in comparison with Eq. (23.19). However,
there is no free lunch too. The problem is transferred to the difficulty of
per-specifying the function form of each y = fj(x|θy|x,j). If each function is
too simple, the representation ability of p(y|x) is limited and is far from the
optimal one. If it is too complicated with too much free parameters, it creates
certain problems that need regularization to be imposed too.

Regularization to the WTA by Eq. (23.19) may also be imposed via the
so-called z-regularization. This type of regularization can be implemented
either by data smoothing or by normalization.

For data smoothing regularization, one simple way is only considering
smoothing on x via p(x) = phx

(x) by Eq. (23.3) with zq =
∑N

t=1phx
(xt). As

discussed in [23.82, 23.83, 23.80], the regularization is made via h2
x > 0 while

h is determined in help of − ln zq. Moreover, a smoothing can be imposed
on y via modifying p(y|x) = δ(y − y(x)) in Eq. (23.19). For example, in



23. Bayesian Ying Yang Learning (II) 677

the case of only one object (i.e., k = 1), we let p(y|x) = G(y|yt, h
2
yI) and

zq = (2πhy)−0.5m
∑N

t=1ph(xt).
For normalization regularization, we have also different implementations.
When y takes either a discrete value 1, · · · , k or is a binary vector y =

[y(1), · · · , y(m)], and also when q(x|y) and q(y) are both Gaussian, we can
consider the constraint

∑N
t=1

∫ q(xt|y)q(y)
zq

µ(dy) = 1 because the integral over
y is either a summation or analytically solvable. Thus, we have

zq =
∑N

t=1q(xt), q(xt) =
∫

q(xt|y)q(y)µ(dy). (23.36)

In other cases, this integral over y is difficult to compute. Even when it
becomes a computable summation for a binary vector y = [y(1), · · · , y(m)],
the computing cost will increase exponentially with m.

One solution is to let the integral over the entire domain of y to be ap-
proximated by a summation on a set Yt that consists of a few number of
samples yτ as follows:

q(xt) = γt

∑
yτ∈Yt

q(x|yτ )q(yτ ), γt = 1/
∑

yτ∈Yt
q(yτ ), (23.37)

where γt makes q(yτ )/
∑

yτ∈Yt
q(yτ ) represent discrete probabilities that weight

q(x|yτ ) such that q(xt) is closer to a marginal density.
One other solution is consider

∑N
t=1

∑
yτ∈Yt

q(xt|yτ )q(yτ )
zq

µ(dy) = 1, which
results in

zq =
∑N

t=1

∑
yτ∈Yt

q(xt|yτ )q(yτ ). (23.38)

The set Yt can be obtained according to p(y|x). One way is randomly
picking a set of samples of y according to p(y|x). The other way is getting
only one yt = y(xt) for each xt via either the peak point (e.g., by Eq. (23.19))
or the mean point (e.g., y(x) by Eq. (23.35)) of p(y|x).

In the cases that there is only one sample yt in Yt, it follows from
Eq. (23.36) and Eq. (23.38) that

zq =
{∑N

t=1q(xt|yt)q(yt), (a) by Eq. (23.38),∑N
t=1q(xt|yt), (b) by Eq. (23.36).

(23.39)

Further with p(x) = phx(x) given by Eq. (23.3), H(p‖q) by Eq. (23.17)
either on a B-architecture with Eq. (23.19) or on a BI-architecture with
Eq. (23.35) can be unified into the following representation

H(p‖q) = (23.40)
1
N

∑N
t=1

∫
δ(y − y(xt)) ln [q(xt|y)q(y)]µ(dy)− ln zq + 0.5hx

2πq,

πq =
1
N

∑N
t=1Tr[∂2 ln q(x|yt)

∂x∂xT ]x=xt
,

and we have the following gradient

∇θH(p‖q) = 0.5hx
2∇θπq
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+ 1
N

∑N
t=1

∫
[δ(y − y(xt))− ηt(y)]∇θ ln [q(xt|y)q(y)]µ(dy),

ηt(y) =





0, zq = 1,
δ̄(hx)

∑
yτ∈Yt

q(xt|yτ )q(yτ )
zq

δ(y − yτ ), zq by Eq. (23.36),

δ̄(hx)
∑

yτ∈Yt
γt

q(xt|yτ )q(yτ )
zq

δ(y − yτ ), zq by Eq. (23.37),

δ̄(hx) =
{

1, hx = 0,
0, hx > 0. (23.41)

For hx > 0, we have δ̄(hx) = 0 and ηt(y) = δ(y − y(xt)) for all the cases.
In this case, the data smoothing regularization is imposed via 0.5h2

x∇θπq

and an appropriate regularization strength h2
x is determined via maximizing

− ln zq + 0.5hx
2∇θπq with zq =

∑N
t=1phx(xt). The details are referred to

[23.84, 23.85, 23.82, 23.83, 23.80, 23.81, 23.76, 23.77].
For hx = 0, we have 0.5hx

2∇θπq = 0 and δ̄(hx) = 1. In this case, the
normalization regularization is imposed via − ln zq, which can be observed
via the difference of ηt(y) in Eq. (23.41). It introduces a degree of conscience
de-learning on each updating direction∇θ ln [q(xt|y)q(y)] to avoid over-fitting
on each sample pair xt, yτ . With and without − ln zq in action, ∇θH(p‖q)
takes the same format, and also adaptive updating can be made in the form
of ηt(y)∇θ ln [q(xt|y)q(y)] per sample xt.

23.4.2 KL-λ-HL Spectrum

The KL learning by Eq. (23.22) on a BYY system is not limited to just the
ML learning. Even on a B-architecture with p(y|x) determined by Eq. (23.24),
letting p(x) = ph(x) by Eq. (23.3) will make the KL learning by Eq. (23.22)
perform a regularized ML learning.

Moreover, the KL learning by Eq. (23.22) on a BI-architecture was sug-
gested in [23.109] with p(y|x) in a given parametric family PS

y|x. If the poste-
riori estimation by Eq. (23.24) is contained in this family PS

y|x, the situation
will be equivalent to the KL learning by Eq. (23.22) with a B-architecture; if
not, the posteriori estimation by Eq. (23.24) will be approximated by the clos-
est one within the family PS

y|x. This architecture leads to an advantage that
the computing difficulty on the integral in p(y|x) by Eq. (23.24) is avoided
by an easy implementing parametric model. In its sprit, this is equivalent
to those approaches called variational approximation to the ML learning on
q(x) [23.58].

Beyond the approximation purpose, studies on the KL learning by Eq.
(23.22) on a BI-architecture were also made along two directions since 1996
[23.110]. One is to design a parametric model that makes the inner repre-
sentation more spreading than that of p(y|x) by Eq. (23.24) such that ML
learning is further regularized. The other is to design a parametric model
that makes the inner representation more concentrated such that it tends to
facilitate automatic model selection. One family of such designs is as follows:
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p(y|x) =
ψ(q(x|y), q(y))∫

ψ(q(x|y), q(y))µ(dy)
, (23.42)

which returns to p(y|x) by Eq. (23.24) for the ML learning when ψ(ξ, η) = ξη.
It makes the inner representation either more spreading for a regularized ML
learning, e.g., when ψ(ξ, η) = λ1 ln ξ + λ2 ln η, λ1 ≥ 0, λ2 ≥ 0, or more con-
centrated to facilitate model selection, e.g., when ψ(ξ, η) = eλ1ξ + eλ2η, λ1 ≥
0, λ2 ≥ 0 that will make p(y|x) tend to Eq. (23.19) as λ1 = λ2 → ∞. A
simply form can even be ψ(ξ, η) = (ξη)λ which varies from spreading cases
to concentrated cases as λ increases from 0 to ∞.

As discussed in the previous subsection, the HL learning with the WTA by
Eq. (23.19) on a B-architecture will also be regularized by a BI-architecture
with p(y|x) in a more spreading representation. Except those extreme cases
that become equivalent to the WTA by Eq. (23.19), e.g., when ψ(ξ, η) = (ξη)λ

with λ →∞, p(y|x) by Eq. (23.42) generally leads to a regularized harmony
learning. Even when ψ(ξ, η) = ξη, we will not be lead to the ML learning but
to a regularized HL learning in a B-architecture with a free p(y|x) replaced
by a posteriori estimation by Eq. (23.24).

From the above discussion, we observe that the KL learning by Eq. (23.22)
and the HL learning by Eq. (23.20) become closely related via appropriately
designing p(y|x). The difference lays in the following term Ep:

Ep = −∫
p(y|x)p(x) ln [p(y|x)p(x)]µ(dx)µ(dy) + ln zp. (23.43)

When p(y|x) = δ(y − y(x)) is deterministic and p(x) = p0(x) given by
Eq. (23.2), we have Ep = 0. That is, the KL learning by Eq. (23.22) and the
HL learning by Eq. (23.20) becomes equivalent on this special BI-directional
architecture. When p(y|x) is free to be determined via learning, the difference
is that the HL learning by Eq. (23.20) automatically results in a deterministic
type p(y|x) by Eq. (23.19) while the KL learning by Eq. (23.22) will result
in a non- deterministic type p(y|x) by Eq. (23.24).

Moreover, the KL learning by Eq. (23.22) and the HL learning by
Eq. (23.20) are also related for those p(y|x) such that Ep = c 6= 0 becomes a
constant irrelevant to any unknown parameters in θ, e.g., with p(x) = p0(x)
given by Eq. (23.2) we have

Ep = 0.5m ln (2πh2
y)− lnN, for p(y|x) = G(y|y(x), h2

yI). (23.44)

The KL learning by Eq. (23.22) and the HL learning by Eq. (23.20) are no
longer equivalent when hy,m are unknown to be determined. In the special
case that hy,m are prefixed in advance, the KL learning by Eq. (23.22) further
becomes equivalent to

max
θ, s.t. Ep=c6=0

H(θ). (23.45)

The above discussions also apply to BYY systems with a F-architecture,
with a free p(x|y) decided by

p(x|y) = p(y|x)p(x)/p(y), p(y) =
∫

p(y|x)p(x)µ(dx), (23.46)
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such that we have

KL(θ) =
∫

p(y) ln
p(y)
q(y)

µ(dy), H(θ) = −KL(θ)− Ep, (23.47)

with Ep given in Eq. (23.43). When q(y) is a uniform distribution, minimizing
this KL(θ) becomes equivalent to maximizing the entropy, which maximizes
the information transfer from input data to its inner representation via the
forward path. Generally, −KL(θ) describes the incremental of information
contained in the representation of y after this information transfer. Thus,
minimizing this KL(θ) is equivalent to making this incremental maximized
via maximizing this information transfer against upon the information al-
ready in the inner representation. Particularly, when p(y|x) = δ(y − Wx),
q(y) by Eq. (23.15), and p(x) = p0(x) by Eq. (23.2), both the KL learn-
ing by Eq. (23.22) and the HL learning by Eq. (23.20) become equivalent
to the minimum mutual information approach for ICA that was previously
discussed after Eq. (23.15). All these cases are featured by maximum infor-
mation transfer and, thus, shortly called as the Max-Inform approach.

Generally, the KL learning by Eq. (23.22) and the HL learning by
Eq. (23.20) are different for those p(y|x) that do not satisfy Ep = c. This
difference can also be observed from the learning results in those cases that
the KL learning by Eq. (23.22) results in only p(x, y) = q(x, y), but does not
the least complexity nature, while the HL learning by Eq. (23.20) results in
not only p(x, y) = q(x, y) but also a minimized entropy

Hq = −∫
q(x, y) ln q(x, y)µ(dx)µ(dy) or equivalently

Hp −
∫

p(x, y) ln p(x, y)µ(dx)µ(dy), (23.48)

which makes model toward a least complexity.
In a summary, the family of KL learning by Eq. (23.22) and the family of

HL learning by Eq. (23.20) do share an intersection that consists of interest-
ing models. However, two families are different with each containing useful
models outside this intersection. The union of the two families consists of a
spectrum of learning models, ranging from regularized ML or Max-Inform
versions to the original ML or Max-Inform versions, and then reaching reg-
ularized versions of HL learning and finally to the HL learning. In addition,
as discussed previously in Sect. 23.4.1, regularized versions of ML or Max-
Inform and the HL learning are also obtainable by the role of zp and zq via
either data smoothing or normalization [23.77, 23.83, 23.84, 23.94].

This spectrum can be extended via a convex combination λKL(θ) + (1−
λ)H(θ), 0 ≤ λ ≤ 1. Its minimization is equivalent to the KL learning when
λ = 1 and then tends to the HL learning as λ decreases from 1 to 0. As λ
varies from 0 to 1, the HL learning is regularized toward to the KL learning.

The combination may go beyond the above spectrum, which can be
observed by considering a B-architecture with p(y|x) free. It follows from
H(θ) = −KL(θ)− Ep that
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λKL(θ)− (1− λ)H(θ) = λ[Ep +
1
λ

H(θ)]. (23.49)

Ignoring the regularization role of zp and zq by setting zp = 1, zq = 1, we can
further get

Ep +
1
λ

H(θ) =
∫

p(y|x)p(x) ln
p(y|x)p(x)

[q(x|y)q(y)]
1
λ

µ(dx)µ(dy)

=
∫

p(y|x)p(x) ln
p(y|x)

pQ(y|x)
µ(dx)µ(dy) +

∫
p(x) ln

p(x)
q̂(x)

µ(dx)µ(dy),

pQ(y|x) = [q(x|y)q(y)]
1
λ /q̂(x), q̂(x) =

∫
[q(x|y)q(y)]

1
λ µ(dy). (23.50)

which was firstly proposed in [23.101]. Its minimization with respect to a free
p(y|x) will lead to

p(y|x) = pQ(y|x) =
[q(x|y)q(y)]

1
λ

q̂(x)
,

Ep +
1
λ

H(θ) =
∫

p(x) ln
p(x)
q̂(x)

µ(dx), (23.51)

where p(y|x) here is a special case of Eq. (23.42) with ψ(ξ, η) = (ξη)
1
λ that

makes the inner representation more concentrated than p(y|x) by Eq. (23.24).
Minimizing

∫
p(x) ln p(x)

q̂(x)µ(dx) is different from both the KL learning by
Eq. (23.22) with p(y|x) = pQ(y|x) and from the ML learning on q̂(x) since∫

q̂(x)µ(dx) 6= 1.
The spectrum can be further extended by considering a linear combination

λKL(θ)− (1− λ)H(θ) with λ > 1, which is no longer a convex combination
since 1 − λ < 0. However, it is still meaningful by observing Ep + 1

λH(θ),
and Eq. (23.51) still applies. The difference is that 1/λ < 1 makes the in-
ner representation more spreading than that of the ML learning, with the
regularization strength increasing as λ increases. However, as λ becomes too
large, a too strong regularization will make the system finally loose the ability
of adapting input data.

23.5 An Information Transfer Perspective

In the past decade, extensive studies have been made on the minimum de-
scription length (MDL) [23.52, 23.54]. Sharing the common sprit of the min-
imum message length (MML) [23.69, 23.71], the BIC model selection cri-
terion and variants [23.59, 23.48], and the celebrated Kolmogorov complex-
ity [23.29], the key idea is to implement the well known Ockham’s principle of
economy to code a set of samples {xt}N

t=1 for being transferred from a sender
to a receiver via a two part coding. One is the amount of bits for coding the
residuals of using a parametric model p(x|θ) to fit a set of samples {xt}N

t=1.
The second part is the amount of bits for coding the parameter set θ, pro-
vided that the function form of p(x|θ) has already known at the receiver and,
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Fig. 23.3. BYY harmony learning from an Information-theoretic Perspective

thus, no need for being encoded. A best information transfer is reached when
the bits for both the parts are minimized.

In the existing literature, given a density model p(x|θ) for a d dimensional
real random vector x, the amount of bits per sample xt to be transmitted is
described by bε

t = − ln p(xt|θ)−d ln δ, where δ > 0 is a pre-specified constant
resolution and usually ignored. The total amount of bits for the first part is
bε =

∑N
t=1b

ε
t . The amount bε

θ of bits for the second part is common to every
sample of xt, and, thus, only needs to be transmitted one time in advance.
Thus, the average amount of bits to be transmitted is 1

N

∑N
t=1b

ε
t + bε

θ

N . For
a large size N of samples, the second term becomes very small and can be
ignored. The minimization of the first term is actually equivalent to the ML
learning. However, this term does not contain enough information to select
an appropriate complexity (e.g., the number of parameters in θ) for p(x|θ).

In a contrary, for a finite size N of samples, we encounter a so-called
over-fitting effect that the larger the complexity is, the smaller the residual
of using p(x|θ) to fit the set {xt}N

t=1 is, and, thus, the smaller of the first
term is. The second term takes its role that balances off the over-fitting effect
since bε

θ increases as the complexity increases. However, bε
θ is described by

− ln p(θ). The priori distribution p(θ) is usually not available and can only
be very roughly estimated, e.g., by a non-informative uniform prior or Jeffery
priori [23.42, 23.37]. Instead of coding xt directly for transmission, the MDL
implementation with a bits-back strategy in [23.33, 23.32] maps x to y and
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then code y for transmission. However, as to be further discussed in the
next subsection, this bits-back based MDL is actually equivalent to the ML
learning and, thus, is still not good for model selection.

The BYY harmony learning by Eq. (23.16) can also be understood from
an information transfer perspective, with a new insight on its ability for model
selection and regularization. As shown in Fig. 23.3, we consider a system in
which x is mapped to an inner representation y that is encoded and sent to
the receiver, and the receiver then decodes y to reconstruct x. Learning is
made to obtain the encoder p(y|x) for getting y from x, the distribution q(y)
for the codes on y, and the decoder q(x|y) for getting x from y.

Provided that the function form of q(y|θy) is already known at the re-
ceiver, the average amount of bits to be transmitted is 1

N

∑N
t=1b

y
t + by

θ

N , with
by
t being the amount of bits per sample for coding y and by

θ being the amount
of bits for coding θy. To reconstruct xt, one also needs the decoder q(x|y)
that should also be coded at the sender and then sent to the receiver. The
decoder is also coded in two parts. One is coding the residual between the
original xt and its reconstruction by the decoder, and the amount of bits per
sample is bε

t . The other part is the amount bε
θ of bits to code the parameter

set θx|y of q(x|y). Provided that the function form of q(x|y) is already known
at the receiver, the average amount of bits for q(x|y) is 1

N

∑N
t=1b

ε
t + bε

θ

N .

As a result, referred to [23.75], the entire amount of bits is N [ by
θ+bε

θ

N −
H(θ, m)], with H(θ, m) given in Eq. (23.16). That is, the BYY harmony
learning by Eq. (23.16) attempts to maximizing the information transfer in a
sense of minimizing the total coding bits after approximately ignoring by

θ +bε
θ.

Being different from the above discussed conventional MDL that degen-
erates back to he ML learning after discarding the bits bθ/N , the harmony
measure −H(θ, m) by Eq. (23.16) without by

θ/N and bε
θ/N will not disable

the model selection ability. The role of bθ has now been jointly shared by
the bits by for encoding the inner representation y of x and the bits by

θ + bε
θ

as a counterpart of bθ. Not only carrying the information about x, the bits
by also encode the scales of representation that either indicates model com-
plexity directly or includes the core part of model complexity. This provides
an alternative insight on why the BYY harmony learning can make model
selection.

The above difference also leads to an important difference in implement-
ing model selection. To avoid an inappropriately chosen q(θ) to deteriorate
learning considerably, only a non-informative uniform prior is used as q(θ) in
MDL and thus has no effect on parameter learning for determining θ, which
is still made by a ML learning as the first step. The MDL criterion comes in
effect at the second step for model selection. This two step implementation
costs heavily since parameters learning on getting θ has to be made on all
the candidate models in consideration. By the BYY harmony learning, the
job of model selection is also performed via a family of densities q(y|θy) with
a given parametric structure but unknown parameters θy that is determined
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during learning process, which is a significant relaxation from solely relying
on a priori density q(θ). As a result, not only parameter learning is performed
more accurately but also model selection is made via the scale parameters of
y that are determined automatically during learning parameters in θy.

The regularization role of Zq in −H(θ, m) by Eq. (23.16) can also be
understood from a more precise perspective of information transfer. Instead
of considering a quantization by a pre-specified constant resolution δ > 0
that is currently widely adopted in the MDL literature.

23.6 BYY Harmony Learning Versus Related
Approaches

23.6.1 Relation and Difference to the Bits-Back Based MDL and
Bayesian Approaches

The above information transfer perspective shares certain common part with
the bits-back based MDL proposed in [23.33, 23.32]. However, there are two
key differences.

First, the term Zq replaces the role of a pre-fixed quantization resolution
δ that is currently widely adopted in the MDL literature. Without consid-
ering what type of data distribution it is, manually setting a constant δ is
simply because there is no a better solution available but it is clearly not
a good solution. In the BYY harmony learning by Eq. (23.16), the term Zq

provides a better solution. In the data smoothing implementation, Zq takes
the input data distribution in consideration via the Parzen window estimator
by Eq. (23.3) with a smoothing parameter h. This h takes a role similar to a
quantization resolution δ, but now it is also learned to adapt the set of sam-
ples {xt}N

t=1. In the normalization implementation, Zq takes the input data
distribution in consideration indirectly via the learned parametric densities
q(x|y) and q(y) as well as their values on the a set of samples {xt}N

t=1.
Second, an even fundamental difference is that BYY harmony learning

does not adopt the bits-back strategy [23.33, 23.32]. Considering the de-
pendence among the inner codes generated by p(y|x), it has been argued
in [23.33, 23.32] that the total amount of bits should be subtracted by the
following amount of bits

H(θy|x) =
∫

p(y|x)p(x) ln p(y|x)µ(dx)µ(dy). (23.52)

With this amount claimed back, the total amount of bits that has been con-
sidered by [23.33, 23.32] is actually equivalent to the Kullback divergence
KL(θ) by Eq. (23.22), after discarding a term Hx =

∫
p(x) ln p(x)dx that

is irrelevant to learning when p(x) = p0(x) by Eq. (23.2). In other words,
the bits-back based MDL [23.33, 23.32] actually provides an interpretation
to the Kullback learning by Eq. (23.22) from a information transfer perspec-
tive. In contrast, without including H(θy|x) by Eq. (23.52), the discussion
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in Sect. 23.5 provides an interpretation to the BYY harmony learning by
Eq. (23.16). As to be further discussed in the next subsection, the Kullback
learning by Eq. (23.22) is equivalent to implementing parameter learning
under the ML principle or its certain regularized variants in lack of model se-
lection ability, while BYY harmony learning provides a new mechanism that
makes model selection either after or during parameter learning.

An insight can also be obtained by further observing the role of the
bits-back amount −H(θy|x) by Eq. (23.52). With the dimension of y fixed,
the Kullback learning by Eq. (23.22) implements a stochastic encoding by
p(y|x) that allows certain dependence among the resulted codes. This de-
pendence generates a redundant amount −H(θy|x) of bits that is suggested
in [23.33, 23.32] to be subtracted from computing the total amount of bits.
In a contrast, aiming at seeking an appropriate dimension for y, the BYY
harmony learning by Eq. (23.16) actually minimizes [23.75]

−H(θ, k) = KL(θ)−H(θy|x) + Cy . (23.53)

Where −H(θy|x) + Cy ≥ 0. That is, −H(θ, k) ≥ KL(θ) is an upper bound of
the total bits considered in [23.33, 23.32].

When p(y|x) is free, maxp(y|x) H(p‖q) results in p(y|x) as in Eq. (23.19).
It happens similarly when p(y|x) is parametric either directly in a form of
δ(y − y(x)) or tends to be pushed into this form via maxp(y|x) H(p‖q). In
these cases, −H(θy|x) + Cy reaches its minimum value 0. Thus, the BYY
harmony learning achieves the minimum total number of bits instead of one
upper bound.

In other words, the BYY harmony learning reaches the optimal coding
bits both by learning unknown parameters and by squeezing any stochastic
redundancy that allows one x to share more than one inner codes of y. As a
result, all the inner codes will occupy a representation space as compact as
possible. That is, model selection occurs automatically during the process of
approaching the optimal coding bits. On a contrary, the dimension for the
inner codes of y is pre-specified for a bits-back based MDL case, and the task
is learning unknown parameters under this fixed dimension (usually assumed
to be large enough for what needed). Due to there is certain redundancy in the
representation space, it is allowed that one x may be redundantly represented
by more than one inner codes. Instead of squeezing out this dependence, the
redundant bits of −H(θy|x) by a stochastic p(y|x) is not zero but discounted
in counting the total amount of bits.

Though such a redundant coding makes information transfer more reli-
able, allowing redundancy in the representation space of y already means
that this representation space is not in its minimum complexity.

Furthermore, the BYY harmony learning may also be related to Bayesian
approaches by replacing y with a parameter set θ in that Eq. (23.19) becomes
equivalent to the Bayesian learning by Eq. (23.8). Ignoring − ln zq, H(θ, m)
by Eq. (23.16) is actually the MML description length by Eq. (23.11), while
− ln zq 6= 0 provides a type of regularization similar to that discussed in
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Sect. 23.4.1. Also, Eq. (23.13) becomes equivalent to the evidence given by
Eq. (23.9) and it follows from Eq. (23.24) that KL(θ) becomes equivalent
to the description length based on this evidence. The difference between the
MML description length and the evidence based description length is actu-
ally the bits-back part by Eq. (23.52) with y replaced by θ. As discussed in
Sect. 23.2.2, knowing a priori q(θ) is a difficult task and a rough estimate q(θ)
may seriously affect the MAP solution by Eq. (23.8). Thus, the description
length based on Eq. (23.9) is usually regarded as an improvement over that
by Eq. (23.11) since the integral over θ can regularize in a certain extent the
discrepancy caused by q(θ).

However, the BYY harmony learning is different from the above MML
description length and the evidence based description length in that an inner
representation y takes the place of θ to avoid the difficulty of getting q(θ),
which brings us the following advantages:

– Instead of specifying a density q(θ), the BYY harmony learning only needs
to specify a family of densities q(y|θ) with a given parametric structure
but unknown parameters θ, while learning further specifies one among the
family. Therefore, the difficulty of requiring a detailed priori knowledge has
been relaxed significantly. Moreover, the above superiority of the evidence
based description length due to the bits-back type regularization disap-
pears. On a contrary, as discussed in the early part of this subsection, the
bits-back type regularization actually weaken the model selection ability
and lost the nature of automatic model selection.

– Instead of considering all the parameters in the description length, the
BYY harmony learning focuses only at those useful scale parameters m, k,
etc., via the structures of the inner representation space of y which avoids
to handle the difficulty of and saves the computing costs on estimating
those complexities that are unnecessary for determining m, k, etc.

– As discussed in above, the BYY harmony learning is able to make model
selection automatically during learning parameters. In contrast, using the
evidence based description length for model selection has to be made via a
two stage implementation since the evidence based description length has
to be estimated after parameter learning.

23.6.2 Relations to Information Geometry, Helmholtz Machine
and Variational Approximation

The minimization of KL(θ) by Eq. (23.22) with respect to a free p(y|x) will
result in Eq. (23.24) and becomes equivalent to the ML learning on q(x)
when p(x) = p0(x) by Eq. (23.2) [23.109]. This case relates to the informa-
tion geometry theory (IGT) [23.16, 23.4, 23.5] that is also equivalent to the
ML learning on q(x) by Eq. (23.13). Moreover, the well known EM algo-
rithm [23.20, 23.51, 23.47] is reached by the em algorithm obtained in IGT.
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Making parameter learning by Eq. (23.22) also relates to the Helmholtz
machine learning (HML) when p(x) = p0(x) is given by Eq. (23.2) and both
p(y|x) and q(x|y) are both given by the conditional independent densities by
Eq. (23.54) as used in [23.31, 23.18]. That is, the densities are given with the
following format

p(u|v) =
m∏

j=1

πj(v)u(j)
(1− πj(v))1−u(j)

, (23.54)

π(v) = [π1(v), · · · , πm(v)]T = S(Wv + c),
S(y) = [s(y(1)), · · · , s(y(m))]T , 0 ≤ s(r) ≤ 1 is a sigmoid function,

where u is a binary vector. In this case, making parameter learning by
Eq. (23.22) actually becomes equivalent to an one layer HML. Also, the well
known wake-sleep algorithm for HML can be regarded as a simplified adap-
tive form of Eq. (23.23). With a general insight via Eq. (23.23), other specific
algorithms for implementing the HML may also be developed.

It is also deserve to notice that making parameter learning by Eq. (23.22)
with a parametric p(y|x) ∈ Py|x(θy|x) is different from that a free p(y|x) ∈
P0

y|x in that a parametric family Py|x(θy|x) is a subset of the family P0
y|x that

consists of all the density functions in the form p(y|x). Thus, we always have
minp(y|x)∈Py|x(θy|x) KL ≥ minp(y|x)∈P0

y|x
KL. When p(x) = p0(x) is given by

Eq. (23.2), it follows from Eq. (23.24) that the latter becomes equivalent to
the ML learning on q(x) by Eq. (23.13). In other words, making parame-
ter learning by Eq. (23.22) with a parametric p(y|x) actually implements a
type of constrained ML learning on q(x), which is also called a variational
approximation to the ML learning on q(x) [23.58, 23.56].

The BYY harmony learning is different from three existing approaches as
follows. First, the BYY harmony learning minimizes the harmony measure
−H(p‖q) instead of the Kullback divergence KL(p‖q) in Eq. (23.22), not only
for parametric learning but also for model selection. Even using the Kullback
learning by Eq. (23.22) for parameter learning, it is still followed by model
selection via Eq. (23.21). In contrast, parameter learning via minimizing the
Kullback divergence is the only target in IGT, HML, and variational approx-
imation, while the issues of regularization and model selection are out of the
scope of their studies.

Second, as discussed later in Eq. (23.66), the harmony learning may
also be regarded as implementing a type of constrained ML learning, es-
pecially when p(y|x) ∈ Py|x(θy|x) is parametric. However, it is different from
the above discussed constrained ML learning via variational approximation
[23.57, 23.56]. An additional constraint should be imposed on both types of
learning to make them become equivalent.

Third, even focusing on the common part, i.e., parameter learning via
minimizing Kullback divergence for implementing parameter learning, these
studies are conducted from different perspectives with different purposes.
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IGT studies the general properties possessed by Eq. (23.22) and alterna-
tive minimization for two general p and q from the perspectives of geometry
structure [23.16] and differential geometry structure [23.4, 23.5]. HML and
variational approximation consider developing efficient algorithms for imple-
menting empirical parameter learning on a forward-backward net via an ap-
proximation of the ML learning on the marginal density q(x) in Eq. (23.13).
In contrast, the BYY learning studies two distributions in the two comple-
mentary Bayesian representations in Eq. (23.12) by systematically investi-
gating not only three typical architectures for different learning tasks, but
also regularization by either a conscience de-learning type via normalization
or a Tikhonov-type via data smoothing with its smoothing parameter h es-
timated in sample way. While IGT, HML, and variational approximation
have neither explicitly and systematically considered the two complementary
representations in Eq. (23.12) nor the regularization of two such types.

23.6.3 A Projection Geometry Perspective

Projection Geometry in Vector Space. Through obtaining a quasi
Pythagorean relation under the Kullback divergence

KL(p‖q) =
∫

p(u) ln
p(u)
q(u)

du ≥ 0, KL(p‖q) = 0, iff p(u) = q(u).(23.55)

This divergence based learning has been further theoretically studied from
the perspective of ordinary geometry and differential geometry under the
name of information geometry [23.16, 23.4, 23.5]. Actually, neither the har-
mony measure by Eq. (23.17) nor the Kullback divergence by Eq. (23.55)
satisfies all the properties of the conventional metric measure. Moreover, the
harmony measure by Eq. (23.17) even does not satisfies a quasi Pythagorean
relation that the Kullback divergence satisfies. In this section, we suggest
to investigate both the harmony measure based learning and the Kullback
divergence based learning by lowering down from a metric level to an even
basic level, namely, a level of projection geometry.

We start at reviewing some basic properties in the conventional vector
space Rd. We denote Uc = {u : u ∈ Rd and ‖u‖2 = c2, for a constant c > 0},
which is a sphere shell with the radius c.

As shown in Fig. 23.4, for u = ceθu ∈ Uc, v = c′eθv ∈ Uc′ , their inner
product is

uT v = cc′ cos (θv − θu), (23.56)

which is symmetric to v and u and leads to a norm ‖u‖2 that further leads
to the metric ‖u− v‖.

Imposing the constraint ‖u‖ = 1, the inner product returns back to the
projection of v on u as follows:

Πv
u = c′ cos (θv − θu), (23.57)

which has the following properties:
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Fig. 23.4. From an inner product back to a projection in the vector space

(a) The self-projection of u is simply the norm ‖u‖.
(b) We have −c′ ≤ Πv

u ≤ c′ with the equality holding if and only if θv = θu.
In other words, the projection Πv

u is maximized when v is co-directional
with u.

(c) The projection Πv
u reaches its minimum 0 when θv − θu = 0.5π, which is

said that v is orthogonal to u.
(d) When c = c′, θv = θu implies v = u. That is, the maximal projection is

equivalent to the equality v = u, when v, u are on the same shell Uc.
(e) θv = θu can be achieved by rotating the directions of both v and u or the

direction of either v or u. That is, the projection vT u has the symmetry
property.

The error or residual v − u = ‖v − u‖e−θv−u also has a projection on u:

Πv−u
u = ‖v − u‖ cos (θv−u − θu), (23.58)

with the following properties:

(f) As shown in Fig. 23.4, when c′ > c, this residual projection |Πv−u
u | reaches

its minimum 0 when θv−u−θu = 0.5π, with ‖v−u‖ 6= 0. In this case, the
residual v−u is said to be orthogonal to u, where the norm of u and the
projection v on u becomes the same, i.e., Πv

u = c or cos (θv − θu) = c/c′.
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(g) When ‖v‖ ≤ ‖u‖, this residual projection |Πv−u
u | reaches its minimum

c−c′ if and only if θv = θu. When c = c′, we have u = v and the minimum
value is 0.

In a summary, we have

When v, u locate on a same shell Uc, the concepts of maximizing the
projection v to u, minimizing the residual projection (v − u) to u, of
making residual v − u being orthogonal to u, and the equality v = u
are all the same thing. (23.59)

Projection Geometry in a Functional Space. In an analogy, we consider
a functional space

Q = {q(u) : q(u) ≥ 0 and
∫

q(u)µ(du) < ∞}, (23.60)

where u ∈ Su ⊆ Rd and µ is a given measure on the support Su, and µ(du)
only relates to du but to neither u nor q(u). A useful subspace Pc ⊂ Q is

Pc = {p(u) : p(u) ≥ 0,
∫

p(u)µ(du) = c, for a constant c > 0}. (23.61)

Particularly, when c = 1, P1 is the probability density space.
Given p(u) ∈ Pc, q(u) ∈ Pc′ , we define the projection of q(u) on p(u) by

H(p‖q) =
∫

p(u)µ(du) ln (q(u)µ(du)) =
∫

p(u) ln q(u)µ(du)− Zq,
Zq = −∫

p(u) ln µ(du)µ(du) = − lnµ(du), (23.62)

which can be regarded as the counterpart of Eq. (23.57) as shown in Fig. 23.4.
It can be observed that Eq. (23.62) becomes the same as Eq. (23.16) and Zq

takes the same role as − ln zq, when

p(u) = p(x, y) = p(y|x)p(x), q(u) = q(x, y) = q(x|y)q(y). (23.63)

Considering
∫

p(u)µ(du) = 1 and p(u) = p0(u) is the empirical density by
Eq. (23.3) when hu = 0, it follows that µ(du) = 1/

∑N
t=1 p(ut) and zq =∑N

t=1 q(ut) from which and Eq. (23.63), we also get Eq. (23.36).
In correspondence to Eq. (23.57), we have the following properties:

(1) The self-projection of p(u) is H(p‖p) =
∫

p(u)µ(du) ln [p(u)µ(du)], which
can be regarded as a type of norm of p and it becomes the negative
entropy of the probability distribution p(u)µ(du) when p(u) ∈ P1 is a
density.

(2) H(p‖q) is maximized if and only if q(u) = c′
c p(u), i.e., q(u) has the same

shape as p(u), because we have
∫

p̂(u) ln q̂(u)µ(du) ≤ ∫
p̂(u) ln p̂(u)µ(du)

with cp̂(u) = p(u), c′q̂(u) = q(u) and p̂(u), q̂(u) ∈ P1.
(3) When c = c′, H(p‖q) is maximized if and only if q(u) = p(u).
(4) When p(u) is free to be any choice in Pc, the maximization of H(p‖q)

will also let p(u) to become cδ(u− u∗), where u∗ = arg maxu q(u).
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Fig. 23.5. Unit norm based projection: from the vector space to a functional space

In comparison with the situation of Eq. (23.57), there are three differ-
ences. One is that each density represents a point of infinite dimension. Sec-
ond, each component is constrained to be nonnegative. Third, the constraint∫

p(u)µ(du) = c is a first order linear constrained, instead of the quadratic
constraint ‖u‖2 = c2. These differences result in that the maximization of
H(p‖q) makes not only that p(u) and q(u) has a same shape in the sense
q(u) = c′

c p(u) but also that p(u) prefers to have a simplest shape cδ(u− u∗).
When p(u) is free to be any choice in Pc and q(u) is free to be any choice
in Pc′ , the maximization of H(p‖q) will finally let that both p(u) and q(u)
become impulse functions. When p(u) ∈ P, q(u) ∈ Q are constrained to be
unable to become impulse functions, the maximization of H(p‖q) will make
that p(u) and q(u) become close in a shape of a least complexity but not able
completely equal. Therefore, the maximization of H(p‖q) on a BYY system
Eq. (23.63) indeed implements the harmony principle given at the beginning
of Sect. 23.3.1, while the maximization of the projection u to v only ensures
u and v become co-directional but does not have such a least complexity.

In addition, H(p‖q) does not share the symmetry by Πv
u at ‖v‖ = ‖u‖.

If exchanging the positions of p, q, though maxH(p‖q) still makes that p(u)
and q(u) have a same shape, it is different in a sense that q(u) but not p(u)
is now pushed to a shape of c′δ(u− u∗).

Moreover, if we use p(u) ∈ Pc to represent q(u) ∈ Pc′ and define the dis-
crepancy or residual 1 by p(u) ª q(u) = p(u)µ(du)/[q(u)µ(du)] = p(u)/q(u),

1 Under this definition, p(u) ª q(u) is generally not guaranteed to still remain
in Q. For a subset Qq ⊂ Q with Qq = {q(u) : q(u) ∈ Q,

∫
Du

q2(u)µ(du) <
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we let q(u)µ(du) in Eq. (23.62) to be replaced by the residual in this repre-
sentation and get that this residual projection on p(u) as follows

R(p‖q) =
∫

p(u) ln [p(u)/q(u)]µ(du) = H(p‖p)−H(p‖q). (23.64)

Since p(u) = cp̂(u), q(u) = c′q̂(u) with p̂(u), q̂(u) ∈ P1, it follows that

R(p‖q) = c[KL(p̂‖q̂) + ln
c

c′
],

KL(p̂‖q̂) =
∫

p̂(u) ln [p̂(u)/q̂(u)]µ(du). (23.65)

From which we can observe the following properties:

(5) Minimizing R(p‖q) is equivalent to both minimizing the self-projection
of p(u) and maximizing the projection of q(u) on p(u). When the self-
projection H(p‖p) is fixed at a constant, minimizing the residual projec-
tion is equivalent to maximizing H(p‖q).

(6) The residual p(u)ªq(u) is said to be orthogonal to p(u) when the residual
projection R(p‖q) becomes 0 that happens when the norm of p and the
projection of q on p become the same, i.e., H(p‖p) = H(p‖q).

(7) When c = c′, the minimum value of R(p‖q) is 0 which is reached if
and only if p(u) = q(u). Moreover, when c = c′ = 1, p(u) and q(u) are
densities and R(p‖q) = KL(p‖q).
From the above discussions, we see that the concepts of maximizing

H(p‖q) and of minimizing the residual projection R(p‖q) are related, but
not equivalent. Even when c = c′ = 1, we do not have the equivalence be-
tween Πv

u and Πv−u
u as given in Eq. (23.59) for Eq. (23.57) and Eq. (23.58).

This provides a geometry perspective on why and how the maximization of
H(p‖q) on a BYY system Eq. (23.63), which is a generalization of maximizing
the projection for the co-directionality, is different from the minimization of
Kullback divergence KL(p‖q) on a BYY system Eq. (23.63) or equivalently
the maximum likelihood learning, which is a generalization of minimizing the
residual projection. Moreover, the latter does not have the least complexity
nature that enables the former to make model selection.

However, imposing an additional constraint that H(p‖p) is fixed at a
constant H0, we have

max
p∈P,q∈Q, s.t. H(p‖p)=H0

H(p‖q) is equivalent to

min
p∈P,q∈Q, s.t. H(p‖p)=H0

KL(p‖q). (23.66)

∞,
∫

Du
q−2(u)µ(du) < ∞,

∫
Du

µ(du) < ∞}, we can define the addition by

r(u) = p(u) ⊕ q(u) = p(u)q(u) and have r(u) ∈ Qq. Also, we have the unit
1 = p(u)p−1(u) ∈ Qq for u ∈ Su and the inverse p−1(u) = 1/p(u) ∈ Qq.

In this case, it follows that the induced minus operation p(u) ª q(u) =
p(u)/q(u) is still in Qq. That is, we get Qq as an Abel group. Moreover, on an ap-
propriate subset Ql we can further define the dot product α ◦ p(u) = p(u)α ∈ Ql

for α ∈ R and, thus, get Ql as a linear functional space. Furthermore, we can
introduce the geometrical concepts of the projection Eq. (23.62), the residual
projection Eq. (23.64) and the corresponding orthogonality to Qq,Ql.
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With p(x) given by Eq. (23.3), the constraint H(p‖p) = H0 means certain
constraint imposed on p(y|x). In other words, Eq. (23.66) happens on a class
of BI-directional architectures, and can also be regarded as implementing
a type of constrained ML learning, which is different from those of vari-
ational approximation [23.57, 23.56] that implements minp∈P,q∈Q KL(p‖q)
with p(y|x) in a constrained structure but without requiring the constraint
H(p‖p) = H0.

In addition, the above discussions on the geometry properties of p(u) ∈ Pc

and q(u) ∈ Pc′ with c 6= 1, c′ 6= 1 may also be extended beyond probability
densities. Also, with R(p‖q) = 0 we can get the concept of the orthogonality
of the residual p(u)ª q(u) to p(u).

23.7 Bibliographic Remarks

In the previous chapter of the present book, main results of using BYY system
and harmony learning on typical learning problems have been summarized.
Also, bibliographic remarks have been made on the progress of these studies
from both the aspect of BYY system with the KL learning and the aspect of
computing techniques for implementing BYY learning. In this section, further
bibliographic remarks will be made on the progress from the model selection
and regularization aspects of BYY harmony learning.

23.7.1 On BYY Harmony Learning (I): Model Selection Criteria
vs. Automatic Model Selection

As discussed in Sect. 23.3.1, maximizing the harmony measure by Eq. (23.16)
that makes model selection either automatically during parameter learning by
Eq. (23.20) or via a selection criterion Eq. (23.21) after parameter learning.

In help of the so-called ‘hard-cut’ treatment of posteriori probabilities,
this harmony measure with zq = 1 was firstly obtained in 1995 both at its
special case of both Gaussian mixture (see Eq. (20) and (22) in [23.109],
Eq. (13) and (14) in [23.113], and Eq. (13) in [23.112]), and at a special case
of finite mixture (see Eq. (7) in [23.112]). Companying with this measure,
two types of detailed studies were conducted as follows:

– One is called two-phase style learning in Sect. 23.3.1. That is, model selec-
tion is made via mink J(k) after parameter learning. This J(k) is a sim-
plified version of the harmony measure after discarding irrelevant terms.
Typical examples include J(k) by Eq. (24) in [23.109] and J(k) by Eq. (13)
in [23.111].

– The other type of studies is on parameter learning with automatic model
selection by Eq. (23.16) in Sect. 23.3.1. It was suggested (see Sect. 5.2 and
the footnote on page 986 in [23.109], also see Sect. 3 in [23.111] and the
second part of Sect. 5 in [23.112]) that an appropriate value of k can be
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automatically determined during parameter learning by the so-called hard-
cut EM algorithm (see the algorithm after Eq. (20) in [23.109], also see the
algorithm after Eq. (15) in [23.112]), via discarding a Gaussian component
αjG(x|mj , Σj) if either or both of Σj and αj = P (y = j) become zero.

It should also be noticed that studies of BYY system with the harmony
measure based learning by Eq. (23.16) and the Kullback divergence based
learning by Eq. (23.22) were conducted jointly, with the following relations
found:

– The additive relationship KL = −H − Ep + D by

KL(p‖q) = −H(p‖q)− Ep, Ep = −∫
p(u) ln p(u)µ(du) + ln zp.(23.67)

or equivalently H = −KL − Ep + D by Eq. (23.47) that was firstly pre-
sented in [23.109], where D is a term that is only related to the smoothing
parameter h for a p(x) given by Eq. (23.3).

– The term D becomes irrelevant to learning when h = 0 or equivalently
p(x) is given by Eq. (23.2). In these cases, D can be discarded and we can
simply consider KL = −H − Ep or equivalently H = −KL− Ep.

– The inequality relation KL ≤ −H was also firstly observed in [23.112].
The equality KL = −H holds when Ep = 0, where the KL learning and
the harmony learning become equivalent as discussed in Sect. 23.4.2.

– As discussed in Sect. 23.6.1, the harmony learning is different from the KL
learning in that the minimization of −H = KL + Ep attempts to push
Ep ≥ 0 toward its minimum Ep = 0 such that a minimum coding length is
reached via minimizing the model complexity.

23.7.2 On BYY Harmony Learning (II): Model Selection Criteria

After the initial results obtained in 1995 [23.109], various specific J(k) forms
of Eq. (23.21) have been subsequently obtained from Eq. (23.16) for model
selection in typical learning models, with main progresses summarized as
follows:

(1) Not only J(k) by Eq. (24) in [23.109] and by Eq. (13) in [23.111] was
further studied experimentally in 1996 [23.108] and both theoretically and
experimentally in 1997 [23.104], but also Eq. (7) in [23.112] (i.e, the special
form of Eq. (23.16) with zq = 1 on a finite mixture) is reiterated via Eq. (10)
in [23.107] and Eq. (18) in [23.104], and then applied to multi-sets mixture
learning by Eq. (15) in [23.107]).
(2) Started from 1997, the harmony measure by Eq. (23.16) with zq = 1 is
further suggested under the notation J2(k) as a general criterion for model
selection (see Eqs. (3.8) and (3.9) in [23.101], Eqs. (13) and (15) in [23.102],
and Eq. (12) in [23.104]). Recently, the superiority of this criterion has been
further supported by experiments made in comparison with classic criteria
including AIC, CAIC and MDL [23.34].
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(3) In 1998, extending the relation −H = KL + Ep, not only the weighted
sum by Eq. (23.49) was firstly suggested (see Eq. (48) in [23.92]), but also its
variant KL+λEp was also suggested (see Eq. (8) in [23.90], Eq. (22) in [23.91],
Eq. (7c) in [23.100], Eqs. (17) and (18) in [23.93], Eq. (6f) in [23.94], as well
as Eq. (8b) in [23.96]). The form KL + λEp returns to −H = KL + Ep

when λ = 1. This form makes it possible to be further extended with the
function ln(.) replaced by a general convex function f(.) (see Eq. (15) and
(10) in [23.97] and Sect. 4 in [23.87], also Sect. II(B) in [23.84] and Sect. 2.5
in [23.85]).
(4) Also started from 1997, typical forms of the harmony measure by
Eq. (23.16) with zq = 1 and p(x) given by Eq. (23.2) have also been de-
veloped as model selection criteria for the following learning models:

– PCA and FA (see Eq. (9.13) in [23.101], Eq. (56) in [23.92], Eq. (33) and
(37) in [23.93], as well as Eq. (13) and (18b) in [23.100]).

– Principal ICA that extends ICA to noise situation (see Eq. (10.9) in [23.101],
Eq. (11) in [23.89], Eq. (56) in [23.86] and Eq. (55) in [23.85]).

– Binary LMSER (see Eq. (8.10) and (8.13) in [23.101]).
– Logistic LMSER (see Eq. (38) in [23.76]).
– Regularized LMSER via minimizing the variances of hidden units (see

Eq. (8.10) and (8.13) in [23.101], Eq. (40) and (41) in [23.93], Eq. (20b)
and (20c) in [23.100]).

– Mixture of experts with an approximated criterion proposed firstly (see Ta-
ble 6(5) in [23.103], Sect. 4.3(1)&(2) in [23.92]), and then a much improved
version (see Eq. (84) in [23.83]).

– Alternative ME (see Table 6(5) in [23.103], Sect. 4.3(1)&(2) in [23.92]);
– RBF nets (see Table 7(4) in [23.103], Sect. 4.3(3) in [23.92]).
– Three layer networks, with not only some approximate criteria proposed

for both binary stochastic hidden units [23.103, 23.94, 23.95] (e.g., see
Eq. (56) in [23.92]) and deterministic real hidden units (see Eqn(88) &
(89) in [23.86]), but also improved versions for binary stochastic hidden
units (see Type (b) of Eq. (67) in [23.83], also see Eq. (47) in [23.76]),
stochastic Gaussian hidden units (see the real y case of Eq. (9a) in [23.99]),
and deterministic real hidden units (see Eqn(139) in [23.78]).

– Temporal factor analysis (see Eq. (23b) in [23.90], Eq. (49) in [23.82], the
case (a) of Eq. (82) & Eq. (83) in [23.80]).

– Hidden Markov model (HMM) (see Eq. (34) in [23.90]).
– Independent HMM (see Eq. (51) in [23.82], Eq. (85) and (86) in [23.80]).
– Temporal extensions of binary LMSER (see Eq. (46) in [23.82], Eq. (93)

in [23.80]).

(5) Started from 2001, the above criteria have been further extended via
z-regularization with zq as discussed in Sect. 23.4.1 and p(x) by Eq. (23.3).

– In [23.83], we got criteria for model selection by Eq. (41) for Gaussian
mixture and various special cases, by Eq. (67) for three layer networks, by
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Eq. (84) for mixture-of-experts and alternative ME, as well as by Eq. (85)
for RBF nets.

– In [23.82], we got criteria for model selection given by the cases (b) & (c)
of Eq. (82) & (83) for temporal factor analysis.

– In [23.80], Table 3 provides a systematic summary of criteria, ranging from
empirical learning to z-regularization for model selection on various Gaus-
sian mixtures and Gaussian mixture of experts, and Table 4 provides a
systematic summary of criteria, also ranging from empirical learning to z-
regularization for model selection on various and non-Gaussian mixtures.

– In [23.76], criteria for model selection are also given by Eq. (33) on modular
binary factor analyses, and by Eq. (48) on modular binary LMSER.

(6) The last but not least, the relation between the status of observation
noise and model selection has been elaborated. For a backward model x = Ay
with no noise, the dimension m of y can be determined via the rank of the
covariance matrix x. For a forward model y = Wx, the dimension m of y is
actually pre-given instead of being decided by model selection. In other words,
model selection are necessary only for a B-architecture and a BI-architecture,
where an observation noise is considered via its backward or generative path
(see pp841-843 of [23.82] and pp 1148-1149 of [23.80]).

23.7.3 On BYY Harmony Learning (III): Automatic Model
Selection

As discussed in Sect. 23.7.1, also started from 1995 on Gaussian mixture, an
appropriate value of k is automatically determined via discarding a Gaussian
component αjG(x|mj , Σj) if either or both of Σj and αj = P (y = j) become
zero, during implementing a hard-cut EM algorithm for the maximization of
harmony measure by Eq. (23.16) [23.109, 23.111, 23.112]. Main progresses
along this direction are summarized as follows:
(1) This hard-cut EM algorithm based automatic model selection was not
only experimentally demonstrated [23.108] but also further extended to learn-
ing on alternative mixture of experts (see Sect. 3.3 in [23.107]).
(2) An adaptive version of this hard-cut EM algorithm was linked to the
winner-take-all (WTA) competitive learning. An adaptive version of the EM
algorithm was also heuristically proposed and shown to demonstrate a type of
rival penalized competitive learning (RPCL) [23.114] mechanism (see Sect. 6
in [23.109]).
(3) Not only adaptive version of the hard-cut EM algorithm is used in
implementing learning, but also the rival penalized competitive learning
(RPCL) [23.114] is used in place of the hard-cut EM algorithm such that the
advantage of RPCL on learning with automatic model selection is adopted.
Moreover, the original RPCL learning has been further extended into two
types of general forms (i.e., TYPE A and Type B) for learning on Gaussian
mixture, multisets modeling (local PCA, local MCA, local subspace, etc.),
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mixture of experts, and RBF net (see Sect. 5 in [23.106], Sect. 4.3 in [23.107],
and [23.98]).
(4) Started from 1999, the general form of using the harmony measure for
both parameter learning and model selection, as shown in Eq. (23.16), has
been studied (see Eq. (11) and (12) in [23.86] and [23.85]). Moreover, mak-
ing parameter learning with automatic model selection by Eq. (23.20) was
further made systematically in 2001 [23.83]. Not only the role of the least
complexity nature Eq. (23.18) in model selection has been understood, but
also the side-effect of the WTA competition by Eq. (23.19), i.e., making the
maximization of Eq. (23.20) easy to be trapped at local maximums, is tackled
by introducing certain regularization (see Sect. 2.5 in [23.83]). Moreover, four
types of regularization have been proposed, as summarized into the following
two groups:

(a) Harmony measure + regularization term, that is, a regularization is
introduced additively. Specifically, the regularization term can be one of
the following three choices:
– The normalization term as discussed in Sect. 23.4.1 was proposed as

regularization term (see the second part on page 52 in [23.83]). It was
first time revealed that the harmony learning by Eq. (23.20) with nor-
malization regularization acts as a general RPCL learning framework
that implements a floating RPCL learning mechanism (see Sect. 3.2
in [23.83]), which not only justifies the heuristically proposed RPCL
learning from the BYY harmony learning perspective but also pro-
vides a guide for automatically controlling the ratio of learning and de-
learning that was a difficult task in the original RPCL learning [23.114].

– The normalization term is λEp, that is, we have H +λEp that returns
to the harmony measure H alone when λ = 0 and becomes −KL =
H + Ep when λ = 1 (see Eq. (42) and (43) in [23.83]). We can simply
choose one appropriate value for λ or let λ to decrease from 1 to 0
gradually in a simulated annealing way.

(b) A regularization can also be introduced in a non-additive way. As will be
further discussed in the next subsection, we have two typical techniques
as follows (see Sect. 3.2 in [23.83]):
– regularization is structural and introduced via a BI-architecture,
– regularization is introduced via data smoothing.

(5) The above four types of combining the roles of the harmony measure and
regularization can also be understood from the perspective of competitive
learning [23.79]. The nature by Eq. (23.18) encourages a WTA competition
by Eq. (23.19), while each of them acts in different manners. Data smoothing
penalizes the winner, while both the λEp and the structural regularization
penalize the winner but compensates other participants. However, all these
competition-penalty mechanisms makes the WTA effect weaken but encour-
age gain diversification among participants in competition.
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(6) Similarly, the detailed forms of the two groups were also proposed for
implementing the harmony learning Eq. (23.20) on mixture of experts, alter-
native ME, RBF nets, three layer net, as well as SVM type kernel regression
(see Sect. 4 in [23.83]).

In the past two years, BYY harmony learning on various Gaussian/ non-
Gaussian mixture and mixture-of-experts as well as modular networks with
one hidden layer have been systematically studied in [23.80] and [23.76], re-
spectively, with the following main results:

– A systematic summary and further elaboration of BYY harmony learning
and RPCL learning on various details of Gaussian mixture and Gaussian
mixture of experts, including MSE clustering, elliptic clustering, subspace
clustering, alternative ME, RBF nets with automatic model selection (see
Sect. 3 in [23.80]).

– BYY harmony learning algorithms for learning with automatic hidden fac-
tor determination on modular binary FA, local LMSER, competitive ICA
(see Sect. 4 in [23.80] and Sect. 4 in [23.76]), as well as on three layer
networks (see Sect. 5 in [23.76]).

– Extension of the harmony learning by Eq. (23.20) to the so-called f -
harmony learning (see Sect. 2.3.2 in [23.80]).

23.7.4 On Regularization Methods

Several regularization methods have also been developed during the studies
on BYY learning. Not only each of them can improve the learning perfor-
mances on a BYY system in the case of a small size of samples, but also some
of the methods remain useful even being independent of BYY system. Main
results are summarized as follows:

Data smoothing regularization, which came from replacing the em-
pirical density p0(x) by Eq. (23.2), that is equivalent to directly use a set of
training samples, via a Parzen window density ph(x) by Eq. (23.3) with a
smoothing parameter h > 0. The idea started from suggesting the use of
ph(x) by Eq. (23.3) in a BYY system (see Eq. (5) in [23.109] and Eq. (1)
in [23.111], also see Sect. 1 in [23.106] and Eq. (1) in [23.107]). In 1997, it was
further proposed under the name of data smoothing (see Eq. (16) in [23.107]
and Eq. (3.10) in [23.101]) that an appropriate h is also learned via imple-
menting the KL learning by Eq. (23.22), which becomes equivalent to

min
θ,h

KL(θ, h), KL(θ, h) =
∫

ph(x) ln
ph(x)
q(x|θ)µ(dx), (23.68)

which was firstly presented by Eq. (7) in [23.103]. In a BYY system,
q(x|θ) =

∫
q(x|y)q(y)dy is the marginal density represented by the Ying

machine. Generally, being independent of BYY system, q(x|θ) can be any
parametric model for density estimation. Also in [23.102], the data smooth-
ing regularization is suggested on q(z|x, θz|x) for supervised learning of three
layer forward net and mixture of experts.
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Data smoothing introduces a Tikhonov-type regularization [23.10] into
parameter learning, with the role h2 being equivalent to the hyper-parameter
in a Tikhonov regularization. What is new here is that an appropriate h can
be learned via an easy implementation. Several advances have been made on
implementing data smoothing since 1997, including

– A smoothed EM algorithm from learning on Gaussian mixture (see Eq. (18)
in [23.102]).

– Three techniques for computing the integral
∫

G(x|xt, h
2I)F (x)µ(dx),

namely stochastic approximation and mean-field [23.94] as well as the fol-
lowing second order approximation (see Sect. 2.4 in [23.88] and Sect. 2.3
in [23.86]):

∫
G(x|xt, h

2I)F (x)µ(dx) ≈ F (xt) + 0.5h2Tr[HF ],

with the Hessian matrix HF =
∂2F (x)
∂x∂xT

]x=xt . (23.69)

– Four approaches for solving h, i.e., quantization based enumeration, stochas-
tic approximation, iterative updating, and solving a second order algebraic
equation [23.94, 23.86, 23.85, 23.82, 23.80].

– In independent factor model of non-Gaussian real factors, mixture of
experts, alternative ME, RBF nets, and three layer networks, different
smoothing parameters are provided for input data, output data, and inner
representation, respectively [23.94, 23.86, 23.85, 23.82, 23.80, 23.76].

– Two types of data smoothing mechanisms are provided, with one for the
KL learning and the other for the harmony learning (see Sect. II(A) & (B)
in [23.82] and Sect. 2 in [23.80]).

Details are further referred to [23.85, 23.82, 23.80] as well as a recent summary
given in [23.77].

Normalization regularization, which came from the normalization
term zq. Firstly proposed in [23.82, 23.83], this normalization term causes a
conscience de-learning that not only introduces a regularization to the ML
learning, but also makes BYY harmony learning behave similar to the RPCL
learning [23.114]. The details of the normalization role and its implementa-
tion on Gaussian mixture can be found in Sect. 3.2 of [23.83] and Sect. II(E)
of [23.82]. Further results on Gaussian mixture, Gaussian mixture of experts,
non-Gaussian mixture of experts, as well as modular networks with one hid-
den layer of binary units can be found in [23.76] and [23.78].

Structural regularization, which happens in a BYY system where
certain regularization to a B-architecture or a F-architecture is imposed via
its free part being replaced with an appropriately chosen parametric model.
This was firstly suggested in 1997 (see Item 3.4 in [23.101], also see Item 2.5
and Item 2.6 in [23.102]). Typical examples are p(y|x) given by Eq. (23.24)
for a B-architecture and p(x|y) given by Eq. (23.46). For example,

– It was suggested (see Sect. 2.5 in [23.83]) that the local maximum side-
effect of the WTA competition by Eq. (23.19) with a B-architecture can be
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regularized with an appropriate parametric p(y|x) by Eq. (23.24). Recently
it have been experimentally shown in [23.43] that such a regularization
makes BYY harmony learning on Gaussian mixture also demonstrate a
RPCL mechanism with automatic selection on k.

– The previously discussed principal ICA that extends ICA to noise situation
(see Eq. (10.9) in [23.101], Eq. (11) in [23.89]) can also be regarded as that
an ICA y = Wx is regularized by G(x|Wy, σ2I).

– In comparison with the above first two types of regularization, one major
advantage of structural regularization is easy to be implemented via an
adaptive algorithm. However, we can not avoid computational difficulty
of the integral in p(y|x) by Eq. (23.24) when y is real and non-Gaussian.
Moreover, choosing a parametric model instead of p(y|x) by Eq. (23.24) is
not easy if there is not enough a priori knowledge.

Annealing Procedure As discussed in Sect. 23.4.2, the KL learning
can be regarded as a regularized version of the HL learning. The advan-
tage of two can be combined by Eq. (23.49) with the regularization strength
gradually decreasing as λ decreases in a simulated annealing procedure. As
discussed in the previous subsection, the local maximum side-effect of the
WTA competition by Eq. (23.19) can be solved via such a simulated anneal-
ing (see Eq. (42) and (43) in [23.83]), which has been further supported by
experiments on Gaussian mixture [23.44].

f-function regularization can also be imposed with ln(r) replaced by
a convex function f , which has also been supported by experimental demon-
strations on Gaussian mixture [23.104] and ICA problems [23.105]. Readers
are referred to a detailed introduction provided in the previous chapter in
this same book.

23.8 Conclusions

Efforts of making learning on a finite size of samples have been discussed in
three typical streams. BYY harmony learning provides a new mechanisms for
model selection and regularization, which has been further justified from both
an information theoretic perspective and a generalized projection geometry.
Further insights have also been obtained via discussions on its relations and
differences from major existing approaches.
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