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Abstract One paper in a preceding issue of this jour-
nal has introduced the Bayesian Ying-Yang (BYY) har-
mony learning from a perspective of problem solving,
parameter learning, and model selection. In a comple-
mentary role, the paper provides further insights from
another perspective that a co-dimensional matrix pair
(shortly co-dim matrix pair) forms a building unit and a
hierarchy of such building units sets up the BYY system.
The BYY harmony learning is re-examined via explor-
ing the nature of a co-dim matrix pair, which leads to
improved learning performance with refined model selec-
tion criteria and a modified mechanism that coordinates
automatic model selection and sparse learning. Besides
updating typical algorithms of factor analysis (FA), bi-
nary FA (BFA), binary matrix factorization (BMF), and
nonnegative matrix factorization (NMF) to share such a
mechanism, we are also led to (a) a new parametriza-
tion that embeds a de-noise nature to Gaussian mixture
and local FA (LFA); (b) an alternative formulation of
graph Laplacian based linear manifold learning; (c) a co-
decomposition of data and covariance for learning regu-
larization and data integration; and (d) a co-dim matrix
pair based generalization of temporal FA and state space
model. Moreover, with help of a co-dim matrix pair in
Hadamard product, we are led to a semi-supervised for-
mation for regression analysis and a semi-blind learning
formation for temporal FA and state space model. Fur-
thermore, we address that these advances provide with
new tools for network biology studies, including learn-
ing transcriptional regulatory, Protein-Protein Interac-
tion network alignment, and network integration.
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1 Introduction

Firstly proposed in 1995 and systematically developed
over a decade, the Bayesian Ying Yang (BYY) harmony
learning provides not only a general framework that ac-
commodates typical learning approaches from a unified
perspective but also a new road that leads to improved
model selection criteria, Ying-Yang alternative learning
with automatic model selection, as well as coordinated
implementation of Ying based model selection and Yang
based learning regularization. In one preceding issue
of this journal [1], one paper provided the fundamen-
tals of the BYY harmony learning, the basic implement-
ing techniques, and a tutorial on algorithms for typical
learning tasks.

As shown by Fig. 2(d) in Ref. [1], an intelligent system
is believed to jointly perform a mapping X → R that
projects a set X of observations into its corresponding
inner representation R and also a mapping R → X that
reconstructs or interprets X from the inner representa-
tion R, which are described via the joint distribution of
X , R in two types of Bayesian decompositions:

Ying : q(X,R) = q(X |R)q(R),

Yang : p(X,R) = p(R|X)p(X). (1)

In a complement of the Ying-Yang philosophy, we call
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this pair BYY system. The Ying is primary, and the
probabilistic structures of q(X |R) and q(R) come from
the natures of learning tasks. The Yang is secondary,
and p(X) comes from a set of observation samples, while
the probabilistic structure of p(R|X) is a functional with
q(X |R), q(R) as its arguments, designed from Ying ac-
cording to a Ying-Yang variety preservation principle.
A Ying- Yang best harmony principle is proposed for
learning all the unknowns in the system, mathematically
implemented by maximizing the harmony functional:

H(p‖ q) =
∫
p(R|X)p(X) ln [q(X |R)q(R)]dRdX. (2)

From the standard perspective of Ref. [1], the inner rep-
resentation R of a set of observation samples X = {xt}
consists of three types that correspond to three inverse
problems, as shown by Fig. 2 in Ref. [1]. One is Y = {yt}
of the inner coding vector yt per sample xt. Usually, the
mapping X → Y performs problem solving, called the
first level inverse problem. The second type of inner rep-
resentation consists of a parameter set Θ, and the map-
ping X → Θ is the second level inverse problem called
parameter learning. The third type is k that consists of
one or several integers that closely relate to the complex-
ities of Y and Θ, and X → k is the third level inverse
problem called model selection. Further details are re-
ferred to Sect. 1.1 in Ref. [1]. Instead of this standard
perspective, this paper provides further insights on the
BYY harmony learning from a new perspective that a
co-dimensional matrix pair (shortly co-dim matrix pair)

forms a building unit and a hierarchy of such building
units sets up the BYY system.

Two matrices A and Y are regarded as a co-dim ma-
trix pair if they share a same rank m. Such a matrix
pair forms a building unit ηx (Y,A) via a simple combi-
nation, e.g., a matrix product or a Hadamard product.
One typical building unit is a product ηx (Y,A) = AY

with its rank m being a common dimension or shortly
co-dimension shared by all the row vectors of A and also
all the column vectors of Y . This building unit is a
stochastic system, featured by A that is also a stochas-
tic matrix. With a stochastic matrix Y as its input, it
outputs ηx = ηx (Y,A) that is observed as a data matrix
X subject to residuals E = X − ηx with

q(E|Ψx ) =
∏
t

q(et|Ψx ), et = xt − ηxt , (3)

X = [x1, · · · , xN ], E = [e1, · · · , eN ],
ηx = [ηx1 , · · · , ηxN ],

E [et] = 0, E [ηxET] = E [ηx ]ET[E] = 0,
E [eteTt ] = Ψx = diag[ψx

1 , ψ
x
2 , · · · , ψx

d ],

where E [u] denotes the expectation of u. That is, ele-
ments of E are mutually uncorrelated not only among
all its elements but also with ηx .

For η(Y,A) = AY in particular, as illustrated at the
center of Fig. 1, the columns of A forms a coordinate
system in the observation space, and we are lead to the
following bi-linear stochastic system :

X = AY + E. (4)

Fig. 1 Family of typical learning tasks from a perspective of the stochastic bilinear matrix system
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To be further addressed in Sect. 2.1, typical learn-
ing tasks are revisited when different constraints are im-
posed on Y , A, and X . It follows from the Boxes 1©– 3©
in Fig. 1 that we are led to a family of FA [2–4] and inde-
pendent FA extensions [5–18], and from the Boxes 4©– 6©
that we are led to a family of nonnegative matrix fac-
torization (NMF) [19–28]. Also, we are led to not only
a new parametrization that embeds a de-noise nature to
Gaussian mixture [29–36] as shown in the Boxes 7©– 8©,
but also an alternative formulation of graph Laplacian
based manifold learning [37,38] as shown in the Box 10©.

Extensive efforts have been made on learning X =
AY + E under the principle of the least square errors
(i.e., minimizing Tr[EET]), or generally the principle of
maximizing the likelihood ln q(X |Θ) to estimate Θ of un-
known parameters with a probabilistic structure q(X |Θ).
One major limitation is that the rank of Y needs to be
known in advance. The problem is tackled with the help
of the Bayesian approach in two typical ways. One is
directly maximizing

ln[q(X |Θ)q(Θ|Ξ)], (5)

with help of a priori q(Θ|Ξ), e.g., as encountered in
learning Gaussian mixture by minimum message length
(MML) [39,40], and in sparse learning that prunes away
extra weights by a Laplace prior q(Θ|Ξ) for a regres-
sion or interpolation task [41–43]. However, a choice of
q(Θ|Ξ) directly affects the estimation of Θ, and thus the
performance is sensitive to whether an appropriate pri-
ori q(Θ|Ξ) is available. The other way is maximizing an
approximation of the marginal likelihood

q(X) =
∫
q(X |Θ)q(Θ|Ξ)dΘ, (6)

e.g., Bayesian inference criterion (BIC) [44], minimum
description length (MDL) [45,46], and variational Bayes
[47–49]. Details are referred to Sect. 2.1 of Ref. [1].

As shown in Fig. 5 of Ref. [1], the BYY harmony
learning on Eq. (4) leads to improved model selection via
either or both of improved selection criteria and Ying-
Yang alternative learning with automatic model selec-
tion, with help of not only the role of q(Θ|Ξ) as above
but also the role of q(Y |Θy). In this paper, as to be
stated in Sect. 2.2, the BYY harmony learning is made
on a BYY system by Eq. (1) with

q(R) = q(Y − ηy |Ψy)q(A− ηa |Ψa)q(Υ), (7)

which differs from the following one in Ref. [1]:

q(R) = q(Y |Θy)q(Θ). (8)

That is, A is taken out of Θ = A ∪ Υ and is considered
in a paring with q(Y − ηy |Ψy) in order to explore the
nature of co-dimension matrix pair A, Y . We are fur-
ther led to improved learning performances with refined

model selection criteria and an interesting mechanism
that coordinates automatic model selection and sparse
learning.

Complementarily, the data decomposition by Eq. (4)
is associated with a decomposition of the data covari-
ance SX into the covariance SY of Y and the covariance
Σ of E in a quadratic matrix equation

SX = ASYA
T + Σ. (9)

There are also typical tasks that aim at this decomposi-
tion with X unavailable but SX and SY available. Illus-
trated in the Boxes 13©– 14© at the bottom of Fig. 1, one
type of such tasks is encountered by graph isomorphism
and attributed graph matching [50–54], where SX and
SY describe two unidirectional attributed graphs, while
A is a permutation matrix and Σ stands for matching
errors. The other type of tasks comes from the sig-
nal processing literature [55,56], where SX is a positive
semi-definite Toeplitz matrix, SY is diagonal, and A is
particularly structured with every element in a form of
exp[j(k − 1)ωl].

Given E that satisfies Eq. (3), making data decompo-
sition by Eq. (4) implies the decomposition by Eq. (9),
while making Eq. (9) also leads to Eq. (4) if we also
have one additional condition that A is orthogonal and
Σ = σ2I, as encountered in principal component analysis
(PCA) [2,13]. In practice, the additional condition may
not hold, which is alternatively enhanced via making
both the decompositions by Eq. (4) and Eq. (9). More-
over, this co-decomposition provides a formulation that
integrates different data types, namely X and SX . Also,
making the decomposition by Eq. (9) can be regarded
as imposing a structural regularization on learning the
model by Eq. (4).

According to the natures of learning tasks, the build-
ing unit by Eq. (4) may further get supported from an
upper layer. In addition to the standard way of using
a prior q(Θ|Ξ) in Eq. (8), either or both of ηy ,ηa may
also itself be the output of another co-dim matrix pair
e.g., in a format of Eq. (4), which may be regarded as
structural priors. Moreover, either or both of Ψy and Ψa

may itself be the output of another co-dim matrix pair
in a format of Eq. (9). So on and so forth, one new layer
may have its next new layer. Whether we add a new
upper layer depends on if there is some priors available
or we want to simplify computation. As a whole, a BYY
system is featured by a hierarchy of co-dim matrix pairs.

To be specific, we consider two typical examples fea-
tured with a two layer hierarchy. With ηa = ηa(ζ,Φ),
the de-noise nature of the above new parametrization is
also embedded to a Gaussian mixture within a dimen-
sion reduced subspace and further to local FA [57–67] as
illustrated in the Box 9©. With ηy = ηy(ε, B), we are
further led to a co-dim matrix pair based generalization
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of temporal FA and structural state space model [68–75],
as illustrated in the Boxes 11© and 12©.

Featured with merely data X available, all the above
discussed tasks belong to what called unsupervised
learning on Eq. (4). With both X and its corresponding
Y available, the problem becomes linear regression anal-
ysis or a special example of supervised learning on Eq.
(4). There are also many practical cases that are some-
where a middle of the two ends. One example is that
the corresponding columns of both X and Y are par-
tially known in addition to merely having X available.
Another example is encountered on studying what called
networks component analysis (NCA) for transcriptional
regulation networks (TRN) in molecular biology, where
A is known to be sparse and the locations of zero ele-
ments are known [76–79]. In fact, the two examples are
instances of a general scenario that we know not only
the output observations X of a system but also partially
either or both of the input Y and the system (i.e., A and
the property of E).

Instances of this scenario were also encountered in the
signal processing studies on the linear convolution sys-
tem, a special type of X = AY + E. The term blind
deconvolution [80,81] refers to the tasks of estimating
unknowns only from its output observations X , while
semi-blind deconvolution [82] refers to the cases that
we know partially either or both the system and its in-
put. Moreover, instances of this scenario are also found
in those efforts made under the term semi-supervised
learning [83] for pattern classification. The columns of
X are observed patterns from the outputs of a system
that generates samples of selected classes, based on the
input Y with its columns indicating which classes to
select. We observe that semi-blind deconvolution and
semi-supervised learning share a similar concept but dif-
fer in a specific system and specific types of input and
output. Probably, semi-blind learning is a better name
for efforts that put attention on the general scenario of
knowing partially either or both of system and input.

In Ref. [1, Sect. 4.4], the BYY system is shown to pro-
vide a unified framework to accommodate various cases
of semi-supervised learning. To be stated in Sects. 3.2
and 4.3, we are further led to a general formulation for
semi-blind learning. As illustrated in Fig. 1 from the
Box 15© to the Box 17©, letting Y in Eq. (4) to be sup-
ported from its upper layer by a Hadamard product of
co-dim matrix pair, we are lead to a formation of semi-
supervised learning for regression analysis with a nature
of automatic selection on variables; while letting A to
be supported from its upper layer by another Hadamard
product of co-dim matrix pair, we are lead to a formation
of semi-blind learning for Eq. (4) that covers the above
mentioned NCA [76–79] as a special case. This forma-
tion is further generalized for temporal modeling, with
Y supported by ηy(ε, B) and then B further supported

by a Hadamard product of another co-dim matrix pair.
Last but not least, this paper also explores molecular

biology applications of the advances achieved from the
new perspective of the BYY harmony learning.

The existing studies on molecular networks rely on
technologies available for data gathering, featured by
two waves. The first is driven by a large number of
”genome” projects on transcriptome mechanisms and
particularly TRN in the past two decades. In Sect.
5.2, the past TRN studies will be summarized in three
streams of advances, and further progresses are sug-
gested in help with the co-dim matrix pair perspective of
the BYY harmony learning on X = AY + E, especially
the general formulation for semi-blind learning and its
extension for temporal modeling.

The second wave is featured by the term interac-
tome, due to recent large-scale technologies for measur-
ing protein-to-protein interactions (PPIs) [84]. PPI data
are represented by undirectional networks or graphs, and
two major tasks on PPI data are graph partitioning
for module detection and graph matching for network
alignment. Recently, a BYY harmony learning based bi-
clustering algorithm has also been developed for graph
partitioning and shown favorable performances in com-
parison with several well known clustering algorithms for
the same purpose [28]. Further improvements are sug-
gested from the co-dim matrix pair perspective in this
paper. Moreover, the problem of network alignment is
also taken in consideration with graph matching algo-
rithms from the perspective of Eq. (9) with help of the
BYY harmony learning.

Additionally, there are several data sources available
for the studies of transcriptome mechanisms, which lead
to different networks and thus arise the needs of net-
work integration. A similar scenario is also encountered
for the studies of interactome mechanisms. Actually,
two domains of mechanisms are related too. Therefore,
network integration becomes increasingly important in
the current network biology studies [85]. The problem
of network integration is closely coupled with network
alignment, and the co-decomposition by Eq. (4) and Eq.
(9) provides a potential formulation for integrating data
types across the domains.

The rest of this paper is arranged as follows. Sec-
tion 2 starts from a bi-linear stochastic system and its
post-linear extensions, together with a brief outline of
typical learning tasks it covers. Then, a joint considera-
tion of a co-dim matrix pair is shown to further improve
the BYY harmony learning, with a new mechanism that
coordinates automatic model selection and sparse learn-
ing. In Sect. 3, we get further insights on this perspec-
tive of the BYY harmony learning via examples based
on Eq. (4). In addition to updating typical algorithms
of the FA and NFA families to share such a mechanism,
we suggest a new parametrization that embeds a de-
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noise nature to Gaussian mixture and variants, and an
alternative formulation of graph Laplacian based linear
manifold learning. Then, taking Eq. (9) also in consid-
eration, we are led to algorithms for attributed graph
matching and a co-decomposition of data and covari-
ance. In Sect.4, we proceed to a general formulation
of a BYY harmony learning with a hierarchy of sev-
eral co-dim matrix pairs. The de-noise parametrization
has been further extended to local FA, and the co-dim
matrix pairing nature has been generalized to temporal
FA and state space modeling. Moreover, with help of a
co-dim matrix pair in Hadamard product, we are lead
to a general formation of semi-blind learning. Finally,
section 5 further addresses that these advances provide
with new tools for network biology applications, includ-
ing learning TRN, PPI network alignment, and network
integration.

2 Co-dimensional matrix-pairing perspective
of BYY harmony learning

2.1 Learning post bi-linear system and model selection

This subsection introduces the probabilistic structures
for q(X |ηx ,Ψx ), q(Y |Θy) and q(A|ηa ,Ψa), and related
fundamental issues, including typical learning tasks, in-
determinacy problems, and model selection issues.

Equivalently, q(E|Ψx ) in Eq. (3) can be rewritten into

X = ηx + E,

q(X |R) = q(X |ηx ,Ψx ) = q(X − ηx |Ψx ),
=

∏
t q(xt − ηxt |Ψx

t ) =
∏
t q(xt|ηxt ,Ψx

t ),

ηxt = E [xt],

Ψx
t = E [(xt − ηxt )(xt − ηxt )T] = E [eteTt ] by Eq.(4),

(10)

where the nations q(u|ηu ,Ψu) and q(u − ηu |Ψu) are
used exchangeably for convenience. Typically, for xt =
[x1,t, · · · , xd,t]T we also have

q(xt|ηxt , ψx
t ) =

∏
j q(xj,t|ηxj,t, ψx

j,t). (11)

From knowing that elements of the additive noise E
have zero mean and are uncorrelated among all its ele-
ments and also with ηx , we further have

E [vec(X)vecT(X)] = E [vec(ηx )vecT(ηx )]

+E [vec(E)vecT(E)].
(12)

This is a problem of additive decomposition of a non-
negative definite matrix into a sum of two nonnegative
definite matrices. Without knowing the noise covariance
E [vec(E)vecT(E)], we have an additive indeterminacy
that the decomposition is ill-posed since there are infinite
number of possibilities. To reduce the indeterminacy, we

may further impose some structure on a diagonal matrix
E [vec(E)vecT(E)]. E.g., we have

E [vec(E)vecT(E)] = diag[Ψx , · · · ,Ψx ],

or Ψx
t = Ψx ,

(13)

i.e., each row of E has a same covariance. At one ex-
treme case, we even assume that all the elements of E
shares a same covariance σ2 as follows

Ψx = σ2I, or ψx
j,t = σ2. (14)

Even in this case, the additive indeterminacy is still not
totally eliminated as long as E [vec(ηx )vecT(ηx )] +γI
and σ2 − γ both remain nonnegative for any scalar γ.

The other way to reduce this indeterminacy is taking
the structure of ηx in consideration. For ηx = AY in
Eq. (4), the above indeterminacy about a scalar γ may
be eliminated by the maximum likelihood learning when
the rank of AY is less than the full rank d. However, the
indeterminacy still remains when either AY is full rank
or Ψx is diagonal. Moreover, it follows that

AY = Aφφ−1Y = A∗Y ∗,

A∗ = Aφ, Y ∗ = φ−1Y.
(15)

i.e., AY suffers an indeterminacy of any nonsingular ma-
trix φ.

To tackle the problem, we consider an appropriate
structural constraint on Y . A typical structure is
that its elements are independently distributed, that is,
q(Y − ηy |Ψy) in Eq. (7) is given as follows:

q(Y |ηy ,Ψy) = q(Y − ηy |Ψy),

q(Y |ηy ,Ψy) =
∏
t q(yt|ηyt ,Ψy

t ),

q(yt|ηyt , ψy
t ) =

∏
j q(yj,t|ηyj,t, ψy

j,t),
ηyt = E [yt],

Ψy
t = E [(yt − ηxt )(xt − ηxt )T]

= diag[ψy
1 , ψ

y
2 , · · · , ψy

m],
Y = [y1, · · · , yN ]T, yt = [y1,t, · · · , ym,t]T.

(16)

Similar to Eq. (13), in many problems [2–18], the
columns of Y are independently and identically dis-
tributed (i.i.d.), from which we have

Ψy
t = Ψy . (17)

Moreover, the counterpart of Eq. (14) is also encountered
in some studies.

For ηx = AY in Eq. (4), ηx is regarded as gener-
ated from independent hidden factors, which makes the
indeterminacy of any nonsingular matrix φ in Eq. (15)
reduces to an indeterminacy that φ comes from the or-
thogonal matrix family. In this case, Eq. (10) covers
several typical latent variable models shown in Fig. 1,
with the following details :
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• As illustrated by the Box 1©, we are lead to the
classic FA [2–4] for real valued Y featured with that
each yi,t is the following Gaussian

q(yj,t|ηyj,t, ψy
j ) = G(yj,t|0, 1),

ηyj,t = 0, ψy
j = 1,

q(yt|ηyt , ψy
t ) = G(yt|0, I),

(18)

where and hereafter G(u|μ,Σ) denotes a Gaussian
distribution with a mean μ and a covariance matrix
Σ. The indeterminacy of any orthogonal matrix φ
reduces to an orthonormal matrix since ψy

j = 1.
• As illustrated by the Box 3©, we are lead to the bi-

nary FA (BFA) [5–8] with each yi,t = 0 or yi,t = 1
from

q(yj,t |ηyj,t, ψy
j ) = q(yj,t|ηyj,t)

= exp{yj,t ln ηyj +(1 − yj,t) ln (1 − ηyj )},
ηyj,t = ηyj , ψy

j = ηyj (1 − ηyj ),

(19)

where ψy
j is not a free parameter but a function of

ηyj,t that need not to be put in the distribution. The
indeterminacy by φ reduces to only any permuta-
tion, since yi,t takes only 1 or 0.

• The above BFA includes a special case that has one
additional constraint

yi,t = 0, yi,t = 1,
∑
i yi,t = 1,

q(yt|ηyt ) = exp{∑j yj,t ln η
y
j },

∑
j η

y
j = 1.

(20)

That is, the hidden factors are not only binary
but also exclusively taking 1 by only one factor.
Also, to be further introduced in Sect. 3.1 that this
exclusive BFA equivalently implements the classic
least square error (MSE) clustering problem, as il-
lustrated by the Box 5©.

• As illustrated by the Box 2©, we are lead to the non-
Gaussian FA (NFA) [9–13] for real valued Y that at
most one yi,t per column is Gaussian. In this case,
we have a scale indeterminacy [86].

• As illustrated in the Boxes 4©– 6©, the NFA includes
a family featured by that both A and Y are non-
negative matrices, where a matrix is nonnegative
if every element is nonnegative valued. Extensive
studies has been widely made on this family under
the term nonnegative matrix factorization (NMF)
[19–28]. Moreover, BFA and exclusive BFA also
lead to its NMF counterparts when A is a nonneg-
ative matrix, as illustrated by the Box 7©.

Moreover, both BFA and NFA closely relate to multi-
ple cause mixture model [14,15], and generalized latent
trait models or item response theory [16–18]. Particu-
larly, Eq. (4) with Eq. (19) and Eq. (20) lead to two
typical binary matrix factorization (BMF) models [28]
when the matrix A comes from a distribution similar to
Eq. (19) or a distribution similar to Eq. (20).

For a unified consideration on binary, real, and non-
negative valued yi,t, we consider q(yi,t|ηyi,t, ψy

i ) in Eq.
(16) given by the following exponential family [87]:

q(u|η, ψ) =

⎧⎨
⎩

exp{ 1
ψ

[ηu− a(η) − h(u)]}, (a) ,

G(u|η, ψ), (b).
(21)

Generally, η, ψ are called natural parameter and disper-
sion parameter, respectively. Corresponding to a specific
distribution, the function η(·) is also a specific scalar
function called the mean function while its inverse func-
tion η−1(r) is called the link function in the literature
of generalized linear model (GLM) [88]. Some examples
are shown in Table 1, e.g., we may consider Bernoulli
and exponential distribution when ψ = 1 and u takes
binary and nonnegative values, respectively.

Table 1 Link functions for several typical distributions in the
exponential family

distribution name link function mean function

Gaussian identity η−1(r) = r η(ξ) = ξ

exponential

gamma
inverse η−1(r) = r−1 η(ξ) = ξ−1

binomial

Bernoulli
logit η−1(r) = ln

r

1 − r
η(ξ) =

1

1 + exp(−ξ)

Similarly, we may consider q(xi,t|ηxi,t, ψx
i ) coming from

the exponential family by Eq. (10) together with Table
1, in order to cover that xi,t takes either of binary, real,
and nonnegative types of values. Accordingly, we extend
Eq. (4) into the following one:

ηx =

{
AY (a)homogenous linear,
η(AY ), (b)post-linear

(22)

where η(V ) = [η(vi,j)] for a matrix V = [vi,j ]
and a monotonic scalar function η(r),

by which X = ηx + E becomes a post bi-linear system
since it is an extension of the bi-linear system by Eq. (4)
with the bilinear unit AY followed by an element-wise
nonlinear scalar mapping η(r). When both X and Y are
given, the above model degenerates to the generalized
linear model (GLM) for the linear regression [88].

A nonlinear scalar mapping η(r) in Eq. (22)(b) also
bring one additional favorable point. For Eq. (22)(a),
the additive form by Eq. (12) gets the detailed form Eq.
(9) for a fixed A. Observing ASYA

T + Σ = ASYA
T +

C + Σ − C, there will be many values for C such that
both ASYA

T+C and Σ−C remain nonnegative definite.
Also, any nonnegative definite matrix can be rewritten
in the form A∗S∗

yA
∗T. In other words, there is still an

additive indeterminacy. For Eq. (22)(b), ASYA
T be-

comes E[η(AY )ηT(AY )], while E[η(AY )ηT(AY )] + C

usually may not be rewritten into the same format of
E[η(AY )ηT(AY )]. In other words, an additive indeter-
minacy has been eliminated.
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A post bi-linear system is described by Eq. (10)
and Eq. (11) in help with Eq. (16) plus a specific
q(yj,t|ηyj,t, ψy

j ), (e.g., either of Eq. (18), Eq. (19), and
Eq. (20)) to meet a specific learning task. The task of
estimating all the unknown parameters in the system
is called parameter learning, which is typically imple-
mented under the principle of the maximum likelihood
(ML), that is

Θ∗ = argmaxΘ ln q(X |Θ), Θ = {A,Ψx ,Θy},
q(X |Θ) =

∫
q(X |η(AY ),Ψx )q(Y |Θy)dY.

(23)

The maximization is usually implemented by the expec-
tation maximization (EM) algorithm [3,5,10–12].

One major challenge for the ML learning is that the
rank of AY needs to be given in advance, while giving
an inappropriate rank will deteriorate the learning per-
formances. This challenge is usually tackled by model
selection, sparse learning, and controlling model com-
plexity, which are three closely related concepts in the
literature of machine learning and statistics. The con-
cept of model selection came from several decades ago on
the studies of linear regression for selecting the number
of variables [89,90], of clustering analysis for the number
of clusters [91], of times series modeling for the order of
autoregressive model [92]. The studies of this stream all
involve to select the best among a family of candidate
models via enumerating the number or order, and thus
usually referred by the term of model selection.

The concept of model complexity came from the ef-
forts also started in the 1960’s by Solomonoff [93] on
what later called Kolmogorov complexity [94]. Being dif-
ferent from task dependent models, these efforts aimed
at a general framework that is able to measure the com-
plexity of any given model by the counts of a unit com-
plexity by a universal gauge and then to build a mathe-
matical relation between this model complexity and the
model performance (i.e., generalization error). One diffi-
culty is how to get a universal gauge. A popular example
is the so-called VC dimension [95] based theory on struc-
tural risk minimization, while the other example is the
so-called yardstick or universal model in the evolution
of MDL studies [45,46]. The other challenge is that the
resulted mathematical relation between measured com-
plexity and model performance is conceptually and qual-
itatively important but difficult to be applied to a model
selection task in practice. Efforts have also been made
towards this purpose and usually lead to some rough es-
timates, among which useful ones typically coincide with
the first stream.

Instead of measuring the complexity contributed from
every unit complexity, sparse learning is a recent popu-
lar topic that came from efforts on Laplace prior based
Bayesian learning, featured by pruning away each ex-
tra parameter for selecting variables in a regression or

interpolation task [41–43]. Though sparse learning and
controlling model complexity are both working for a task
similar to model selection and often referred in certain
confusion, three concepts actually have different levels
of focuses.

For a post bi-linear system by Eq. (10) and Eq. (16),
the concept of model selection is selecting the column
dimension m of Y or the number of variables in yt. It is
also equivalent to selecting the row dimension of A, while
model complexity considers measuring the complexity of
the entire system by counting a total sum contributed
from every unit complexity by a universal gauge. This
model complexity is a function ofm and thus can be used
for model selection. However, as above mentioned, this
model complexity not only is difficult to be computed
accurately but also may contain an additional part that
even blurs or weakens the sensitivity on selecting m.
Without measuring the contributions from every unit
complexity and also being different from model selection
that prunes away extra individual columns of A, sparse
learning focuses on pruning away individual parameters
in A per element.

Instead of tackling the difficulty of counting every unit
complexity by a universal gauge or considering whether
each individual parameter should be pruned away, model
selection works on an appropriate middle level on which
a unit incremental is featured by a sub-model, e.g., one
column of the matrix Y . This feature not only avoids
wasting computing cost on useless details but also uses
limited information collectively for estimating reliably
an intrinsic scale that suits the learning tasks. For the
system by Eq. (10) and Eq. (16), this intrinsic scale is
the dimension m.

Most of the existing studies on both model selection
and sparse learning rely on ceratin a priori q(Θ|Ξ). For
a post bi-linear system by Eq. (10) and Eq. (16), the
first important a priori is about A. Recalling that the
columns of A form a coordinate system in the observa-
tion space, we let such a priori about A in a structure of
column-wise independence as follows:

q(A− ηa |Ψa) = q(A|ηa ,Ψa) =
∏
j q(aj |ηa

j ,Ψ
a
j ),

A = [a1, a2, · · · , am], ηa = [ηa
1 ,η

a
2 , · · · ,ηa

m],

Ψa = diag[ψa
1 , ψ

a
2 , · · · , ψa

m],

(24)

where q(aj |ηa
j ,Ψ

a) comes from the following extension
of Eq. (21) for a multivariate vector u:

q(u|η, ψ) =

⎧⎪⎨
⎪⎩
eη

Tψ−1u−a(η,ψ)−h(u,ψ), (a),

G(u|η, ψ), (b),

ML(u|η, ψ), (c),

where ψ is usually a diagonal matrix for the case (a),
and ML(u|η, ψ) denotes a multivariate Laplace extended
from its counterpart multivariate Gaussian G(u|η, ψ).
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On one hand, extensive efforts have been made on
learning based a priori with help of Bayesian approaches.
That is, the ML learning by Eq. (23) is extended into
maximizing Eq. (5) under the name of Bayesian learn-
ing or maximizing Eq. (6) under the name of marginal
Bayes or its approximation under the name of variational
Bayes. As outlined in Sect. 2 and especially Figs. 4&5
of Ref. [1], these studies all base on a priori q(Θ|Ξ), in-
cluding the one by Eq. (24) to make model selection and
sparse learning, while the role of q(Y |Θy) by Eq. (16)
is hidden behind the integral in Eq. (23) without taking
its role.

On the other hand, via q(R) by Eq. (8) the BYY har-
mony learning by Eq. (2) considers q(Y |Θy) in a role
that is not only equally important to q(Θ|Ξ) but also
easy computing, while q(Θ|Ξ) is still handled in a way
similar to Bayesian approaches. As addressed in Sect.
2.2 of Ref. [1], the BYY harmony learning on Eq. (4)
leads to improved model selection via either or both of
improved model selection criteria and Ying-Yang alter-
native learning with automatic model selection.

Conventionally, model selection is implemented in two
stages. That is, enumerating a number of m and learn-
ing unknown parameters at each m, and then select-
ing a best m∗ by a model selection criterion, such as
AIC/BIC/MDL. An alternative road of efforts is re-
ferred as automatic model selection. An early effort
made since 1992 is rival penalized competitive learning
(RPCL) [96,97,34] for clustering analysis and Gaussian
mixture, with the cluster number k automatically de-
termined during learning. Also, sparse learning can be
regarded as implementing a type of automatic model
selection, e.g., it leads to model selection if the parame-
ters of one entire column of A has been all pruned away.
The above mentioned Bayesian approach may also be
implemented in a way of automatic model selection, e.g.,
pruning extra clusters by a Dirichlet prior [40].

As outlined at the end of Sect. 2.1 in Ref. [1], auto-
matic model selection is associated with a learning algo-
rithm or principle with the following two features:

• there is an indicator ψ(θSR) on a subset θSR of
parameters that represents a particular structural
component.

• during implementing this learning, there is an in-
trinsic mechanism that drives

ψ(θSR) → 0, as θSR → a specific value, (25)

if the corresponding component is redundant.
Thus, automatic model selection gets in effect via check-
ing ψ(θSR) → 0 and then discarding its corresponding
θSR. The simplest case is checking whether θSR → 0, a
typical scenario encountered in Ref. [1].

In the rest of this section, q(A|ηa ,Ψa) is put into
Eq. (7) and jointly considered with q(Y |Θy) such that

the BYY harmony learning on Eq. (4) further improves
model selection and sparse learning, with help of explor-
ing the co-dimension nature of the matrix pair A, Y .

2.2 Co-dim matrix pair and BYY harmony learning

Two matrices A and Y are regarded as a co-dimensional
(shortly co-dim) matrix pair if they share a same rankm.
In the post bi-linear system by Eq. (10) and Eq. (22), a
co-dim matrix pair A and Y forms a matrix product AY
as a core building unit. Actually, the common rank m is
an intrinsic dimension that is shared from two aspects:

m is shared by

{
all the columns of Y, (a)
all the rows of A. (b)

(26)

That is, there are two sources of information that could
be integrated for a reliable estimation on this intrinsic
co-dimension m.

In the studies of linear regression that estimates A
with both X and Y given, model selection is made on
selecting the variables of each row in A with the help of
either a criterion (e.g., Cp , AIC, BIC) [44,89,91] that
takes the number of variables in consideration with help
of a priori onA. In the studies of learning a post bi-linear
system with X given and Y unknown, parameter esti-
mation is made by the maximum likelihood on q(X |Θ)
in Eq. (23), and model selection is made via Bayesian
approach by Eq. (5) or Eq. (6) with help of a priori on
A. In these studies, model selection uses only the infor-
mation from A, while the information from Y has not
been used for model selection though it is used for es-
timating A. In other words, the information of Y has
been ignored or even not been noticed in those previous
studies. In contrast, as addressed in Sect. 2.2 of Ref. [1],
the BYY harmony learning considers the information of
Y via q(Y |Θy) in a role that differs from that in Eq. (23)
but is equally important to a priori on A, which leads to
improved model selection on m.

Taking the studies on the classic FA [2–4] for further
insights, it follow from Eq. (18) thatG(yj,t|0, 1) has been
widely adopted in the literature of statistics for describ-
ing each hidden factor, without unknowns to be esti-
mated. Equivalently, there is no free parameter within
this parametrization for describing Y . In Ref. [76, Item
9.4], we considered a different FA parametrization by re-
stricting the matrix A to be orthonormal matrix and re-
laxing the extreme case G(yj,t|0, 1) to G(yj,t|0, ψy

j ) with
one unknown ψy

j . The two FA parameterizations make
no difference on q(X |Θ) in Eq. (23) and thus are equiv-
alent in term of the ML learning. In contrast, two FA
parameterizations become different in term of the BYY
harmony learning, as listed in Table 2 of Ref. [9]. Also, it
was experimentally found that the FA with G(yj,t|0, ψy

j )
outperforms considerably the FA with G(yj,t|0, 1) [98],
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which may be understood from observing that a un-
known parameter ψy

j provides a room for a further im-
provement by the BYY harmony learning.

Though the BYY harmony learning takes the informa-
tion of Y in consideration of model selection via q(Y |Θy)
by Eq. (16), the previous studies on the BYY harmony
learning uses the information from A in a way similar
to Bayesian approach by Eq. (5) or Eq. (6), in lack of a
good coordination with q(Y |Θy). For improvements, we
need further examine the effects of scale indeterminacy.

As discussed in the previous subsection, this product
AY suffers from the indeterminacy by Eq. (15), which is
remedied via requiring the row independence of q(Y |Θy)
by Eq. (16). For a diagonal matrix φ = D �= γI, the in-
determinacy by Eq. (15) is usually called the scalar in-
determinacy, which can not be removed by Eq. (16) for a
real valued Y . When each yi,t takes either 1 or 0, such a
scale indeterminacy is not permitted, since Y ∗ = D−1Y

could not remain to be either 1 or 0. Alternatively, if yi,t
is allowed to be binary of any two values, we still have a
scale indeterminacy.

The studies of maximum likelihood and Bayesian ap-
proach by Eq. (5) or Eq. (6) rely on q(X |Θ) in Eq. (23),
which is insensitive to such a scale indeterminacy. Usu-
ally ψy

j = 1 is imposed to remove this scale indetermi-
nacy, e.g., in Eq. (18) for the classic FA [2–4]. With
G(yj,t|0, 1) relaxed to G(yj,t|0, ψy

j ), the BYY harmony
learning searches an appropriate value for each ψy

j , with
an improved model selection. Still, there is a scale in-
determinacy that is removed by imposing the constraint
ATA = I [8,9,13].

In sequel, we seek a coordinated consideration of both
q(Y |ηy ,Ψy) by Eq. (16) and q(A|ηa ,Ψa) by Eq. (24),

q(A|0,Ψa) = q(A|ηa ,Ψa)|ηa=0,

q(Y |0,Ψy) = q(Y |ηy ,Ψy)|ηy=0.

We again focus on the FA with G(yj,t|0, 1) and the FA
with G(yj,t|0, ψy

j ). Both the two FA parameterizations
are special cases of a family of FA variants featured with
a transform

A∗ = AD−1, Y ∗ = DY, D is a diagonal, (27)

which is shortly called the FA-D family. As stated above,
instances in the FA-D family are equivalent in term of
the ML learning and Bayesian approach. In Ref. [1],
the BYY harmony learning by Eq. (2) with q(R) by Eq.
(8) is considered with q(A|0,Ψa) buried in q(Θ), while
q(Y |0,Ψy) =

∏
tG(yt|0, D2) with different diagonal ma-

trices of D makes no difference on q(X |Θ) by Eq. (23)
but indeed leads to a difference for the BYY harmony
learning.

With help of q(R) by Eq. (7) that jointly considers
q(Y |0,Ψy) and q(A|0,Ψa), it follows from q(Y ∗|0,Ψy)
= q(Y |0,Ψy)/|D| and q(A∗|0,Ψa) = |D|q(A|0,Ψa) that

the value of this q(R) and thus the harmony measure
H(p||q) by Eq. (2) are invariant to Eq. (27). That is,
all the variants in the FA-D family become equivalent
to each other. Interestingly, the above two FA param-
eterizations become equivalent again. This coordinated
nature of a paired q(Y |0,Ψy) and q(A|0,Ψa) provides
the following new insights.

(1) This variant nature is different from the previ-
ous one owned by the ML learning. Due to q(X |Θ) in
Eq. (23), any value for D has no difference and also no
help for model selection. Thus, ψy

j = 1 is simply imposed
to remove such a scale indeterminacy, while the above
BYY harmony learning is able to use the information
of Y in consideration of model selection via q(Y |Θy).
With q(R) by Eq. (8), two FA parameterizations make
the harmony measure H(p||q) by Eq. (2) different. How-
ever, we still do not know which one is better though the
FA with G(yj,t|0, ψy

j ) is experimentally shown to outper-
form the FA with G(yj,t|0, 1) [98]. In contrast, with q(R)
by Eq. (7), knowing that two FA parameterizations make
H(p||q) by Eq. (2) take the same value indicates that we
need to compare two FA parameterizations from aspects
other than from H(p||q).

First, the FA with G(yj,t|0, ψy
j ) is better than the FA

with G(yj,t|0, 1) in term of being able to use the infor-
mation of Y for model selection. Particularly, automatic
model selection can be made via discarding the j-th di-
mension as the BYY harmony learning drives

ψy
j → 0, (28)

as a simple example of Eq. (25). Second, in comparison
with a priori q(A|0,Ψa), q(Y |0,Ψy) is more reliable and
easy to use (see Sect. 2.2 of Ref. [1]), while an inappropri-
ate q(A|0,Ψa) will deteriorate the overall performance.
Third, it follows from Eq. (26) that Y has N columns
to contain the information about m while A has only d
rows, where we usually have N � d or even N � d.

(2) In those previous studies on the BYY harmony
learning [1], the role of a priori q(A|0,Ψa) is buried
in q(Θ|Ξ) that contributes to a model selection crite-
rion roughly via the number of free parameters in Θ
as a whole. A paired consideration of q(Y |0,Ψy) and
q(A|0,Ψa) in Eq. (7) also motivates to put the contribu-
tion by q(A|0,Ψa) in a more detailed expression. E.g.,
the model selection criterion by Eq. (18) in Ref. [1] is
modified into

2J(m) = ln |Ψx | + h2Tr[Ψx −1] +m ln(2πe)+

ln |Ψy | + d
N [m ln(2πe) + ln |Ψa |] + nf (Θ),

(29)

where ln |Ψa | =
∑

i,j ln Ψa
i,j, and the notations Ψx , Ψy

were changed from ones Σ and Λ in Sect. 3.2 of Ref. [1],
adopting the notation system of this paper (see Fig. 2).
Also, we may ignore nf (Θ) if there is no appropriate pri-
ori. It is observed that the contribution from q(A|0,Ψa)
is weighted by a ratio d/N , which echoes the discussion
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made at the end of the above item (1). Similarly, we
may also modify the model selection criterions by Eqs.
(13) and (19) in Ref. [1].

(3) In the previous studies on the FA with
G(yj,t|0, ψy

j ) (e.g., see Sect. 3.2 in Ref. [1]), to normally
make automatic model selection with help of checking
Eq. (28), the BYY harmony learning need to be imple-
mented under the constraint of requiring ATA = I for
removing a scale indeterminacy. It follows that Eq. (27)
leads to the following scalar indeterminacy:

ψy∗
j = d2

jψ
y
j , Ψa∗

j = d−2
j Ψa

j . (30)

That is, it may occur that one element of Ψy∗ tends
to zero due to a unknown scaling d2

j → 0 that may
simultaneously make the counterparting Ψa∗

tend to
infinity. The constraint ATA = I can avoid this sce-
nario. Moreover, a paired consideration of q(Y |0,Ψy)
and q(A|0,Ψa) in Eq. (7) motivate to find a better
choice.

It can be observed that the above scalar indeterminacy
can also be avoided by the following constraint

Tr[Ψa
j ] = const or simply Tr[Ψa

j ] = 1, (31)

which is a relaxation of ATA = I at a diagonal case

Ψa
j = diag[ψa

1,j, · · · , ψa
d,j],

ψa
i,j = E [(aij − ηaij)

2].
(32)

Noticing that ATA = I includes aT
j aj = 1 and that

ψa
i,j is a variance of the random variable aij , we see

that
∑

j a
2
ij = 1 actually leads to

∑
j Ψa

i,j = 1 when
E [aij ] = 0. Inversely,

∑
j Ψa

i,j = 1 does not necessarily
lead to

∑
j a

2
ij = 1.

The alternatives of ATA = I also include

{
∑
i

|aij |γ}1/γ = 1, 0 < γ <∞, for every j, (33)

where the case γ = 2 includes
∑

j a
2
ij = 1 as a special

case. Moreover, it can be observed that these cases are
all within the FA-D family by Eq. (27) with

D = diag[d1, · · · , dm],

dj = 1/Tr[Ψa
j ], for Eq. (30),

dj = 1/{∑i |aij |γ}1/γ for Eq. (33) .

(34)

(4) For the Bayesian approach by Eq. (5) or Eq. (6)
with q(X |Θ) by Eq. (23), the constraint ψy

j = 1 already
shut down the contribution of q(Y |0,Ψy) to model selec-
tion. Actually, model selection is implemented via dis-
carding the j-th column ofA if the entire column aj → 0.
Also, sparse learning is implemented via discarding one
element aij if aij → 0. In contrast, the BYY harmony
learning improves model selection via either or both of
Eq. (28) and Eq. (29), with help of one constraint by

either of Eq. (31), Eq. (33) and Eq. (34). Still, sparse
learning can be performed since such a constraint will
not impede aij → 0.

Moreover, checking aij → 0 may also be improved by
checking whether

Ψa
i,j → 0. (35)

A coordinated implementation of Eq. (28) and Eq. (35)
under the constraint of Eq. (31) (or one of its alterna-
tives) form a good mechanism that coordinates auto-
matic model selection and sparse learning.

(5) Adding extra constraint to remove a scale inde-
terminacy has both a good side and a bad side. The
good side is facilitating to make model selection and
sparse learning by Eq. (28) and Eq. (35) and also re-
ducing the targeted domain of solutions. The bad side
is that externally forcing the targeted domain not only
increasing computing cost but also make it easy to be
stuck at some suboptimal solution. Thus, we consider
how to make model selection and sparse learning with-
out imposing those constraints by Eq. (31), Eq. (33) and
Eq. (34). Instead of checking by Eq. (28) and Eq. (35),
i.e., the simplest format θSR → 0 in Eq. (25), we con-
sider ψ(θSR) → 0 with ψ(θSR) in a composite format. It
follows from Eq. (30) that the scalar indeterminacy also
disappears by considering the product ψy∗

j Ψa∗
j . Thus,

we replace Eq. (28) with the help of

(a) Discard the j-th row of Y and also the j-th

column of A if ψ(θSR) = ψy
j Tr[Ψa

j ] → 0, (36)

(b) Discard the aij of A if ψ(θSR) = ψy
j ψ

a
i,j → 0.

for the special case by Eq. (32).

When the j-th dimension of yt or equivalently the j-th
row of Y is redundant, both Eqs. (36)(a) and (36)(b) will
happen for every i. In this case, they equivalently prune
away the j-th dimension. If Eq. (36)(b) happens only for
some i, the corresponding elements in the j-th column
of A will be pruned away, that is, we are lead to sparse
learning. In other words, both automatic model selec-
tion and sparse learning are nicely coordinated. Also,
it can be observed that Eq. (36)(a) returns back to Eq.
(28) under the constraint by Eq. (31). In other words,
Eq. (36)(a) is an integration of Eq. (28) and Eq. (31).

2.3 Apex approximation and alternation maximization

We further consider the Bayesian Ying Yang system
shown in Fig. 2, with the following representation

q(R) = q(Y |ηy ,Ψy)q(A|ηa ,Ψa)q(Ψ|Ξ),

Ψ = {Ψa ,Ψy ,Ψx}, (37)

which is a special case of Eq.(7) with Υ consisting of
only Ψ while the rest parameters (if any) ignored.
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Together with q(X |R) by Eq. (10), we get the Ying
machine q(X,R) = q(X |R)q(R). For the Yang machine,
p(X) usually comes from a simple estimate p(X) =
G(X |XN , h

2I) based on a set XN of N samples. Here,
we set h = 0 for simplicity. The structure of p(R|X)
is designed as a functional with q(X |R), q(R) as its ar-
guments according to a Ying-Yang variety preservation
principle (see Sect. 4.2 in Ref. [1]). Putting the BYY
system into Eq. (2), we have

H(p||q, m,Ξ)

=
∫
p(Ψ|XN ) ln[QXN |Ψ q(Ψ|Ξ)]dΨ,

lnQXN |Ψ = H(p||q,XN ,Ψ) =∫
p(A|Ψ , XN) ln[QXN ,A|Ψ q(A|ηa ,Ψa)]dA,

lnQXN ,A|Ψ = H(p||q, A,XN ,Ψ) =

× ln[q(XN |η(AY ),Ψx )q(Y |ηy ,Ψy)]dY,

(38)

where and hereafter in this paper, we use the notation
Q = eH and lnQ = H exchangeably for convenience.

For simplicity, we consider a data XN = {xt} with
zero mean. Otherwise, we need to remove it by

XN = {x∗t }, x∗t = xt − μx, μx = 1
N

∑
t xt.

Correspondingly, we let

ηy = 0,ηa = 0. (39)

Otherwise, there are two different scenarios. One is that
ηy , ηa are free parameters and determined by

{ηy∗,ηa∗} = argmaxηy ,ηa H(p||q,ηy ,ηa ,m,Ξ). (40)

The other scenario is that ηy and ηa are functions of
other variables and thus learned via those variables. In
such cases, H(p||q,m,Ξ), lnQXN |Ψ = H(p||q,XN ,Ψ),
and lnQXN ,A|Ψ = H(p||q, A,XN ,Ψ) are functions of
ηy ,ηa , which will be further discussed in Sects. 4.1 and
4.2. In this section, we consider the cases by Eqs. (39)
and (40), and thus omit to write out ηy ,ηa explicitly.

Fig. 2 Post bi-linear Bayesian Ying Yang system

It is usually difficult to handle those integrals in Eq.
(38). We consider one integral approximately with help

of a Taylor expansion up to the second order:∫
p(u)Q(u)du ≈ Q(u∗) − 1

2 [εTuΩQ(u∗)εu + du],

u∗ = argmaxuQ(u), εu = uμ − u∗,

ΩQ(u) = −∂2Q(u)
∂u∂uT , du = Tr[ΓuΩQ(u∗)],

(41)

which is called the apex approximation because it is
made around the apex point u∗, where uμ, Γu are the
mean vector and covariance matrix of p(u).

One key point is getting the apex point u∗, i.e., the
difficulty of computing an integral is approximately by
a task of maximization. Also, we typically consider

Γu = Ω−1
Q (u∗), and thus du = rank[ΩQ(u∗)].

When Q(u) is a quadratic function of u, not only this ≈
becomes =, but also Eq. (41) applies to the cases that
u takes discrete values, with ΩQ(u) obtained simply by
regarding that the domain of u is expanded to a real
domain.

The integrals over Ψ and A, Y in Eq. (38) are all in
a format of H(ω) =

∫
p(ϑ|ω) ln[Q(ϑ)q(ϑ|ω)]dϑ, which

may be partially integrable. Considering a partition
ϑ = ζ ∪ ξ, ζ ∩ ξ = ∅ such that q(ϑ|ω) = q(ζ|ωζ)q(ξ|ωξ),
we have

H(ω) =
∫
p(ϑ|ω) ln[Q(ϑ)q(ζ|ωζ)q(ξ|ωξ)]dζdξ

= Hζ(ω) +Hξ(ω),

Hζ(ω) =
∫
p(ζ|ω) ln q(ζ|ωζ)dζ,

Hξ(ω) =
∫
p(ϑ|ω) ln[Q(ϑ)q(ξ|ωξ)]dϑ,

≈ ln[Q(ϑ∗)q(ξ|ωξ)] − 1
2 [εTuΩQ(ϑ∗)εu + du],

ϑ∗ = argmaxϑ ln[Q(ϑ)q(ξ|ωξ)],
εu = ϑμ − ϑ∗, du = Tr[ΩQ(ϑ∗)],

ΩQ(ϑ) = −∂2 ln[Q(ϑ)q(ξ|ωξ)]
∂ϑ∂ϑT ,

(42)

where Hζ(ω) is integrable and thus is analytically han-
dled, while Hξ(ω) is approximated with help of Eq.
(41). For a problem with an empty set ζ = ∅, we have
q(ζ|ωζ) = 1 and thus Hζ(ω) = 0.

With help of Eq. (42), the three integrals in Eq. (38)
are handled with help of Eq. (41) as follows:

(a) Get H(p||q, A,XN ,Ψ) with
∫
. . . dY in two parts;

(b) Get H(p||q,XN ,Ψ) with
∫
. . .dA in two parts;

(c) Get H(p||q,m,Ξ) with
∫
. . .dΨ in two parts;

(d) Discard the j-th row of Y via checking either

Eq. (28)(a) or Eq. (36)(a)

Prune ai,j of A via checking either
Eq. (35) or Eq. (36)(b)

(e) Update Ξ∗ = argmaxΞH(p||q,m,Ξ);

(f) Get m∗ = arg maxmH(p||q,m,Ξ∗).

(43)

Each of the above steps is implemented with a part of
unknowns that are estimated in other steps. Therefore,
the procedure by Eq. (43) should be implemented itera-
tively, started from an initialization on all the unknown
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parameters. The first four steps already composite one
iterative learning algorithm with automatic model selec-
tion and sparse learning implemented at Step (d). Step
(e) is involved only when there is a priori q(Ψ|Ξ)]. Also,
Step (f) is made in a way similar to the conventional two
stage implementation. That is, steps (a)-(e) are iterative
until convergence at each m, after enumerating m for a
number of value, a best m∗ is selected by the criterion
from H(p||q,m,Ξ∗), e.g., the one in Eq. (29) for FA.

In Eqs. (43)(a)& (b) & (c), removing an integral in two
parts as handled in Eq. (43). For some problems, the en-
tire integral is analytically integrable, and thus there is
no part that needs to make approximation. Also, there
may be no analytically integrable part, for which the en-
tire integral has to be tackled approximately. Usually,
we need a trade-off between computing cost and accu-
racy when the entire integral is divided into two parts.

Taking
∫
. . . dY for an example, when each yi,t takes

values by Eq. (20), the integral
∫
. . .dY becomes a sim-

ple summation, which definitely belongs to the part of
analytically integrable. When each yi,t takes either 1 or
0, the integral

∫
. . . dY also becomes a summation, for

which we encounter a trading-off scenario. If the dimen-
sion m is not high, this case may still be classified as the
part of analytically integrable. However, the computa-
tional complexity of the summation becomes intractable
for a big value m. Such a situation should be classified
into the part to be handled approximately with help of
Eq. (41).

In sequel, we introduce the detailed equations for the
approximations in Eqs. (43)(a)& (b) & (c). Without los-
ing generality and also for notation simplicity, we only
consider how to handle the approximation part in Eq.
(42), while the analytically integrable part is task de-
pendent and handled manually.

We start from Step (a) to consider the integral∫
. . . dY for getting H(p||q,ηy ,ηa ,m,Ξ) in Eq. (38). It

follows from Eq. (41) and Eq. (42) that we have

lnQXN ,A|Ψ = H(p||q, A,XN ,Ψ)
=

∫
p(Y |A,Ψ, XN) lnQXN ,A,Y |ΨdY.

= lnQXN ,A,Y ∗|Ψ
− 1

2 [εTy ΩY ∗|A,Ψεy + dY ∗|A,Ψ]
lnQXN ,A,Y ∗|Ψ = lnQXN ,A,Y=Y ∗|Ψ,

Y ∗ = argmaxA lnQXN ,A,Y |Ψ,

lnQXN ,A,Y |Ψ = ln[q(XN |η(AY ),Ψx )q(Y |ηy ,Ψy)],

εy = vec(Yμ − Y ∗),
dY ∗|A,Ψ = rank[ΩY ∗|A,Ψ],

ΩY |A,Ψ = − ∂2 lnQXN ,A,Y |Ψ
∂vec(Y )∂vec(Y )T .

(44)

We move to Step (b) to consider the integral
∫
. . . dA

for getting H(p||q,XN ,Ψ) in Eq. (38).

lnQXN |Ψ = H(p||q,XN ,Ψ)

= ln[QXN ,A∗|Ψq(A∗|ηa ,Ψa)]
− 1

2 [εTa ΩA∗|Y ∗,Ψεa + dA∗|Y ∗,Ψ],

A∗ = argmaxA ln[QXN ,A|Ψ q(A|ηa ,Ψa)],

εa = vec(Aμ −A∗),
dA∗|Y ∗,Ψ = rank[ΩA∗|Y ∗,Ψ],

ΩA|Y,Ψ = −∂2 ln[QXN ,A|Ψ q(A|ηa ,Ψa)]

∂vec(A)∂vec(A)T .

(45)

Next, we proceed to Step (c) to get the integral
∫
. . . dΨ

for getting H(p||q,m,Ξ) in Eq. (38) turned into

H (p||q,m,Ξ) =
∫
p(Ψ|XN ) ln[QXN |Ψ q(Ψ|Ξ)]dΨ

= ln[QXN |Ψ∗ q(Ψ∗|Ξ)] − 1
2 [εTΨ∗ΩΨ∗εΨ∗ + dΨ∗ ],

Ψ∗ = argmaxΨ ln[QXN |Ψ q(Ψ|Ξ)],

εΨ = vec(Ψμ − Ψ∗),

dΨ = rank[ΩΨ],

ΩΨ = −∂
2 ln[QXN |Ψ q(Ψ|Ξ)]
∂vec(Ψ)∂vec(Ψ)T

.

(46)

In the above equations, the following computing issues
need to be further addressed:

• Only for some special cases, the implementations of
maxY , maxA, and maxΨ are analytically solvable.
Generally, a maximization with respect to contin-
uous variables is implemented by a gradient based
searching algorithm, suffering a local maximization
problem, while a maximization with respect to dis-
crete variables, e.g., each yi,t takes either 1 or 0,
involves a combinatorial optimization [99,100].

• The Hessian matrices ΩY |A,Ψ, ΩA|Y,Ψ, and ΩΨ are
typically assumed to be diagonal for avoiding te-
dious computation and unreliable estimation in-
curred from much parameters.

• For the learning tasks with the follow unknowns of
the Yang machine

Ψμ = Ep(Ψ|XN )[Ψ],

Aμ = Ep(A|Ψ,XN )[A],

Yμ = Ep(Y |A,Ψ,XN )[Y ],

being free to be determined via maximizing H(p||q)
by Eq. (2), we are led to Ψμ = Ψ∗, Aμ = A∗, Yμ =
Y ∗. When other parameters are still far away a
convergence, enforcing εΨ = 0, εy = 0, εa = 0 too
early will make the entire learning process by Eq.
(43) get stuck at local optimum. To balance the
progresses of learning different parts in the entire
maximization, one simple way is letting Ψμ, Aμ, Yμ
to be some previous Ψ∗, A∗, Y ∗ at a delayed time
lag τ , that is,

Ψμ = Ψ∗(τ), Aμ = A∗(τ), Yμ = Y ∗(τ) (47)
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for which as the entire iteration converges we still
get Ψμ = Ψ∗, Aμ = A∗, Yμ = Y ∗.

Next, we provides further details by considering the
following typical case:

q(X |ηx ,Ψx ) by Eq. (10)
q(Y |Θy) by Eq. (16)

q(A|ηa ,Ψa) by Eq. (24) together with,
ηx = AY, ηa = [ηa

1 , · · · ,ηa
m], ηy = [ηy

1 , · · · ,ηy
N ],

q(xt|ηxt ,Ψx
t ) = G(xt|Ayt,Ψx ),

q(yt|ηyt ,Ψy
t ) = G(yt|ηy ,Ψy),

q(aj |ηa
j ,Ψ

a
j ) = G(aj |ηa

j ,Ψ
a
j ), (48)

We further get ∇Y lnQXN ,A,Y |Ψ.

= AT
η Ψx −1X − ΓAYη,

Y ∗ = Γ−1
A AT

η Ψx −1X + ηy ,

ΓA = AT
η Ψx −1Aη + Ψy −1,

ΩY |A,Ψ = ΓA ⊗ I,

Aη = A− ηa , Yη = Y − ηy ,

(49)

where ⊗ denotes the Hadamard product, and in this
subsection we have ηy = 0, ηa = 0 and thus Aη =
A, Yη = Y . Still, we keep the notations ηy , ηa here for
the convenience of further discussions in Sect. 4.1.

Similarly, we also get

∇A ln[QXN ,A|Ψ q(A|ηa ,Ψa)]
= Ψx −1XY T

η − Ψx −1AηΓY −AηΨa −1

= Ψx −1[XY T
η −AηΓY − ΨxAηΨa −1]

ΓY = YηY
T
η + (Yμ − Y ∗)(Yμ − Y ∗)T,

ΩA|Y,Ψ = Ψx −1 ⊗ ΓY + I ⊗ Ψa −1.

(50)

When εy �= 0, it takes a regularization role via ΓY . Gen-
erally, the maximization with respect to A is reached at
A∗ that satisfies the following equation:

XY T
η −A∗

ηΓY − ΨxA∗
ηΨa −1 = 0. (51)

We can solve this A∗ by a local searing algorithm based
on the gradient ∇A ln[QXN ,A|Ψ q(A|ηa ,Ψa)]. Moreover,
when every element of Ψx is same, namely, Ψx = ψx I,
we simply have

A∗ = [ΓY + ψxΨa −1]−1XY T
η + ηa . (52)

Ignoring q(Ψ|Ξ), from ∇Ψx ,Ψy ,Ψa
j
ln[QXN |Ψ q(Ψ|Ξ)] =

0 we further get

Ψx∗ = 1
N

∑
t diag[ext e

x T
t + ΔΨx∗

t ],

ext = xt −A∗y∗t , e
y
t = yt,μ − y∗t , δA = Aμ −A∗,

ΔΨx∗
t = A∗eyt e

y T
t A∗ T

+δA(y∗t − ηy
t )(y∗t − ηy

t )
∗ TδAT,

ψx∗ = 1
dTr[Ψ

x∗], for Ψx∗ = ψx∗I;

Ψy∗ = 1
N

∑
t diag[(y∗t − ηy

t )(y∗t − ηy
t )T + eyt e

y T
t ],

Ψa∗
j = diag[(a∗j − ηa

j )(a∗j − ηa
j )T]

+diag[(a∗j,μ − a∗j )(a
∗
j,μ − a∗j )

T].

(53)

As discussed before Eq. (35), sparse learning prunes an
element aij by checking Ψa

i,j → 0. Also, there is an al-
ternative choice on the order of considering Y,A, i.e.,
remove the integral over A first and then the integral
over Y , with equations obtained by simply switching the
position of Y and A.

3 Several typical learning tasks

3.1 De-noise Gaussian mixture

We start from one special case of X = AY +E by Eq. (4)
featured with q(X |ηx ,Ψx ) by Eq. (10) and Eq. (48) with
Ψx = σ2I. We observe that a sample xt is approximated
by Ayt =

∑
j ajyj,t as a convex combination of the

columns of A, weighted by the elements of each column
yt of Y . This approximation is made in term of minimiz-
ing the square error

∑
t ‖xt −Ayt‖2. With q(Y |ηy ,Ψy)

given by Eq. (16) with q(yt|ηyt , ψy
t ) = q(yt|ηyt ) by Eq.

(20), it becomes equivalent to minimizing
∑
t

‖xt −Ayt‖2 =
∑
t

yj,t‖xt − aj‖2,

which has been widely studied under the name of the
mean square error (MSE) clustering analysis. Echoing
the discussions made after Eq. (20), we are led to the
Box 5© in Fig. 1. Particularly, when samples of X are
nonnegative and also A is nonnegative, we are further
led to the Box 6© for those studies of making clustering
analysis under the name of NMF [19–28].

Even interestingly, we further proceed to the Box 8©
with Eq. (48). It follows from Eq. (7) that we have

q(R) = q(A|Y,ηa ,Ψa)q(Y |ηy ,Ψy)
=

∏
t,j [q(aj |ηa

j ,Ψ
a)ηyj ]yj,t ,

q(A|Y,ηa ,Ψa) =
∏
t,j q(aj |ηa

j ,Ψ
a)yj,t .

Being different from Eq. (24), here q(A|Y,ηa ,Ψa) is con-
sidered under the condition of Y . It further follows that

q(XN |θ) =
∫
q(XN |ηx ,Ψx )q(A, Y |θ)dY dA

=
∏
t q(xt|θ)

q(xt|θ) =
∑


 η
y

 q(xt|a
,Ψx ,Ψa


 ),

q(xt|a
,Ψx ,Ψa

 ) =

∫
G(xt|a
,Ψx )q(a
|ηa


 ,Ψ
a

 )da
.

(54)

That is, XN can be regarded as generated from a finite
mixture distribution of q(xt|aj ,Ψx ,Ψa

j ).
Taking a multivariate Gaussian distribution as an ex-

ample, we consider q(aj |ηaj ,Ψa
j ) = G(aj |ηaj ,Ψa

j ) with
the mean vector ηaj and the covariance matrix Ψa

j that
is not limited to be diagonal as in Eq. (24). We have

q(R) = q(A, Y |θ) =
∏
t,j [G(aj |ηaj ,Ψa

j )η
y
j ]yj,t ,

q(xt|a
,Ψx ,Ψa

 ) = G(xt|ηa
 ,Ψx + Ψa


 )
=

∫
G(xt|a
,Ψx )G(a
|ηa
 ,Ψa


 )da
.

(55)
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That is, XN can be regarded as generated from a Gaus-
sian mixture with each Gaussian G(xt|ηaj ,Ψx +Ψa

j ) in a
proportion ηyj � 0. Therefore, we are led to the Box 8©
shown in Fig. 1.

When Ψx = 0 we return to a standard Gaussian mix-
ture [29–31]. Here, the effect of adding a diagonal ma-
trix Ψx to the covariance matrix Ψa

j is similar to that
of data-smoothing learning for regularizing a small size
of samples via a smoothing trick, i.e., each sample xt
is smoothed by a Gaussian kernel G(x|xt, h2I). Reader
are referred to Eq. (7) of Ref [69], and a rather system-
atic elaboration in Ref. [36]. Here, Eq. (55) has two key
differences from the previous data-smoothing learning.
First, each sample is regularized by not just a scalar h2I

but a diagonal matrix Ψx that affects all the dimensions
differently. Second, considering G(x|xt, h2I) externally
is equivalent to adding a Gaussian white noise to sam-
ples, while Ψx interacts with q(aj |ηaj ,Ψa

j ) in a way in-
trinsic to data and learning tasks.

It follows from Eq. (38) with the help of Eq. (55) for
a generalized Gaussian mixture. It follows that

H (p||q,XN , θ)
=

∑
t

∫ ∑
y1,t,···,ym,t

∏
j [p(j|xt, θ)p(aj |xt, θ)]yj,t

× ln
∏
j [G(xt|aj ,Ψx )G(aj |ηaj ,Ψa

j )η
y
j ]yj,tdA

=
∑

t

∑
j∈Jt

p(j|xt, θ)
∫
p(aj |xt, θ)Ht(θj , aj)daj

=
∑

t

∑
j∈Jt

p(j|xt, θ)Ht(θj , a∗t,j) − 0.5d,
Ht(θj , aj)

= ln{G(xt|aj ,Ψx )G(aj |ηaj ,Ψa
j )η

y
j },

at,j = argmaxaj
Ht(θj , aj)

=
[
Ψx −1 + Ψa −1

j

]−1
(Ψx −1xt + Ψa −1

j ηaj ),

(56)

where the integral over aj is made by Eq. (41), and Jt
is a subset of indices as follows:

Jt =

⎧⎪⎨
⎪⎩

{1, 2, · · · ,m}, (a) unsupervised,

teaching label j∗t , (b) supervised,
a winner subset, (c) apex approximation.

j∗t =

{
j∗t given in pair of xt, (a) supervised,

argmaxjHt(θj , at,j), (b) unsupervised,
(57)

where a winning subset consists of j∗t and κ neighbors
that corresponds the first κ largest values of Ht(θj , at,j).
The above Jt covers supervised learning for a teaching
pair {xt, jt∗}, unsupervised learning with no teaching
label for each xt, as well as semi-supervised learning if
there are teaching labels for a subset of samples.

According to the variety preservation principle (see,
Eq. (38) in Ref.[1]), p(j|θ, xt) is designed from ηyj ,
G(xt|aj ,Ψx ), and G(aj |ηaj ,Ψa

j ) as follows:

p(j|θ, xt) =
R
exp{Ht(θj ,aj)}dajP

j

R
exp{Ht(θj ,aj)}daj

=
exp{Ht(θj ,at,j)−0.5 ln |Ψx −1+Ψa −1

j |}
P

j exp{Ht(θj ,at,j)−0.5 ln |Ψx −1+Ψa −1
j |} .

(58)

Next, we examine ∇θ�

∑
j∈Jt

p(j|xt, θ)Ht(θj , at,j) =
p
,t(θ)∇θ�

Ht(θ
, at,
) − 0.5Δ
,t(θ)∇θ�
ln |Γ
| and

Γ
 = Ψx −1 +Ψa −1

 , with help of considering d ln |Γj | =

−Tr[Ψx −1Γ−1
j Ψx −1dΨx ] − Tr[Ψa −1

j Γ−1
j Ψa −1

j dΨa
j ],

with the following details:

p 
,t(θ) = Δ
,t(θ)

+

{
p(�|θ, xt), (a) unsupervised,∑

j∈Jt
p(j|θ, xt)δ
,j, (b) in general.

Δ 
,t(θ)

=

{
p(�|θ, xt)δH
,t(θ), (a) unsupervised,∑

j∈Jt
p(j|θ, xt)Δ
,t,j(θ), (b) in general;

δH
,t(θ) = Ht(θx
 , at,
) −
∑

j p(j|θ, xt)Ht(θxj , at,j),

Δ
,t,j(θ) = Ht(θxj , at,j) [δ
,j − p(�|θ, xt)] ,
where δ
,j = 1 if � = j, otherwise δ
,j = 0 if � �= j.

(59)

Let the above gradients to be zero, we get the following
updating formulas:

ηy∗j = 1
N

∑
t pj,t(θ

old), ηa∗j = 1
Nηy∗

j

∑
t pj,t(θ

old)aold
t,j ,

Ψx∗ = 1
N

∑
t,j pj,t(θ

old)(xt − aold
t,j )(xt − aold

t,j )T

+ 1
N

∑
t,j Δj,t(θold)(Ψx −1 + Ψa −1

j )−1,

Ψa ∗
j = 1

Nηy∗
j

∑
t pj,t(θ

old)(aold
t,j − ηa∗j )(aold

t,j − ηa∗j )T

+ 1
N

∑
t Δj,t(θold)(Ψx −1 + Ψa−1

j )−1.

(60)

Putting together Eqs. (57), (58), (59), and (60), we get
an iterative algorithm for the BYY harmony learning on
a generalized Gaussian mixture. Interestingly, it follows
from Eq. (56) that each sample xt is smoothed by its
mean vector ηaj proportional to their precision matrices
Ψx −1 and Ψa −1

j . This generalized Gaussian mixture
returns back to a standard Gaussian mixture when we
force Ψx = 0, and the above algorithm returns to the
BYY harmony learning algorithm in Sect. 3.1 of Ref.
[1]. That is, we have at,j = xt and that Eqs. (57), (58),
(59), and (60) are simplified as follows

Ht(θj , aj) = ln{G(xt|ηaj ,Ψa
j )η

y
j },

p(j|θ, xt) =
G(xt|ϕj ,Ψ

a
j)ηy

jP
j G(xt|ηa

j ,Ψ
a
j)ηy

j
, ηy∗j = 1

N

∑
t pj,t(θ

old),

ηa∗j = 1
Nηy∗

j

∑
t pj,t(θ

old)xt,

Ψa ∗
j = 1

Nηy∗
j

∑
t pj,t(θ

old)(xt − ηa∗j )(xt − ηa∗j )T,

(61)

where pt,l(θ) is still given by Eq. (59). As a complemen-
tary to Sect. 3.1 of Ref. [1], pt,l(θ) in Eq. (59) is fea-
tured with the sum over Jt given by Eq. (57) such that
supervised learning, unsupervised learning and semi-
supervised learning are covered in a unified formulation.

3.2 Independent factor analysis, manifold learning, and
semi-blind learning

From X = AY + E featured with q(X |ηx ,Ψx ) by Eq.
(10) and q(Y |Θy) by Eq. (16), we get a typical family
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of learning models, as illustrated by the Boxes 1©– 4© in
Fig. 1 and introduced in Sect. 2.1, especially around
Eq. (18), Eq. (19) and Eq. (20). Further improvements
can be obtained via exploring the co-dim matrix pair
nature with help of q(A|ηa ,Ψa) by Eq. (24), for imple-
menting automatic model selection by Eq. (28) or Eq.
(36)(a) and sparse learning by Eq. (35) or Eq. (36)(b).

Specifically, the learning procedure by Eq. (43) is sim-
plified for learning the co-dim matrix pair featured FA
by Eq. (48) as follows:

(a) update Y ∗ by Eq. (49);

(b) update A∗ by Eq. (52) or Eq. (51);
(c) update Ψx∗,Ψy∗,Ψa∗

j by Eq. (53);

(d) Discard the j-th row of Y via checking

either Eq. (28)(a) or Eq. (36)(a)
Prune ai,j of A via checking either

Eq. (35) or Eq. (36)(b)

(e) (optional) use Eq. (29) to select the best m∗,

(62)

which is implemented iteratively until converged. The
algorithm may also be approximately used for NFA [9–
13] for real valued Y featured with that at most one yi,t
per column is Gaussian, e.g., yi,t comes from distribu-
tions of exponential, Gamma, a mixture of Gaussians.
There are two points of modifications. First, Step (a) is
modified with

Y ∗ = argmaxY ln[q(XN |η(AY ),Ψx )q(Y |ηy ,Ψy)], (63)

in Eq. (44) solved by an iteration. Second, we approxi-
mately let

Ψy ≈ ∂2 ln q(y|0,Ψy)
∂y∂yT

.

Moreover, the above learning algorithm may be mod-
ified for implementing the BFA [5–8] with each yi,t = 0
or yi,t = 1 from Eq. (19). Again Step (a) is modified
with Eq. (63), which is now a quadratic combinatorial
optimization which can be effectively handled by the al-
gorithms investigated in Ref. [99]. This optimization
can be handled simply by enumeration for implementing
exclusive binary FA as the binary factorization Eq. (19)
becomes the multi-class problem by Eq. (20). If we let
q(aj |ηa

j ,Ψ
a) in Eq. (24) and Eq. (48) replaced with

q(aj |ηa
j ,Ψ

a) =
∏
i(η

a
i,j)

ai,j

i,j ,

ηai,j � 0,
∑
i η

a
i,j = 1, ai,j � 0,

∑
i ai,j = 1,

(64)

we are further lead to the binary matrix factorization
(BMF) based bi-clustering [28], for which A∗ is obtained
in a way similar to get Y ∗.

Moreover, instead of using Eq. (29), Step (e) use to

select the following criterion for selecting the best m∗:

J(m) = 1
2 ln |Ψx | + h2

2 Tr[Ψx −1] − Jy
m + d

N J
a
m,

Jy
m =

⎧⎪⎨
⎪⎩

∑
j η

y
j,t ln η

y
j,t,∑

j(1 − ηyj,t) ln (1 − ηyj,t), for Eq. (19),∑
j η

y
j,t ln η

y
j,t, for Eq. (20).

Jam =

{
m ln(2πe) + ln |Ψa |, for in Eq. (48),

−∑
i η

a
i,j ln ηai,j , for Eq. (64).

(65)

Instead of q(Y |Θy) by Eq. (16), X = AY +E featured
with q(X |ηx ,Ψx ) by Eq. (10) may be used for modeling
q(Y |ηy ,Ψy) to preserve topological dependence among
data, as illustrated in the Box 10© in Fig. 1.

One popular way to describe a local topology among
a set of data (equivalently the columns of X) is to get a
nearest neighbor graph G of N vertices with each vertex
corresponding to a column of X . Define the edge matrix
S as follows:

Sij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
2πγ

exp{−0.5‖xi − xj‖2

γ2
},

if xi ∈ Nk(xj) or xj ∈ Nk(xi),
0, otherwise,

for a pre-specific γ, where Nk(xi) denotes a set of k near-
est neighbors of xi. We have L = D − S that is called
a graph Laplacian and positively definite [37,38,101–
103], where D is a diagonal matrix whose entries are
Dii =

∑
j Sij . Considering a mapping Y ≈ WX , a lo-

cality preserving projection (LPP) attempts to minimize
Tr[WXTLWX ], i.e., the sum of each distance between
two mapped points on the graph G, subject to a unity
L2 norm of this projection WX .

Alternatively, we may regard that X is generated via
X = AY + E such that the topological dependence
among Y is preserved, and thus handle this problem
as one extension of FA, as shown from the center to-
ward right to the box 10©. To be specific, we consider
q(X |ηx ,Ψx ) by Eq. (10) with ηx = AY , as well as Eq.
(24) with q(aj |ηa

j ,Ψ
a) = G(aj |0,Ψa). Instead of Eq.

(16), we let q(Y |ηy ,Ψy) to be

q(Y ) =
1

Z(L)
exp{−1

2
Tr[Y LY T]},

Z(L) =
∫

exp{−1
2
Tr[Y LY T]}dY,

(66)

where the Laplacian L is known from a nearest neighbor
graph G, and also Z(L) is correspondingly known.

The learning is implemented again by modifying the
above learning algorithm by Eq. (62). Instead of getting
update Y ∗ by Eq. (49) in Step (a), Eq. (49) is modified
into the following one for updating Y ∗:

∇Y lnQXN ,A,Y |Θ = ATΨx −1X − Y L− ΓaY,

Γa = ATΨx −1A,

ΩY |A,Θ = Γa ⊗ I + L,

(67)
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from which Y ∗ is solved from the following equation

ATΨ(1) −1X − Y ∗L− ΓaY
∗ = 0. (68)

Alternatively, we may also update Y by a gradient based
searching with the help of Eq. (67).

It is interesting to further experimentally and theo-
retically compare whether the above Y ∗ outperforms its
counterpart obtained by the existing LPP approach for
manifold learning, at least with two new features. First,
the reduced dimension of the manifold of Y ∗ may be
determined by automatic model selection. Second, reg-
ularization is made via q(A|ηa ,Ψa) by Eq. (24).

As outlined in Sect. 1, semi-blind learning is a bet-
ter name for efforts that put attention on the cases of
knowing partially either or both of the system and its
input, instead of just knowing partially the inputs by
semi-supervised learning. E.g., we know not only X ,
but also partial knowledge about A, Y , and E for Eq.
(4). For the above manifold learning, Y is unknown but
it is assumed that its covariance information Ψy is given
by the Laplacian L, that is, it is actually an example of
semi-blind learning.

On the other hand, even for the problem of linear re-
gression by X = AY + E with both X and Y known,
we may turn the problem in a semi-blind learning when
concerning a small sample size (i.e., the column of X)
or a unreliable relation given by a known pair X and Ŷ .
In sequel, two methods are suggested.

• Semi-blind learning FA Instead of directly using
the known Y ∗ in pairing with X , we let q(yt|ηyt ,Ψy

t )
in Eq. (48) replaced with

q(yt|ηyt ,Ψy
t ) = G(yt|ŷt,Ψy), Ψy = Ŷ Ŷ T, (69)

then, we use the algorithm by Eq. (62) for learning
with ŷt,Ψy fixed without updating.

• Semi-blind learning BFA as illustrated in the Box
15© in Fig. 1, with Ŷ denoting a known instance of
Y , we let a matrix of binary latent variables to take
the position of Y , which leads to the following Ŷ

modulated binary FA:

X = AYH + E, YH = Ŷ ◦ Y,
Ŷ ◦ Y =

{
[ŷ1 ◦ y, · · · , ŷ∗N ◦ y], (a) Type 1,
[ŷ∗j,tyj,t], (b) Type 2,

(70)

where A ◦ B = [aijbij ] and Y comes from the fol-
lowing distribution

q(Y |ηy ,Ψy) = B(Y |ηy),
B(Y |ηy) =

∏
t,j

(ηyj )yj,t(1 − ηyj )1−yj,t ,

B(Y |ηy) =
∏
t,j

(ηyj,t)
yj,t . (71)

Still, we may use the algorithm by Eq. (62) for
learning, with the above q(Y |ηy ,Ψy) putting in

Eq. (63) to modify Step (a) for getting Y ∗ via
a quadratic combinatorial optimization algorithm
[99]. Then, we use YH = Ŷ ◦ Y ∗ to take the place
of Y ∗ in the rest steps in Eq. (62).

The above two methods are motivated for dealing with
different uncertainty. Semi-blind learning FA considers
that Ŷ suffers Gaussian noises, while semi-blind learning
BFA considers that some elements of Ŷ are pseudo val-
ues and thus we need to remove their roles with yi,t = 0.

3.3 Graph matching, covariance decomposition, and
data-covariance co-decomposition

After an extensive investigation on Eq. (4) in Sects. 3.1
and 3.2, we move to consider Eq. (9), and then make a
coordinated study on Eqs. (4) and (9).

We start at considering two attributed graphs X and
Y described by two matrices SX and SY . Each diago-
nal element of SY is a number as one attribute attached
to one node in the graph Y , where each off-diagonal el-
ement of SY is a number as an attribute attached to
the edge between two nodes in Y . Moreover, SY is a
symmetric matrix if Y is a unidirectional graph. Every
element in Y can even be nonnegative, e.g., for a net-
work of protein-protein interaction in biology to be dis-
cussed in Sect. 5.3. Two graphs are said to be matched
exactly or isomorphism, if SX and SY become same af-
ter a permutation of the nodes of one graph, namely
SX = ASYA

T by an appropriate permutation matrix A.
For an arbitrary permutation matrix A, we have usually
ΣX �= ASYA

T or Σ = SX −ASYA
T �= 0. The problem

becomes seeking one among all the possible decomposi-
tions SX = Σ + ASYA

T as in Eq. (9) such that Σ = 0.
This solution can be obtained when the Frobenius norm
of Σ or equivalently Tr[ΣΣT] reaches its minimum. A
match between X and Y is thus formulated as

minA∈Π Tr[(SX −ASYA
T)(SX −ASYA

T)T], (72)

where Π consists of all permutation matrices. If the min-
imum is 0, we have Σ = 0 or two graphs are matched ex-
actly. This minimization involves searching all the possi-
ble permutations and is a well known NP-hard problem.
The problem is usually tackled by a heuristic searching,
e.g., a simulated annealing, with a permutation matrix A
that gives Tr[ΣΣT] �= 0, which is made under the name
inexact graph matching, widely studied in the literature
of pattern recognition in past decades [50–54].

One direction for approximation solution was started
from Umeyama in 1988 [50]. The permutation set Π is
only a small subset within the Stiefel manifold OΠ of or-
thonormal matrices. Considering the minimization with
respect to an orthonormal matrix in OΠ, the solution
A can be obtained by an eigen-analysis SXA = ASY .
Though this solution is too rough for an exact graph
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matching, it may be still good enough for building struc-
tural pattern classifiers, as suggested in 1993 [53]. This
was further verified by fast retrieval of structural pat-
terns in databases [54]. Also, it was suggested in Ref.
[53] that eigen-analysis is simply replaced by updating A
along the direction SXASY −ASYASX , which performs
a constrained gradient based searching for minimizing
Tr[ΣΣT] with respect to A ∈ OΠ.

The direct relaxation from a permutation to orthonor-
mal matrix goes too far, violating both the nature that
all elements are nonnegative and the nature that all rows
and columns sum to one. Instead, a relaxation from a
permutation matrix to a doubly stochastic matrix can
still retain both the natures, which is also justified from
a perspective that the minimization of a combinatorial
cost is turned into a procedure of learning a simple dis-
tribution to approximate Gibs distribution induced from
this cost [104]. From this new perspective, a general
guideline was proposed for developing a combinatorial
optimization approach, and the Lagrange-enforcing al-
gorithms were developed in Refs. [105,106] with guar-
anteed convergence on a feasible solution that satisfies
constraints.

During proving convergence property of one theorem
about ICA, it was further found in Refs. [107,108] that
turning a doubly stochastic matrix V = [vij ] into an or-
thostochastic matrix [r2ij ] facilitates to make optimiza-
tion by a Stiefel gradient flow. Moreover, this orthos-
tochastic matrix based implementation leads to a favor-
able spare nature that pushes vij to be 0 or 1 when
we consider a combinatorial cost that consists terms of
rij in higher than quadratic order, e.g., a TSP prob-
lem [100]. A brief overview is referred to Sect. 3 in Ref.
[108]. Also, either the problem by Eq. (72) or combina-
torial optimization in general has been examined from a
Bayesian Ying-Yang (BYY) learning perspective in Ref.
[100]. In the sequel, we further investigate graph match-
ing with modified formulations and also the use of one
priori q(A|ηa ,Ψa) by Eq. (24) with the help of the BYY
harmony learning.

As discussed after Eq. (72), two graphs are matched
exactly only when Σ = 0, while minimizing Tr[ΣΣT]
means the sum of the square norms of all the elements
in Σ is minimized as a whole. A heuristic solution with
Tr[ΣΣT] �= 0 means that the minimization of Tr[ΣΣT]
leads to a solution that may be far from the exact graph
matching. To push Tr[ΣΣT] toward zero, we further im-
pose that Σ should be diagonal in order to enhance the
match between the topologies of two graphs, which is
implemented via minimizing the following error

min
A∈Π

J(SX , A) =
∑
i,j

γi,j(sxi,j − ψx
i,j)

2 (73)

J(SX , A) = (1 − χ)Tr{diag[Σ]diag[Σ]} + χTr{ΣΣT},

Σ = SX −ASYA
T, SX = [sxi,j ], [ψx

i,j ] = ASYA
T,

γi,j =

{
1, if i = j,

χ, if i �= j;

where χ > 0 is a pre-specified number. We are led back
to Eq. (72) when χ = 1. Its implementation may be
made in one of the following choices:

1) Similar to Ref. [50], A ∈ Π is relaxed to an or-
thonormal matrix A ∈ OΠ, Eq. (73) is solved by a gen-
eralized eigen-analysis.

2) Similar to Ref. [53], we get the gradient of J(SX , A)
with respect to an orthonormal matrix A ∈ OΠ and up-
date A by a gradient descending searching.

3) Following Refs. [107,108], we replace A by an or-
thostochastic matrix, that is we consider

A = [r2i,j ], from R = [ri,j ] with RRT = I. (74)

Then, we get the gradient of J(SX , A) with respect to
an orthonormal matrix R ∈ OΠ via the above Eq. (74)
and update R by a gradient descending searching.

We may have an alternative of Eq. (73) as follows:

minA∈Π J(SX , A),

J(SX , A) =
∑
i,j γi,js

x
i,jψ

x
i,j ,

SX = [sxi,j ], ASYA
T = [ψx

i,j ],

(75)

which is equivalent to Eq. (73) when SX and SY are
given. However, Eq. (75) is preferred if SX and SY dif-
fer with a unknown scale or have partially unknowns.

Moreover, we consider the BYY harmony learning for
handling the problems. For the case by Eq. (9) with
samples of X from Gaussian, we may consider that
SX = XXT comes from the following Wishart distri-
bution

q(SX |A) = |SX |
(N−d−1)

2 exp{− 1
2Tr[(ASYA

T+Σ)−1SX ]}
2Nd/2|ASYAT+Σ|N/2Γd(N/2)

,(76)

where Γd(·) is the multivariate gamma function, and Σ
is a unknown diagonal or even Σ = σ2I.

It can be observed that maxA∈Π q(SX |A) makes
ASYA

T + Σ tends to SX , and thus it can be regarded
as a general format of Eq. (72). To take Eq. (73) and
also Eq. (75) in consideration, we may consider

q(SX |A) = exp{−0.5J(SX ,A)}R
exp{−0.5J(SX ,A)}dSX

. (77)

From Eq. (44), we get the harmony measureH(p||q) =∫
p(A|SX) ln[q(SX |A)q(A|ηa ,Ψa)]dA. During removing∫ · · ·dA, we perform

A = R ◦R = [r2ij ],

R∗ = argmaxRRT=I ln[q(SX |A)q(A|ηa ,Ψa)],

Σ∗ = argmaxΣ ln q(SX |A),

(78)

from which we obtain one solution A∗ = R ◦R = [r∗ 2
ij ],

where sparse learning is considered via q(A|ηa ,Ψa) for
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such that A∗ is close to a permutation matrix, e.g., Eq.
(24) with q(aj |ηaj ,Ψa) from a multivariate Gaussian or
Laplace.

Similar to Eq. (69), we consider the following Wishart
distribution

q(SY |ŜY ) = |ŜY |
(N−m−1)

2 exp{− 1
2Tr[Ŝ−1

Y SY ]}
2Nm/2|ASYAT+Σ|N/2Γm(N/2)

, (79)

by which matching SX based on a given ŜY is relaxed
to certain tolerance on an inaccurate SY .

Correspondingly, we extend Eq. (78) to take Eq. (79)
in consideration as follows

H(p||q) =
∫
p(A|SX) ln [QX|Aq(A|ηa ,Ψa)]dA

lnQX|A = H(p||q, A) =
∫
p(SY |A,SX)×

ln[q(SX |A)q(SY |ŜY )]dSY
A = R ◦R = [r2ij ],

R∗ = argmaxRRT=I ln[QX|Aq(A|ηa ,Ψa)],

Σ∗ = argmaxΣ ln q(SX |A),

(80)

where p(SY |A,SX) and q(SY |ŜY ) can be a conjugate
pair, from which we get R∗ and obtain a solution A∗ =
R ◦R = [r∗ 2

ij ].
Strictly speaking, the above problem by Eq. (72) re-

lates to the covariance decomposition problem by Eq. (9)
but cannot be simply regarded as its special case that
SX and SY are known and A is a permutation matrix,
because SX and SY from unidirectional graphsX and Y
are symmetric but may not meanwhile positive definite.

In some applications, there may be available both a
partial information about data X and a partial informa-
tion about its covariance SX , which motivates to inte-
grate two parts of information. Since both X and SX
are generated from the same system by Eq. (10), the
key point is to model q(SX , X |ηx ,Ψx ). There are two
possible roads to proceed. One is consider

q(SX , X |ηx ,Ψx ) = q(SX |X,Ψs)q(X |ηx ,Ψx ), (81)

with q(X |ηx ,Ψx ) by Eq. (10) and q(SX |X,Ψs) describ-
ing some uncertainty between SX and X . If we are sure
on SX = XXT, we have q(SX |X,Ψs) = δ(SX −XXT),
SX does not bring extra information, and thus there is
no need for integration. Due to observation noise and a
small sample size, we have q(SX |X,Ψs) described by a
distribution, e.g., a Gaussian

q(SX |X,Ψs) = G(SX |XXT, ρ2I). (82)

The other road is jointly considering Eq. (4) and Eq.
(9). Both X and SX comes the same system, and
thus we have q(X |ηx ,Ψx ) for Eq. (4) by Eq. (10) and
q(SX |ηx ,Ψx ) = q(SX |A) for Eq. (9) by either Eq. (76)
and Eq. (77). The key point is how to combine the
two ones to get q(SX , X |ηx ,Ψx ), or equivalently, mak-
ing a co-decomposition of data matrix by Eq. (4) and

covariance matrix by Eq. (9). As discussed after Eq.
(9), Eq. (4) implies Eq. (9) if the condition by Eq. (3)
holds. However, Eq. (3) may not hold well in practice,
and thus such a co-decomposition actually provides an
alternative way to ensure Eq. (3) indirectly.

Generally, we may regard SX as coming from X via
some symmetry preserved transform, e.g., with help of
an element-wise mapping g(XXT|Ξg) by an unknown
scalar monotonic parametric function g(r|Ξg). We may
get the distribution of SX from one distribution of XXT

via the Jacobian matrix induced from this scalar mono-
tonic function and also get the parameters Ξg estimated
also through learning. That is, we have

q(SX |X,Ψs) = G(SX |g(X |Ξg), ρ2I),
g(X |Ξg) = g(XXT|Ξg)

or g(X |Ξg) = g(X |Ξg)gT(X |Ξg). (83)

There could be different ways to combine two distri-
butions into one joint distributions [109,110]. A typical
one is the näıve Bayesian rule or called the product rule,
that is , we have

q(SX , X |ηx ,Ψx ) = q(SX |ηx ,Ψx )q(X|ηx ,Ψx )R
q(SX |ηx ,Ψx )q(X|ηx ,Ψx )dSXdX

. (84)

With help of Eqs. (81) and (84), we put q(SX , X |ηx ,Ψx )
into Eq. (38) to replace q(X |ηx ,Ψx ), we may implement
the BYY harmony learning to perform co-decomposition
of data by Eq. (4) and covariance by Eq. (9).

4 BYY harmony learning with hierarchy of
co-dim matrix pairs

4.1 Hierarchy of co-dim matrix pairs and bidirectional
propagation

According to the natures of learning tasks, the building
unit by Eq. (4) and Eq. (10), as well as the corresponding
BYY system shown in Fig. 2 may further get some top-
down support. Such a support may come from getting a
prior q(Θ|Ξ) to be put in Eq. (7), as previously discussed
in Sect. 2. Moreover, each component of this building
unit may be the output of another co-dim matrix pair.
E.g., in Eq. (70) we have X = AYH + E, YH = Ŷ ◦ Y ,
with Ŷ given a fixed value. In general, we have a co-dim
matrix pair with both matrices unknown.

Moreover, either or both of ηy ,ηa may also itself be
the output of another co-dim matrix pair, e.g., in a for-
mat of Eq. (4) or a degenerated version, which may be
regarded as taking a role of a structural prior. As to
be introduced in Sect. 4.2, with ηy = ηy(ε, B) in a
co-dim matrix pair, we are led to a generalization of
temporal FA and state space model. Also, with each
ηa
j = ηa(ζ,Φ) in a co-dim matrix pair, the de-noise
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Gaussian mixture in Sect. 3.1 is further extended to a
de-noise version of local FA. So on and so forth, one new
layer may have its next new layer. Whether we add a
new upper layer depends on if there is some priors avail-
able or we want to stop for simplifying computation. As
shown in Fig. 3, we generally get a BYY system featured
by a hierarchy of co-dim matrix pairs.

The first layer is same as the BYY system in Fig. 2,
with two differences in notations. First, the superscript
”(1)” is added to indicate the first layer. Second, the
studies in the previous sections consider the BYY sys-
tem in Fig. 2 usually with ηy ,ηa by Eq. (39) and Eq.
(40); while the place of q(Ψ|Ξ) in Eq. (37) or q(Ψ) in
Fig. 2 is taken by q(Ψ|Ξ)q(R(2)) in the first layer in Fig.
3 as an entry from the second layer.

The second layer consists of two co-dim matrix pairs.
One is featured by ηy(ε, B) as the input to ηy in the first
layer while the other is featured by ηa(ζ,Φ) as the input
to ηa

j . Each co-dim matrix pair is expressed in a format
similar to the first layer except the different notations.
In typical learning tasks, both the pairs may not coexist.
In the above examples, there is merely ηy = ηy(ε, B) for
a generalization of temporal FA and state space model,
while merely ηa

j = ηa(ζ,Φ) for a de-noise version of
local FA. Furthermore, similar to the relation between
Eqs. (4) and (9), either Ψy or Ψa may also itself be the
output of a quadratic system in a format of Eq. (9), e.g.,
BTΨ(2)

Y B + Ψy . For clarity, we omitted this aspect in
Fig. 3.

Similarly, each pair in the second layer may be sup-
ported by two co-dim matrix pairs from the third layers.
Thus, the third layer consists of four co-dim matrix pairs,
as sketched in Fig. 3. So on and so forth, we generally
get a hierarchy of co-dim matrix pairs. For each pair,
one or more component may be degenerated, e.g., we
have either or both of ηa

j = 0 and Ψa = 0 for the pair
of the first layer.

On the right side of Fig. 3, the information flow is
top-down, with an order one Markovian nature, i.e., one
layer decouples its upper layers to its lower layers. On
the left side of Fig. 3, the structure of p(R|X) is designed
as a functional with q(X |R), q(R) as its arguments ac-
cording to a Ying-Yang variety preservation principle,
see Sect. 4.2 in Ref. [1]. In contrast, the information
flow is bottom up. As a Bayesian inverse of the Ying
part, the Yang part on the jth layer depends the rep-
resentation of R(j−1). For computational simplicity, we
may approximately regard that the bottom up informa-
tion flow has an order one Markovian nature, as shown
on the left side of Fig. 3.

Additionally, there may be also a global support q(Ξ)
that provides a priori to every layer, especially to the
parameters in Ψ. For simplicity, we may consider im-
proper priories without hyper-parameters, e.g., a Jeffrey
or IBC prior, see Sect. 4.2 in Ref. [1].

The implementation of the BYY harmony learning can
be made per layer and per pair, bottom up in a decou-
pled manner. Taking ηy = ηy(ε, B) as an example, after
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running Eq. (43) for learning the first layer, we get Y ∗

available via Eq. (44). Considering the following corre-
spondences:

Y ∗ ⇔ XN ,

q(Y ∗|ηy(ε, B),Ψy) ⇔ q(XN |η(AY ),Ψx ),

q(ε|ηε,Ψε) ⇔ q(Y |ηy ,Ψy),

q(B|ηb ,Ψb) ⇔ q(A|ηa ,Ψa),

we get the counterpart of Eq. (38) as follows:

H(2)(p||q, κ,Ξ(2)) =
∫
p(Ψ(2)

Y |Y ∗)
× ln[Q

Y ∗|Ψ(2)
Y

q(Ψ(2)
Y |Ξ)]dΨ(2)

Y ,

lnQ
Y ∗|Ψ(2)

Y

= H(p||q, Y ∗,Ψ(2)
Y )

=
∫
p(B|Ψ(2)

Y , Y ∗)

× ln[Q
Y ∗,B|Ψ(2)

Y

q(B|ηb ,Ψb)]dB,

lnQ
Y ∗,B|Ψ(2)

Y

= H(p||q,B, Y ∗,Ψ(2)
Y )

=
∫
p(ε|B,Ψ(2)

Y , Y ∗)×
ln[q(Y ∗| ηy(ε, B),Ψy)q(ε|ηε,Ψε)]dε.

(85)

Thus, its learning can be iteratively implemented in the
same procedure as introduced from Eq. (43) to Eq. (53)
in Sect. 2.3. For simplicity, we simply use the phrase ”
the co-dim matrix pair learning procedure by Eq. (43)”.

On one hand, learning on Eq. (85) reply on Y ∗ ob-
tained from learning the first layer on Eq. (38). On the
other hand, learning the first layer also relates to the
value of ηy . We can not simply let ηy given by Eq.
(39) and Eq. (40), but given from the second layer via
ηy = ηy(ε, B). Thus, two layers of learning are coupled.
In other words, learning is made via two iterative loops
we get the counterpart of Eq. (38) as follows:

Loop 1 : learning on Eq. (38) at the current top down

input ηy by the co-dim matrix pair learning

procedure by Eq. (43), send out a bottom
up output Y ∗;

Loop 2 : learning on Eq. (85) at the current bottom

up input Y ∗ by the co-dim matrix pair

learning procedure by Eq. (43), send out a
top down output ηy .

(86)

The two loops are jointly iterated until a convergence
is reached, featured by a bidirectional propagation of
learning interaction. Similar to automatic model selec-
tion and sparse learning as discussed after Eq. (43), we
may let Ψb to replace Ψa in Eq. (35), and Ψε to replace
Ψa in Eq. (36) for automatic model selection.

Similarly, we may also make learning on the co-dim
matrix pair featured by ηa

j = ηa(ζ,Φ) for a de-noise
version of local FA, as to be further introduced in the
next subsection. In the same way, two layers of learning

may also be implemented by Eq. (86) between the second
layer and the third layer, as well as between any the j-th
layer and the j + 1-th layer in general. We repeat such
iterations downwards and upwards, until getting con-
verged or stopped according to an external rule. Such
a bidirectional propagation may be made either in a se-
quential way or a systolic way by which the renewed pa-
rameters are propagated upwards and downwards once
each layer is updated.

Next, we further justify Eqs. (85) and (86). Putting
ln{q(XN |η(AY ),Ψx )q(A|ηa ,Ψa)q(Y |ηy ,Ψy)q(Ψ(1)|Ξ)
q(Ψ(2)|Ξ)q(B|ηb ,Ψb)q(ε|ηε,Ψε)} in the place of
ln[q(X |R)q(R)] into Eq. (2), in a way similar to Eq.
(38) we remove the integrals over A, Y,Ψ(1) and obtain
H(p||q) =

∫
p(Ψ(2)

Y , ε, B|XN , A, Y,Ψ(1)) ln{Q
XN |Ψ(2)

Y ,ε,B

×q(Ψ(2)
Y |Ξ)q(B|ηb ,Ψb)q(ε|ηε,Ψε)}dΨ(2)

Y dεdB,
where lnQ

XN |Ψ(2)
Y ,ε,B

degenerates toH(p||q,m,Ξ) in Eq.

(38) if there is no the second layer and thus A, Y,Ψ(1)

are discarded. In other words, the learning on the part
of lnQ

XN |Ψ(2)
Y ,ε,B

is same as the learning ofH(p||q,m,Ξ)
in Eq. (38) and can also be implemented with help of Eq.
(43). Moreover, it follows from Eq. (44), Eq. (45), and
Eq. (46) that lnQ

XN |Ψ(2)
Y ,ε,B

= QXN + ln q(Y ∗|ηy ,Ψy)
with QXN being able to be moved out of the integrals
over Ψ(2)

Y , ε, B. Thus, we further have

H(p||q) = QXN +H(2)(p||q, κ,Ξ(2))

H(2)(p||q, κ,Ξ(2)) =
∫
p(Ψ(2)

Y , ε, B|XN , A, Y,Ψ(1))

× lnQ
Ψ

(2)
Y ,ε,B

dΨ(2)
Y dεdB,

=
∫
p(Ψ(2)

Y , ε, B|XN) lnQ
Ψ

(2)
Y ,ε,B

dΨ(2)
Y dεdB,

Q
Ψ

(2)
Y ,ε,B

=

q(Y ∗|ηy ,Ψy)q(Ψ(2)
Y |Ξ)q(B|ηb ,Ψb)q(ε|ηε,Ψε),

from which we see that H(2)(p||q, κ,Ξ(2)) is the one
in Eq. (85) and is actually in the same expres-
sions as the one in Eq. (38) for the first layer, and
also that p(Ψ(2)

Y , ε, B|XN , A, Y,Ψ(1)) gets in effect in
H(2)(p||q, κ,Ξ(2)) via p(Ψ(2)

Y , ε, B|XN ), which justifies
the simplifications of the Yang machine on the left side
of Fig. 3.

4.2 Temporal FA and De-noise local FA

We continue the previous subsection with details about
how the FA by Eq. (48) on the first layer is supported by
the second layer via ηy = ηy(ε, B) for temporal model.
Specifically, we consider a special case of ηy = ηy(ε, B)
as follows:

ηy = [ηy1 , · · · , ηyN ], ηyt = η(
κ∑
τ=1

Bτyt−τ ). (87)

That is, ηy is in a format similar to ηx in Eq. (22).
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Particularly, when η−1(r) = r and κ = 1 we are led
to the following formulation for temporal dependence
among observations:

xt = Ayt + et, E(yteTt ) = 0,

yt = Byt−1 + εt, E(yt−1ε
T
t ) = 0,

et ∼ G(e|0,Ψx ), εt ∼ G(ε|0,Ψy),

(88)

where Ψx and Ψy are usually diagonal. We are led to the
box 12© in Fig. 1, i.e., Temporal FA (TFA) and state space
model [68–75] for modeling temporal structure among
data. The first equation is called observation equation
and the second is called state equation.

In a standard SSM, not only we need to ensure that
the parameters B to make the state equation stable, but
also we need to know enough knowledge about A, B, Ψx

and Ψy to infer yt and all the remaining unknowns. This
involves an important issue called identifiability, i.e., to
ensure the SSM identifiable by imposing certain struc-
tures on either or both of A and B. It has been shown in
Ref. [73–75] that adopting the basic nature of FA (i.e.,
dimensions of yt are mutually uncorrelated or indepen-
dent) will make the SSM by Eq. (88) become identifiable
subject to an indeterminacy of any scaling. That is, it
even removes the indeterminacy of any orthogonal ma-
trix suffered by the classic FA as discussed after Eq. (18).
Also, two FA parameterizations introduced around Eq.
(27) become the following two identifiable structures:

Type A: A is in general, while B is diagonal

and Ψε = I;

Type B: ATA is diagonal, Ψε is diagonal,

and for B we have B = ΦDΦT,

where D is diagonal, Φ is orthonormal.

(89)

The name TFA is used to refer the SSM by Eq. (88) un-
der either of the above two constraints. Similar to the
previous discussion on Eq. (15) in Sect. 2.1, the above
two types are equivalent in term of the ML learning and
Bayesian approach on q(X |Θ) in Eq. (23). Type A re-
duces the indeterminacy of Eq. (15) to an indeterminacy
of any scaling due to the requirement that B,Ψε are di-
agonal, while Type B transforms the condition of Type
A via C = Φ in Eq. (15). With the help of the BYY
harmony learning, Type B outperforms Type A on de-
termining the unknown dimension of yt via a diagonal
Ψε �= I, for a reason similar to the statement made be-
tween Eq. (27) and Eq. (29).

However, the constraint ATA = I not only needs ex-
tra computing but also not good for sparse learning. In-
stead, recalling the statements made after Eq. (28) to
the end of Sect. 2.1, the FA-D family by Eq. (27) with
ATA = I may be relaxed to the constraint that B,Ψε

are diagonal and A satisfies either of Eq. (31), Eq. (33)

and Eq. (34), e.g., we consider

Type C: A by Eq. (31), and B,Ψε are diagonal.(90)

That is, we consider the FA by Eq. (48) under the con-
straint Tr[Ψa

j ] = 1 together with

q(yt|ηyt ,Ψy
t ) = G(yt|Byt−1,Ψε

t),
q(yt−1|0,Ψy

t−1) = G(yt−1|0,Ψy
t−1), (91)

q(B|0,Ψb) =
∏
j

q(bj|0,Ψb
j ),

B = diag[b1, · · · , bm], subject to |bj | � 1,
each q(bj |0,Ψb

j ) from a Beta-distribution,

where the constraint |bj| � 1 comes from ensuring the
system stability [73–75],and thus we may consider each
q(bj|0,Ψb

j ) with bj = 2(uj − 0.5) and uj from a Beta-
distribution.

Putting the above setting into by Eq. (86) with Eq.
(43) replaced by its detailed form by Eq. (62). The two
loop learning procedure can be used for the BYY har-
mony learning directly. In the sequel, we omit the distri-
bution q(bj |0,Ψb

j ) and give the following detailed form
of this double loop learning procedure:

Loop1 : updating of xt = Ayt + et

ηy
new = Byt−1,

ΓA = 1
ψx

old
AT
oldAold + Ψε −1

old ,

yt = 1
ψx

old
Γ−1
A AT

oldxt + ηy
new,

yt,η = yt − ηy
new, e

y
t = yt,μ − yt,

Anew = Aold+
γ[xtyT

t,η −Aold(Ψε −1
old + ψxoldΨ

a −1
old )],

ext = xt −Anewyt, δA = Aμ −Anew ,

δψx = ey T
t AT

newAnewe
y
t + yT

t,ηδA
TδAyt,η,

ψx
new = (1 − γ)ψx

old + γ(exTt ext + δψx ),
Ψ∗a
j,new = (1 − γ)Ψa

j,old+

γ
diag[aj,newa

T
j,new+(aj,μ−aj,new)(aj,μ−aj,new)T]

aT
j,newaj,new+(aj,μ−aj,new)T(aj,μ−aj,new)

.

where A = [a1, · · · , am],

if Ψy
j,new → 0, discard the jth column of A

and discard dimension of yt.

(92)

Loop2 : updating of yt = Byt + εt

ΓB = BoldΨε −1
old Bold + Ψy −1

old ,

y∗ = Γ−1
B BT

oldΨ
ε −1
old yt,

Bnew = Bold + γdiag[y∗y∗T −BoldΨ
y
old],

Ψy
new = BnewΨy

oldBnew + Ψε
old,

δBnew = Bμ −Bnew , ε
y∗ = y∗μ − y∗,

ΔΨε
old = Bnewε

y∗εy∗TBT
new + δBnewy

∗y∗TδBT
new ,

Ψε
old = (1 − γ)Ψε

old + γdiag[y∗y∗T + ΔΨε
old].

(93)

From a time series {xt}, learning is made adaptively per
sample. As a sample xt comes, Loop 1 is implemented
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equation by equation until its end, and next Loop 2 is im-
plemented until its end, which composites an epoch. We
iterate a number of epoches or until converged. Then,
we get a new sample xt+1, and so on and so forth.

Improving the previous TFA studies, the above learn-
ing has several new features. First, it makes TFA
learning share the automatic model selection and sparse
learning nature of the co-dim matrix pair based FA
learning. Second, it provides a new algorithm for the
BYY harmony learning on the second order TFA shown
in Eq. (59) and Fig. 13 of Ref. [1]. Third, sparse learning
may also be made on B with help of q(bj |0,Ψb

j ) in a Beta-
distribution. Still, similar to the role of q(A|ηa ,Ψa) in
Eq. (24) via dA∗ + dY ∗ , q(B|0,Ψb) may also be taken in
consideration for improving model selection criterion in
Eq. (29).

Moreover, as elaborated in Fig. 8 of Ref. [67], a tem-
poral dependence is described by a regression struc-
ture on ηy via the second equation in Eq. (88) or
ηyt = η(

∑κ
τ=1Bτyt−τ ) in Eq. (87).

Alternatively, an equivalent temporal dependence may
also be embedded in q(yt|0,Ψy) with Ψy given by an re-
gression equation. E.g., yt = Byt−1 + εt is equivalently
replaced by

Ψy
t = BTΨy

t−1
TB + Ψε, E(ytεT

t ) = 0. (94)

Furthermore, we may also write the state equation in
Eq. (88) in term of the entire data matrix Y as follows:

vec(Y ) = Bbvec(Y ) + ε, or

vec(Y ) = BLε, BL = (I −Bb)−1,
(95)

where ε is stacked from εt, t = 1, 2, · · · , N , and BL is a
triangular with all the diagonal elements being 1, and
Bb consists of N × m block rows with each block in
a format [0,···,0,B1,···,Bκ,0,···,0,], the first block row is
[0,B1,···,Bκ,0,···,0,] with the first position being anm×m
zero matrix 0 and the second position being B1, while
the next block row is one position circular shift toward
right. Correspondingly, we have a Gaussian distribution

q(Y |ηy ,Ψy) = q(Y |0,Ψy)
= G(vec(Y )|0, BT

L(Λ ⊗ I)BL).
(96)

That is, we are again led to a format similar to Eq.
(66) that embeds temporal dependence into a con-
strained covariance matrix Ψy . Actually, it covers Eq.
(66) since the Laplacian L is positively definite and
we have Tr[Y LY T] = vecT(Y )(L−1 ⊗ I)−1vecT(Y )=
vecT(Y )[BT

L (Λ ⊗ I)BT
L ]−1vecT(Y ), with BL = B ⊗

I, L−1 = BΛBT, where Λ is diagonal, and B is trian-
gular with all the diagonal elements being 1. In other
words, both a topological dependence and a temporal
dependence can be considered via certain structure em-
bedded in Ψy .

In the previous subsection, we also mentioned that
the FA by Eq. (48) on the first layer may be sup-
ported by the second layer via ηa

j = ηa(ζ,Φ) for a de-
noise version of local FA. We consider each Gaussian
q(aj |ηaj ,Ψa

j ) = G(aj |ηaj ,Ψa
j ) is further described by a

FA model aj = ϕj + φjζt + εj , with εj coming from
G(εj |0,Ψa

j ), that is, we have ηaj = ϕj+φjζt with a diag-
onal Ψa

j andG(ζt|0,Λζj) with a diagonal Λζj . Accordingly
we get

q(R|θ) = q(A, Y, ζ|θ) = (97)∏
t,j

[G(aj |ηaj ,Ψa
j )G(ζt|0,Λζj)G(φj |0,Ψφ

j )η
y
j ]yj,t ,

ηaj = ϕj + φjζt,

from which we are led to the Box 9© in Fig. 1, namely,
a mixture of factor analysis, or local FA (including local
PCA or local subspaces [1,32–36,48, 57–65]). The im-
plementation can be handled in either of the following
two choices:

• we let q(aj |ηaj ,Ψa
j ) = G(aj |ϕj ,Ψa

j ) in Eq. (55)
replaced with G(aj |ϕj , φjΛζjφT

j + Ψa
j ) and sim-

ilarly G(xt|ηaj ,Ψx + Ψa
j ) in Eq. (55) becomes

G(aj |ηaj , φjΛζjφT
j + Ψx + Ψa

j ). In other words, the
role Ψx applies to a standard local FA or a mixture
of FA models [63–67].

• in order to make automatic model selection on the
dimensions of ζt (i.e., hidden factors of local FA
models), we can also implement the BYY harmony
learning with q(R|θ) in Eq. (56) replaced by Eq.
(97).

Last but not least, we may add on a common linear
dimension reduction for tasks on a small size of high
dimensional samples, with a common loading matrix C
added to into Eqs. (55) and (97). That is,

q(Rx |Θ) = q(A, Y |Θ) =
∏
t,j [G(aj |Cϕj ,Ψa

j )η
y
j ]yj,t

q(Rx |Θ) = q(A, Y, ζ|Θ) =∏
t,j [G(aj |ηaj ,Ψa

j )G(ζt|0,Λζj )G(φj |0,Ψφ
j )η

y
j ]yj,t ,

(98)

where ηaj = C(ϕj + φjζt) can be equivalently written as
ηaj = Cϕj + φ′jζt since φ′j = Cφj . Also, we may con-
sider the matrix C with the help of the singular value
decomposition (SVD) C = UDV T.

4.3 General formulation, Hadamard matrix product,
and semi-blind learning

Interestingly, q(Y |0,Ψy) by Eq. (96) and
q(X |η(AY ),Ψx ) by Eqs. (10) and (14), jointly pro-
vide a general formulation that leads to the previ-
ous discussed examples, as each of four components
q(X |ηx,Ψx), q(Y |0,Ψy), q(A|ηa ,Ψa), and q(B|ηb,Ψb)}
takes a specific structure. For example, with a Gaussian
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q(X |AY,Ψx ) we have

X = AY + E, vec[Y ] = μy +BLε. (99)

That is, Y can be regarded as generated from ε via a
linear mapping BL by a sparse matrix with its nonzero
parameters coming from nonzero parameters of B in a
specific structure.

For an efficient implementation we usually return to
the task motivated original models, such as Eq. (66) for
manifold learning and Eq. (88) for TFA, in order to
avoid a huge dimensional problem of BL. Even so, the
equation vec(Y ) = μy + BLε not only provides con-
ceptually a unified expression for variance dependence
structures among Y , but also motivates further issues to
investigate:

• Beyond a Gaussian q(X |ηx ,Ψx ) and a Gaussian
q(Y |ηy ,Ψy), Eq. (96) can be extended to an even
general form with q(X |ηx ,Ψx ), q(Y |ηy ,Ψy) given
by Eq. (10) while ηx , ηy given by Eq. (22) with
η(r) taking one of typical choices shown in Table 1.

• The linear model by Eq. (4) is a common part of
various data generating models, while the second
part vec(Y ) = μy +BLε should be considered based
certain intrinsic properties of problems. Moreover,
BLε may also be extended to nonlinear mapping.

• This general guide is also helpful to making specific
investigation. E.g., to check whether the Laplacian
L from X by Eq. (66) preserves the topology under-
lying the one introduced by BL, we may examine

whether the cascaded mapping ABL preserves this
topology.

As discussed after Eq. (99), BL is generally in a sparse
structure. Recalling Eq. (70), we may encode a sparse
matrix with help of binary variables that controls sparse
degree and flexibly accommodates different matrix struc-
tures. Integrating Eq. (70) with the sate space model by
Eq. (88), we further proceed to the following binary vari-
able modulated state space model:

X = (A ◦ LA)Y + E,

A ◦ LA = [aij�aij ],

vec(Y ) = μy + (B ◦ LB)ε,
B ◦ LB = [bij�bij ].

(100)

As shown in Fig.4 and also illustrated by the Box 17© in
Fig. 1, we get a general formulation for semi-blind learn-
ing. The first layer co-dim matrix pair ηx = AY gets
one second layer support A◦LA in a Hadamard product
for modulating A, and the other second layer support
μy + Bε in an ordinary matrix product for modulating
Y . Then, B in the second layer is further modulated by
a third layer support B ◦ LB in a Hadamard product.
Following the two formations of semi-blind learning by
Eq. (70) and Eq. (71), letting B = 0 in Eq. (100) leads
to the third formation of semi-blind learning that can be
regarded as an extension of NCA [76–79], as illustrated
in the Box 16© in Fig. 1.
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Fig. 4 General formulation, sparse learning, and semi-blind learning
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All the binary random variables are mutually inde-
pendent Bernoulli variables. That is, we have

q(LA|α) =
∏
i,j α


aij

i,j (1 − αi,j)1−

a
ij ,

q(LB|β) =
∏
i,j β


bij

i,j (1 − βi,j)1−

b
ij .

(101)

In the special case that αij = 1, we return back to Eq.
(4). For 0 � αij � 1, its corresponding binary variable
�bij = 0 is switched on with a probability αij . Similarly,
for 0 � βij,τ � 1, its corresponding binary variable �bij is
switched on with a probability βij,τ .

Specifically, we form the BYY system by Eq. (1) with
• q(X |η(AY ),Ψx ) by Eqs. (10) and (14), and η(r)

takes one of typical choices shown in Table 1,
• q(Y |0,Ψy) by Eq. (96) or by Eq. (16) and Eq. (91),
• q(A|ηa ,Ψa) by Eq. (24) and q(B|ηB,ΨB) by Eq.

(91),
• q(LA|α) and q(LB|β) by Eq. (101),

we implement the BYY harmony learning in a way sim-
ilar to that introduced in the previous sections.

There are three major advantages for such a structure.
• It facilitates sparse learning that makes the ma-

trix A flexibly take various stochastic topologies via
driving αij → 0 if the corresponding element is ex-
tra.

• It provides a convenient way for incorporating par-
tial structural information available in addition to
knowing partially training samples of X and Y . If
we know that it is high likely that some link does
not exist or the corresponding aij takes zero or an
ignorable small value, we force the corresponding

αij → 0 or βij → 0 or to be upper bounded by a
small value.

• As those extra βij → 0, the matrix B is pushed as
sparse as possible by the least complexity nature of
the BYY harmony learning.

5 Network biology applications

5.1 Network biology tasks

From the perspective of biological functions, we have
transcriptional regulatory networks, protein interaction
networks, metabolic networks, and signal transduction
pathways [85]. From the perspective of network topol-
ogy, these networks can be classified as undirectional
networks (e.g., protein interaction networks) and di-
rectional networks (e.g., the other three biological net-
works). For the latter, we consider transcriptional regu-
latory and metabolic networks simply by bipartite net-
works. Studies on networks with a same topological type
may be extended from one biological function to another,
e.g., methods of learning bipartite transcriptional regu-
latory networks can be used to learn bipartite metabolic
networks without difficulty [79]. Studies on building bi-
ological networks from data progress according to bio-
logical data available. Typically network biology tasks
work on data that can be mainly expressed in the ma-
trix forms. Shown in Fig. 5 are a number of data types
encountered in various studies of networks biology.

Fig. 5 Typical data matrices used in network biology tasks. (a) Gene expression; (b) CHIP-chip; (c) motifs in upstream
region; (d) transcriptional network; (e) genetic association; (f) association network; (f) gene-X type; (h) PPI interaction
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Though advances on high throughput technologies for
DNA sequencing and genomics, gene expression data are
still the most essential and widely available type for var-
ious studies. Expression data are given in a matrix in
which each column is an observation on expressions of
all the genes in one simulated experiment under one con-
dition. Precisely, this type is called stead state data. In
the past decade, efforts are made on time course gene
expressions obtained from simulated experiments across
a number of time points, which leads to matrices along
the time coordinate, i.e., a cubic array in Fig. 5(a).

Various network biology tasks base on gene expres-
sion data, which can be roughly classified into three
types. The most essential one consists of studies of tran-
scriptome mechanisms, e.g., genetic association between
genes as shown in Fig. 5(e) with each element describing
the degree of association or relevance between a pair of
genes, and transcriptional regulatory networks (TRN)
as shown in Fig. 5(d) with the elements of ”1” indicat-
ing TF-gene regulation. The other types of gene-gene
association for various purposes are shown in Fig. 5(e),
induced from or with the help of gene expression data.
The third involves various studies and applications of
gene-disease and genotype-phenotype relations as shown
in Fig. 5(e).

However, gene expression alone is not enough for ob-
taining TRN shown in Fig. 5(d). Before transcription of
a specific gene is initiated, its regulatory region is bound
by one or more transcription factors (TFs), which rec-
ognize their targets through specific sequences, called
binding motifs. Many efforts have been made in the
last decade via binding motifs and CHIP-chip/ChIP-seq
data for binding location [111], where CHIP stands for
chromatin immunoprecipitation that acts as a protocol
to separate the truncated DNA sequences that bind to
specific protein from DNA suspensions.

Each CHIP-chip or CHIP-seq experiment involves one
TF, and the results give information about the binding
locations in the genome for this specific TF. As shown
in Fig. 5(b), location data is a matrix with each element
indicating a statistical significance level for binding be-
tween one TF and the promoter region of a gene, or
an intensity level that quantifies the strength of bind-
ing. However, the observed binding information does
not imply regulatory relationship between a TF and a
gene that it is binding to, even when the results are
highly significant [112]. Also, there are certain noises in
CHIP-chip data collection. Moreover, CHIP-chip data
only involves one TF per chip, while TF regulations in-
volve combinatorial effects of multiple TFs that need to
be inferred indirectly. Furthermore, TF binding is a dy-
namic process, and a TF can have different targets at
different time points and/or under different conditions.
If we draw conclusions on the regulatory targets for a
TF based on one or a few CHIP-chip experiments, we

will miss many true targets and also include many false
targets for this TF under other conditions even if the
experiments are done perfectly.

Shown in Fig. 5(c) is a matrix for TF binding motifs.
If the binding motif for a TF is known, a gene whose
regulatory region contains one or more instance of this
motif is more likely to be the regulatory target of this
TF. Each element of the matrix in Fig. 5(c) is propor-
tional to the number of such motifs within this regula-
tory region. Motif data provide less direct evidence for
the relation between TFs and genes than location data
because motifs indicate merely potential binding sites
which may not be bound by TFs and also many regula-
tory targets do not have known binding motifs in their
regulatory regions. However, motif sequence does pro-
vide valuable information complementary to CHIP-chip
and expression data, many efforts have been made in the
past decade on integrating these data types for inferring
TRN shown in Fig. 5(d).

Last but not least, shown in Fig. 5(h) is another data
type that has a undirectional or symmetrical topology,
describing protein-to-protein interactions (PPIs). Edges
of PPI networks are determined by a measure technique
on proteome-wide physical connections, indicating by a
binary number 1 or 0 or a real degree between 0 and
1. Getting the PPIs mapping is regarded as a critical
step towards unraveling the complex molecular relation-
ships in living systems. In recent years, new large-scale
technologies become available to measure proteome-wide
physical connections between protein pairs. Similar to
the way ”genome” projects were a driving force of molec-
ular biology 20 years ago, PPIs related studies has be-
come one of the main scopes of current biological re-
search, featured by the term interactome [113].

Though not entirely, a number of network biology
tasks can be formulated as decomposition and integra-
tion of matrices in Fig. 5. One example is decomposing
data matrix into a product of two matrices of lowered
rank. Principally, it applies to each data matrix in Fig.
5, with different constraints added on two factorized ma-
trices. Especially, it takes a major role in the studies of
learning transcriptional networks as shown in Fig. 5(d),
and also in the noncording RNA studies. Another exam-
ple is featured by Eq. (9) and Eq. (72), which matches
a unidirectional graph into another unidirectional graph
via a permutation matrix [50,53,54], which can be used
for comparison of two PPI networks [114]. Another ex-
ample is decomposing a unidirectional graph into cliques
or a PPI network into functional modules [115–118].

5.2 Learning transcriptional networks: past studies
and future progresses

The earliest attempts [111] were made on gene expres-
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sion data in Fig. 5(a) alone. The inferred networks con-
sider general relationships among genes, and thus should
be more appropriately named as gene regulatory net-
works. A fundamental limitation is the assumption that
the expression levels of genes depend on the expression
levels of the TFs regulating those genes. Expression data
only measures the mRNA abundances, while it is the TF
proteins that are directly involved in the regulation of
genes. The mRNA levels of the TFs may not be highly
correlated with those of the genes they regulate. In the
past decade, progresses have been obtained on study-
ing transcriptional regulation networks (TRN) with the
help of location data shown in Fig. 4(b). The task is
featured by finding the bipartite networks expressed by
the binary matrix in Fig. 5(d). The effort starts from
getting bipartite networks for TRN, which may also be
backtracked by three streams.

One stream is featured by bi-clustering that groups
genes and their corresponding TFs into functional mod-
ules. Genes in the same module exhibit similar expres-
sion profiles and tend to have similar biological func-
tions. Also, these genes should share similar regulation
patterns and thus are more likely to be under the control
of the similar TFs. This bi-clustering bases both the sim-
ilarities of expression profiles and the activities of TFs.
In the absence of information for TF activities, Segal et
al. [119] infers key TFs of each module by correlating the
gene expression levels with expression patterns of genes
in the module across a large number of experimental con-
ditions, and then the obtained TFs activities and gene
expression data are jointly used to accurately assign each
gene to its corresponding module. Inferring key TFs and
making clustering are made iteratively. However, this
procedure is limited by the possibly poor correspondence
between gene expression levels and TF activities. Reiss
et al. [120] categorized genes into co-regulated groups
across a subset of all observed experimental conditions
with the help of bi-clustering (genes and conditions) in-
stead of a standard clustering that participates genes
into co-expressed groups. Co-regulated genes are often
functionally associated and easy to be incorporated with
a priori such as common cis-regulatory motifs.

Bar-Joseph et al. [112] proposed a procedure called
GRAM that uses the CHIP-chip location data in Fig.
5(b) also in a two step iteration. First, a stringent
criterion infers the binding targets only for those TF-
gene pairs that have high statistical significance. Sec-
ond, gene expression are used to define a core expression
profile for a set of genes sharing a common set of TFs
as their regulators. After the core expression profiles
are defined, other genes are included in a transcription
module if their expression profiles are similar to the core
profiles. Sharing a similar structure, the ReModiscovery
algorithm by Lemmens et al. [121] uses both the loca-
tion data in Fig. 5(b) and the motif data in Fig. 5(c)

to jointly detect modules of tightly co-expressed genes
that share common subsets of TFs and motifs that ex-
ceed thresholds. Recently, LeTICE by Youn et al. [122]
further extends these studies into a probabilistic model
for a binary binding matrix for integrating the expres-
sion and location data in Fig. 5(a) and 5(b). Without
requiring thresholds, LeTICE generates all gene mod-
ules simultaneously using the entire set of TFs, instead
of step-wisely getting gene modules via subsets of TFs.

The second stream considers the matrix decomposi-
tion by Eq. (4) as bipartite networks, which is justified
from the fact that the equilibrium state of a nonlinear
kinetics model leads to that the log-ratio of gene ex-
pression levels between two conditions is related to the
additive effects from a set of TFs through the log-ratio
of the TF activities to the regulatory strength. Again,
early studies began with only gene expression data as
X in Eq. (4), one is the singular value decomposition
(SVD) [123–127], another is the independent component
analysis (ICA) [128,129] on the assumption of E = 0.
However, the interpretability of SVD and ICA solutions
are a concern. This stems from the fact that orthogonal-
ity and statistical independence lack physical meaning.
Also, both SVD and ICA assume that the bipartite net-
work topology is fully connected, and each source signal
contributes to every output. This is an inappropriate
assumption for transcriptional regulation where it is ac-
cepted that transcription networks are generally sparse.

Similarly, this stream also moved to considering the
sequence data and CHIP-chip location data in Fig. 5(b)
and 5(c). Liao et al. [76] considered a prior knowl-
edge on the connectivity between TFs and genes but
does not need knowing regulatory strengths or TF ac-
tivities, from which each element of A is set to be zero
if there is no connectivity that corresponds to this ele-
ment. With this constraint, the decomposition of Eq.
(4) is made via minimizing the Frobenius norm of E to
determine those unknown regulatory strengths, under
the name of network component analysis (NCA). This
idea is followed and further extended, by Boulesteix and
Strimmer [77] with the help of the partial least squares
to reduce the dimensionality of the space spanned by the
TFs, by Brynildsen et al. [78] with the help of the Gibs
sampler to screen for genes with consistent expression
and CHIP-chip derived connectivity data, and also by
Brynildsen et al. [79] with the assumption relaxed to be
nothing about the nature of the source signals beyond
linear independency. Being different from directly us-
ing the binding intensities bij from CHIP-chip data, i.e.,
aij = bij , Sun et al. [130] assumed that aij = bijcij ,
where cij is the unknown but desired regulatory rela-
tionship between TF j and gene i. There are also sev-
eral other efforts on learning TRN by integrating gene
expression, CHIP-chip, and sequence information [131–
133]. Despite different motivations, these methods all
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share the same general modeling form. Pournara and
Wernisch [134] compared some methods in this context.

The third stream consists of state space model (SSM)
based studies for time course gene expressions across a
number of time points. Gene expression in a general
situation as shown in Fig. 5(a) is a cubic array that
varies along three coordinates. It is known that network
functions are determined not only by their static struc-
tures but also by their dynamic structural rearrange-
ments [135]. In recent years, SSM has been adopted for
time course gene expressions. Most of existing studies
[136–145] treat data xj,t from j = 1, 2, · · · , n as multi-
ple observation series from one same underlying SSM.
In Ref. [146], apparently it considers multiple condi-
tions with one subscript corresponding explicitly to each
different condition, actually it still considers a same
set of parameters for their SSM across all the condi-
tions and thus bring no difference. In these situations,
xj,t, j = 1, 2, · · · , n can be equivalently regarded as seg-
ments of a same stochastic process. For notation clarity,
we ignore the subscript j = 1, 2, · · · , n and simply con-
sider a time series X = {xt, t = 1, 2, · · · , T } with each
vector xt that consists of expressions of all the genes.

Two early studies [136,137] proposed to use a so-called
input driven SSM, i.e., adding an extra term Cxt−1 to
both the state equation and observation equation in a
standard SSM by Eq. (88). Later on, most of efforts
[138–146] turned back to a standard SSM because it
has been shown that the additional term Cxt−1 basi-
cally has no help and may even cause instability [143].
Likely, such an input driven term has not been included
in a standard SSM during the past extensive studies [68]
just because of an awareness of its useless. Generally,
one major SSM problem is the lack of identifiability, for
which extra structural constraints have been imposed to
solve the problem. In addition to the usual assumption
on et and εt, extra constraints are imposed also on ei-
ther or both of A and B. Mostly, A is imposed to be
an identity matrix I [144] or its permutation [138,141]
or a diagonal matrix [143]. These over-simplified SSM
studies actually work as a filter to removing noises in
gene expression data.

Also, this stream recently turns to integrating CHIP-
chip and sequence data into the SSM modeling. San-
guinetti et al. [138] adopted the sparsity constraint on
A in a same way as made in NCA [76], which can be
regarded as an extension of NCA into SSM. Similarly
but with more assumptions, constrained SSMs are sug-
gested in [140] and [144], also based on a known network
structure. If a pair of genes is represented by two states
that is known to have no interaction, the corresponding
entry in the matrix B are all set to be zero. Similarly, if
an input has no influence on a gene that is represented
as a state, the corresponding entry in A should be zero.

The above overview sketched an outline of frontier

tasks, which motivates to apply the general formulation
shown in Fig. 4 for modeling TRN with the help of the
BYY harmony learning, with the following advantages
and improvements:

1) As addressed above, imposing that A = I [145] or
its permutation [138,141] or that A is diagonal [144] ac-
tually makes the role of SSM degenerated to a filter for
observation noises. This limitation can be removed by
considering the TFA by Eq. (88), which has been shown
to be identifiable with the help of either of three struc-
tural constraints given by Eq. (89) and Eq. (90).

2) Sanguinetti et al.[138] handled the above limitation
by adopting the sparsity on A as used by NCA [76]. But
it is unreliable to simply decide whether or not remove an
edge based on the information from sequence data and
CHIP-chip location data, as previously introduced. The
formulation in Fig. 4 differs in not only considering ei-
ther of the above two types of structural constraints, but
also providing a flexible venue to accommodate stochas-
tic topologies to adopt an appropriate one, controlled by
the probability αij obtained from combining the data in
Fig. 5(b) and 5(c), e.g.,

αij = (1 − γ)πij + γ/(1 + e−mij ), 0 � γ � 1,

where γ controls the proportions of two types of data,
which may be pre-specified or obtained via learning.

3) Being different from the existing SSM studies, the
probabilistic sparsity is also imposed on both the obser-
vation equation and the state equation by the formu-
lation in Fig. 4. With the help of learning each prob-
ability 0 � βij � 1, the sparsity of the matrix B is
determined by the least complexity nature of the BYY
harmony learning, in order to learn both the underlying
dynamics of each TF and the relationship across differ-
ent TFs.

4) Though the recently proposed LeTICE [122] im-
proves the previous studies by using a probabilistic spar-
sity on the matrix A also by the Bernoulli binary vari-
able, it actually considers merely the first layer in Fig. 4,
without considering temporal dependence by the state
equation. That is, it not a SSM modeling, but just a
bipartite TRN network that uses this probabilistic spar-
sity to improve the one used in NCA [76]. In addition,
the formulation in Fig. 4 also differs in not only imple-
menting the BYY harmony learning but also considering
both CHIP-chip and sequence information in Fig. 5(b)
and 5(c), while LeTICE only considers the CHIP-chip
data in Fig. 5(b).

5) With the help of automatic model selection, the
lower rank of the matrix A or equivalently an appro-
priate number of TF factors are determined during the
BYY harmony learning, instead of pre-specifying this
number or obtaining it by a conventional two stage
model selection via a criterion such as AIC,BIC/MDL.
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Readers are referred to Sect. 2 of Ref. [1] to see a number
of advantages of this automatic model selection.

6) Most of the above mentioned advantages are ap-
plicable to those simplified studies that the matrix A is
assumed to be binary, e.g., for finding TF modules by
clustering analysis with a pre-specified number of clus-
ters. In this case, the formulation in Fig. 4 will degen-
erate to nonnegative matrix factorization (NMF), and
particularly to the binary matrix factorization (BMF)
bi-clustering [28] for the cases of Eq. (64).

7) There have been some efforts that treating TRN
modeling as a regression model, e.g., considering a lin-
ear regressionX = AY +E with a known pair X and Y .
However, there are at least two places to be improved.
First, a known pair X and Y actually provides a un-
reliable relation due to noises and also pseudo values
taken by some elements of Y , for which we may consider
the Semi-blind learning FA by Eq. (69) and Semi-blind
learning BFA by Eq. (70). Second, AY is extended to be
given by Eq. (22) to cover that xi,t takes either of binary,
real, and nonnegative types of values. E.g., we further
extend X = AYH +E in Eq. (70) into X = η(AYH)+E

together with the third choice in Tab. 1 for performing
a generalized Cox type regression. Actually, there are
other types of regression tasks in bioinformatics studies,
for which such extended regression models may also be
considered.

5.3 Analyzing PPI networks: network alignment and
network integration

As gene expression data in Fig. 5(a) takes essential roles
in those studies of transcriptome mechanisms, the PPI
data in Fig. 5(h) is also essentially important in the stud-
ies of interactome mechanisms [113]. Among various ef-
forts made on the PPI data, many studies are made on
functional modular analysis or module detection, i.e., de-
composing a unidirectional graph into cliques or clusters
[115–118]. Together with functional annotations and ge-
nomic data, extracted modules facilitate prediction of
protein functions, and discovery of novel biomarkers, as
well as identification of novel drug targets. The exist-
ing methods can be classified into three categories [117].
One utilizes direct connections to incrementally enlarge
each module through local detection, mainly by heuristic
approaches. The second performs graph clustering algo-
rithms that consider extracted clusters/modules jointly
under one global guide. Recently, a BYY harmony learn-
ing based bi-clustering algorithm has also been devel-
oped and shown favorable performances in comparison
with several well known clustering algorithms [28]. The
third considers the functioning of one PPI networks as
a dynamic stable system.

Another topic on PPI data is finding the similarities

and differences in two networks or called network align-
ment, which can directly be applied for analyzing signal
pathways, detecting conserved regions, discovering new
biological functions or understanding the evolution of
protein interactions. As addressed after Eq. (72), an ex-
act match between two graphs involves combining the
scores of node-to-node matching into a global matching
score and also searching all the combining possibilities,
which is a well known NP-hard problem. To tackle this
difficulty, one way is an approximate process of forming
the global matching score from the local scores such that
the global process of searching all the combinations be-
come tractable or even analytically solvable [114]. The
other way is seeking some heuristic searching that ap-
proximately neglects a part of all the possible combina-
tions. Both ways lead to an inexact graph matching, as
widely studied in the literature of pattern recognition in
past decades [50–54]. Following the steps of Ref. [114],
several efforts have recently been made along the first
way. Here we explore the second way with the help of
the techniques introduced in Sect. 3.3.

Given two PPI networks denoted by SX and SY , we
match the PPI networks by Eq. (72) or Eq. (73), with a
permutation matrix relaxed to a doubly stochastic ma-
trix as justified in Ref. [20]. Then, we tackle the problem
under the general guideline by the Lagrange-enforcing
algorithms proposed in Refs. [105,106], with a guar-
anteed convergence on a feasible solution that satisfies
constraints. Moreover, we may further handle the prob-
lem by enforcing a doubly stochastic matrix into an or-
thostochastic matrix and implementing the optimization
by Stiefel gradient flow [107,108]. Moreover, we consider
the BYY harmony learning by Eq. (78) with q(A|ηa ,Ψa)
by Eq. (24) and q(aj |ηaj ,Ψa) from a multivariate Gaus-
sian or Laplace distribution.

In addition to the matching costs by Eq. (72), Eq. (73)
and Eq. (75), we may have another one that replaces
each local score between two edges by a sum of local
scores between not only the two corresponding edges but
also a subset of neighbor edges. That is, we consider

min
A∈Π

J(SX , A), J(SX , A) =
∑
i,j

γi,jHi,j , (102)

Hi,j =

{∑
k∈Ni,
∈Nj

(sxi,k − ψx

,j)

2, choice(a)

−∑
k∈Ni,
∈Nj

sxi,kψ
x

,j , choice(b)

where Ni denotes a subset of neighbor edges of the i-
th node in SX , while Nj denotes a subset of neighbor
edges of the j-th node in SY . Sharing a sprit similar to
[114], it puts more emphases on the matching between
the densely connected parts.

Graph matching or network alignment also takes an
essential role in network integration, i.e., integrating
several types of data in Fig. 5, an intensively ad-
dressed important topic in the network biology literature



114 Front. Electr. Electron. Eng. China 2011, 6(1): 86–119

[85,111,117,147]. Efforts range from simple intersection
analysis to sophisticated probability-based scoring sys-
tems, where Bayesian probabilities are derived based on
the strength of evidence associated with an edge, e.g.,
referred to a summary in Figure 3 of Ref. [85]. How-
ever, most of these studies proceed with a given corre-
spondence between different data matrices, integration is
made between the corresponding elements without con-
sidering other possible correspondences. For those prob-
lems that need to take different permutations in con-
sideration, we need to handle network alignment before
making network integration.

Moreover, matching two PPI networks SX and SY

may also be directly used for an integration purpose. Af-
ter networks matched, two corresponding edges with a
high matching score supports each other, while two cor-
responding edges with a high mismatching degree may
be removed. Furthermore, we may even consider match-
ing two PPI networks SX and SY with each having some
unknown edges, with the help of defining an appropriate
score for a correspondence between one known edge and
one unknown edge, and also for a correspondence be-
tween two unknown edges. The unknown edges may be
recovered or discarded according to the resulted graph
matching.

Before network integration, another helpful process is
making each network data contain as least redundancy
as possible. One technique is to detect whether an edge
describes a direct link or a duplicated indirect link. For
data matrices for association relationship, e.g., ones in
Fig. 5(e) and 5(h), one way to handle this problem is to
examine association between two nodes in a presence of
one or more other nodes. If two nodes i, j are linked to
a third node w with the correlation coefficients ρiw and
ρjw, it follows from Eqs. (14) and (15) in Refs. [148,149]
that we can remove the link i, j if its correlation co-
efficient ρij fails to satisfy Theorems 2 and 3 in Refs.
[148,149], i.e.,

ρij > ρiwρwj. (103)

Otherwise we may either choose to keep the link i, j, or
let three nodes to be linked to a newly added node and
then remove all the original links among three nodes.

There could be various tricks for integration of al-
ready matched or aligned matrices, e.g., taking an av-
erage, choosing the best, picking the most reliable one,
etc. One key issue is to calibrate the values measured in
different environments and with different uncertainties,
which is actually a common topic of those studies on in-
formation fusion and classifier combination. One typical
direction is turning different values into the probabilities
under an assumption of mutual independence and then
making a combination by the näıve Bayesian rule [85]
or called the product rule. Readers are referred to the
details and other combining strategies [109,110].

Another challenge is that data matrices to be inte-
grated could be different types, as shown in Fig. 5. Here,
we propose a direction to tackle this challenge. We con-
sider two typical groups of data types, namely gene-gene
and gene-X (disease, condition, etc) or generally X −X

type and Y − X type. In a rough handling, we may
treat the Y −X type in Eq. (4) and the X −X type as
SX = XXT in Eq. (9), and make integration with the
help of the BYY harmony learning by Eq. (2) together
with Eqs. (81), (82), (83) and (84).

6 Concluding remarks

Further insights on the Bayesian Ying-Yang (BYY) har-
mony learning have been provided from a co-dimensional
matrix-pairing perspective. A BYY system is featured
with a hierarchy of several co-dim matrix pairs, and
best harmony learning is further improved via exploring
the co-dim matrix pairing nature, with refined model
selection criteria and a modified mechanism that co-
ordinates automatic model selection and sparse learn-
ing. Particularly, typical learning tasks based on X =
AY + E and its post-linear extensions have been re-
examined. Not only learning algorithms for FA, BFA,
BMF, and NFA have been updated from this new per-
spective, but also the following new advances have been
introduced:

• A new parametrization that embeds a de-noise na-
ture to Gaussian mixture and local FA;

• An alternative formulation of graph Laplacian
based linear manifold learning;

• Algorithms for attributed graph matching, and co-
decomposition of data and covariance;

• A co-dim matrix pair based generalization of tem-
poral FA and state space model;

• A semi-supervised formation for regression analysis
and a semi-blind learning formation for temporal
FA and state space model.

Moreover, these advances provide with new tools for net-
work biology studies, including learning transcriptional
regulatory, Protein-Protein Interaction network align-
ment, and network integration.
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