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Abstract—Transcription factor activities (TFAs), rather than
expression levels, control gene expression and provide valuable
information for investigating TF-gene regulations. Network Com-
ponent Analysis (NCA) is a model based method to deduce
TFAs and TF-gene control strengths from microarray data and
a priori TF-gene connectivity data. We modify NCA to model
gene expression regulation by non-Gaussian Factor Analysis
(NFA), which assumes TFAs independently comes from Gaussian
mixture densities. We properly incorporate a priori connectivity
and/or sparsity on the mixing matrix of NFA, and derive, under
Bayesian Ying-Yang (BYY) learning framework, a BYY-NFA
algorithm that can not only uncover the latent TFA profile
similar to NCA, but also is capable of automatically shutting
off unnecessary connections. Simulation study demonstrates the
effectiveness of BYY-NFA, and a preliminary application to two
real world data sets shows that BYY-NFA improves NCA for
the case when TF-gene connectivity is not available or not
reliable, and may provide a preliminary set of candidate TF-
gene interactions or double check unreliable connections for
experimental verification.

Index Terms—transcription factor activity, network component
analysis, non-Gaussian factor analysis, sparse learning, Bayesian
Ying-Yang

I. INTRODUCTION

High-dimensional data from DNA microarray are typically
controlled by low-dimensional regulatory signals through an
interacting network [1]. The gene expression is controlled
by one transcription factor (TF) alone or several TFs in
combination on the target promoter regions. Transcription
factor activities (TFA) rather than levels of transcription factor
expression play roles in transcriptional regulations. It is a
challenging problem in system biology [1] to reconstruct the
dynamics of the hidden regulatory signals of TFs from the
transcript levels of the genes they control.

† These authors contributed equally to this work.
∗ Corresponding Author: lxu@cse.cuhk.edu.hk

Network component analysis (NCA) [1], [2] is a popu-
lar method to deduce TFA and TF-gene regulation control
strengths from transcriptome data and a priori network struc-
ture information which is usually constructed from ChIP-
chip binding assays. In NCA, the (relative) gene expression
is formulated as the product of each (relative) TFA to the
power of the control strength from that TF to the gene,
or equivalently, the relationship between TFA and gene ex-
pression is approximated as a log-linear model, where the
log expression level of a gene is modeled by a mixture
of log TFAs weighted by the control strengths. NCA takes
the available network topology into account to compute the
component TFAs, different from principal component analysis
(PCA) or independent component analysis (ICA) which are
based on statistical properties that may hinder the biological
interpretations [1]. In NCA, the network topology needs to
satisfy three criteria for a unique decomposition [3]. NCA
has been successfully applied to determine the transcription
regulatory activities, on microarray data generated from Sac-
charamyces cerevisiae during cell-cycle process or Escherichia
coli carbon source transition from glucose to acetate [1], [4],
and so on. Other related methods include REDUCE [5] that
takes normalized motif binding copy number as the regulation
strength of the TF for that gene, and obtains TFA profiles from
gene expression by linear regression.

Based on the NCA framework, this paper modifies NCA to
model gene transcriptional regulation by non-Gaussian Factor
Analysis (NFA) [6], which assumes the latent TF activities
come from independent Gaussian Mixture Models (GMM).
From the perspective of NFA, the activity of a TF consists of
two parts of information, i.e., a state to indicate the activity
level and a Gaussian distribution to capture the stochasticity
or noise variance of the state. NFA can be regarded as a
generalization of ICA by relaxing the noise-free assumption.

978-1-4673-1191-5/12/$31.00  ©2012 IEEE

404



NCA needs a priori knowledge about the connection topol-
ogy of the TF-gene regulatory network. However, in most
organisms, the connectivity information is largely unavailable.
Due to the noise in experiments, the known connectivity data
may not be reliable. A two-stage method that integrates NCA
with stepwise regression was proposed to trim the network
with the help of a modified Akaike information criterion [7].
To avoid such a repeated implementation, we incorporate a
sparsity penalty on the mixing matrix of control strengths, so
as to automatically push the extra entries to zero if there is not
enough evidence for the existence of connections. Efforts on
sparsity have been made on sparse learning or Lasso shrinkage
by L1 norm penalty or a Laplacian prior, and so on [8], [9].
Within the Bayesian paradigm, we consider on each entry of
the mixing matrix a joint Normal-Jeffreys prior distribution
which has been shown to implement sparsity well without
any hyper-parameters to be determined [10]. We propose to
implement NFA under Bayesian Ying-Yang (BYY) [11], [6]
learning framework. The derived BYY-NFA algorithm can
utilize both a priori connectivity and sparsity on the matrix
of control strengths.

To validate our proposed algorithm, experiments are con-
ducted on both synthetic data and real data. Simulation s-
tudy demonstrates the effectiveness of sparse BYY-NFA in
recovering the hidden dynamics of TF regulatory signals, and
in estimating the connectivity topology and control strengths.
Moreover, the sparse BYY-NFA algorithm is applied on the
yeast cell cycle data [12]. If using the available connectivity
information but not considering sparsity, the reconstructed
TFAs by BYY-NFA are similar to those by NCA. If sparsity
is further incorporated, many connections are shut off as the
their regulation strengths are pushed towards zeros, but without
changing the cyclic patterns of TFAs. This suggest that some
connections are not necessary or may be false positive. If
considering the whole mixing matrix without knowledge about
the network structure, the problem becomes difficult. Still, the
connectivity and the regulatory dynamics can be inferred to
some extent. Most connections are shut off, and approximately
half the obtained connections are consistent with experimental
ChIP-chip data. Therefore, our algorithm improves the NCA
framework to the case when connectivity topology of the TF-
gene network is not available or not reliable. The sparse BYY-
NFA algorithm may provide a preliminary set of candidate TF-
gene interactions, or double check the known connections for
further experimental investigations. In addition, the proposed
algorithm can also detect activations of involved TFAs during
E. coli carbon source transition from glucose to acetate [4].

The rest of this paper is organized as follows. In Section II,
we provide a brief review on NCA, based on which we proceed
to introduce NFA for gene regulation modeling, with a BYY-
NFA algorithm developed under BYY learning to implement
sparse learning. Section III is devoted to experiments on
synthetic data and real data, to validate the performance of
BYY-NFA. Finally, conclusion is made in Section IV.

II. METHODS

A. A brief review on NCA

NCA approximates gene expression as the product of the
contribution of each TF regulatory activity using a the follow-
ing model [1]:

𝐸𝑖(𝑡)

𝐸𝑖(0)
=

𝑚∏
𝑗=1

(
𝑇𝐹𝐴𝑗(𝑡)

𝑇𝐹𝐴𝑗(0)

)𝐶𝑆𝑖𝑗

, (1)

or equivalently a log-linear model in canonical matrix form:

𝑋 = 𝐴𝑌 + Γ, (2)

where 𝐸𝑖(𝑡) is the gene expression level, 𝑇𝐹𝐴𝑗(𝑡) is the
activity of the TF 𝑗, and 𝐶𝑆𝑖𝑗 represents the control strength
of TF 𝑗 on gene 𝑖, and 𝑋 = [log(𝐸𝑖(𝑡)/𝐸𝑖(0))]𝑛×𝑁 , 𝑌 =
[log(𝑇𝐹𝐴𝑗(𝑡)/𝑇𝐹𝐴𝑗(0))]𝑚×𝑁 , 𝐴 = [𝐶𝑆𝑖𝑗 ]𝑛×𝑚, and Γ is
the residual.

NCA is to minimize the residual Γ to get a decomposition
𝑋 ≈ 𝐴𝑌 , from the observed gene expression profile 𝑋
and the known connectivity for 𝐴, i.e., 𝐶𝑖𝑗 is fixed at zero
if TF 𝑗 does not bind to the promoter region of gene 𝑖,
otherwise the control strength is non-zero. To guarantee a
unique decomposition up to some normalization factors, NCA
requires 𝐴 and the resultant connectivity matrix by removing a
regulatory node together with its connected neighbor genes to
have full-column rank, and requires 𝑌 to have full-row rank.
It should be noted that the NCA solution does not assume any
relationship between the TFAs.

B. non-Gaussian Factor Analysis

The non-Gaussian Factor Analysis (NFA) [13] generalizes
classical Factor Analysis (FA) by assuming that each hidden
factor follows from a non-Gaussian distribution, and it also
relaxes the noise-free assumption of Independent Component
Analysis (ICA) [14], for blind separation and deconvolution
of noisy signals [15].

The NFA model assumes that an 𝑛-dimensional observation
𝒙 is formed by 𝑛 mixtures of 𝑚 independent non-Gaussian
factors 𝑦1, . . . , 𝑦𝑚 and added with a Gaussian noise e, i.e.,

𝒙 = 𝐴𝒚 + a0 + e, (3)

where 𝐴 is an 𝑛×𝑚 mixing matrix, and

𝑞(𝒚) =

𝑚∏
𝑗=1

𝑞(𝑦𝑗), (4)

𝑞(𝒙∣𝒚) = 𝐺(𝒙∣𝐴𝒚 + a0,Σ𝑒), (5)

and Σ𝑒 is a diagonal covariance matrix, and 𝐺(𝑧∣𝜇,Σ) denotes
a Gaussian probability density with mean 𝜇 and covariance
Σ. Each non-Gaussian factor 𝑦𝑗 is modeled by a Gaussian
mixture:

𝑞(𝑦𝑗) =

𝑘𝑗∑
ℓ=1

𝛼𝑗ℓ𝐺(𝑦𝑗 ∣𝜇𝑗ℓ, 𝜎
2
𝑗ℓ), (6)

where 0 ≤ 𝛼𝑗ℓ ≤ 1, and
∑𝑘𝑗

ℓ=1 𝛼𝑗ℓ = 1.
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According to Eq.(2)&(3), we use NFA to generalize the
framework of network component analysis (NCA) [1] by
considering the mixing matrix 𝐴 as the connectivity matrix
between the transcription factors (TF) and the genes, the latent
factor 𝒚 to represent the TF activity, and the observation 𝒙
being the gene expression.

C. Sparsity on the mixing matrix

As indicated by the literature [1], the number of target genes
of a TF is usually small, and thus the connectivity matrix 𝐴 is
sparse, i.e., with many zero entries. From some TFs, the topol-
ogy of connectivity is known based on a priori knowledge from
biological experiments or computational predictions. Then,
this case falls in the general framework of semi-blind factor
analysis, e.g., see Sect.4.3 in [16]. However, the connectivity
information may be not available or at least partially unknown
in practice. One alternative way is to assume a full connectivity
matrix, and then deactivate those false positive connections by
automatically shrinking extra entries to zero during learning
with the help of a sparseness constraint. Efforts on sparsity
have been made on sparse learning or Lasso shrinkage by L1
norm penalty or a Laplacian prior, and so on [8], [9]. This
paper adopts the following joint Normal-Jeffreys probability
density on each entry of the mixing matrix [10]:

𝑞(𝐴∣𝜸)𝑞(𝜸) ∝
∏
𝑖,𝑗

𝐺(𝑎𝑖𝑗 ∣0, 𝛾𝑖𝑗) ⋅
∏
𝑖,𝑗

1

𝛾𝑖𝑗
, (7)

where 𝛾𝑖𝑗 is the variance of 𝑎𝑖𝑗 and is further controlled by a
Jeffreys prior without any hyper-parameters.

D. Implementing sparse NFA under BYY framework

Systematically developed over a decade [11], [17], Bayesian
Ying-Yang (BYY) harmony learning is a general statistical
learning framework for parameter learning and model selection
under a best harmony principle. For the above NFA model, the
harmony measure is as follows:

𝐻(𝑝∥𝑞) =
∫ ∑

𝐿

𝑝(𝑋)𝑝(Θ∣𝑋)𝑝(𝑌, 𝐿∣𝑋,Θ) ln[

𝑞(𝑋∣𝑌, 𝐿,Θ)𝑞(𝑌 ∣𝐿,Θ)𝑞(𝐿∣Θ)𝑞(Θ)]𝑑𝑌 𝑑𝑋𝑑Θ, (8)

where 𝑞(⋅) gives the Ying representation, and 𝑝(⋅) gives the
Yang representation. All components in Ying representation
follow from the above specifications in Eq.(4)-(7). In Yang
representation, the empirical density 𝑝(𝑋) = 𝛿(𝑋 − 𝑋𝑁 ) is
adopted with 𝑋𝑁 = {𝒙𝑡}𝑁𝑡=1, and the other components are
free, i.e., no constraints on their probability density functions.

Such a derived algorithm to maximize 𝐻(𝑝∥𝑞) is called
BYY-NFA, and the details are referred to Tab. VI in the
Appendix. Sparse learning on the mixing matrix 𝐴 is activated
by 𝑞(Θ) = 𝑞(𝐴∣𝜸)𝑞(𝛾), or is shut off by 𝑞(Θ) = 1.
Moreover, the available connectivity data can be utilized
by fixing the corresponding entries of 𝐴 at zero if there
is no given connection, or by a confidence probability for
a flexible incorporation [16]. The obtained combinations of
implementations of BYY-NFA are summarized in Tab. I. With

TABLE I
IMPLEMENTATION OF ALGORITHMS. ”C”: CONSTRAINING 𝐴 WITH

CONNECTIVITY DATA FROM E.G., CHIP-CHIP ASSAY; ”F”: USING A FULL

𝐴 (NO A PRIORI CONNECTIVITY); ”N”/“S”: IMPLEMENTING BYY-NFA
WITHOUT/WITH SPARSE PRIOR.

algorithm explanation

NCA implemented by NCA toolbox [1]
BYY-NFA(n+c) constraining 𝐴 as NCA, 𝜏 = 0 in Tab. VI
BYY-NFA(s+c) constraining 𝐴 as NCA, 𝜏 = 1 in Tab. VI
BYY-NFA(s+f) 𝐴 = 1𝑛×𝑚 (a matrix of all ones), 𝜏 = 1 in Tab. VI
BYY-NFA(n+f) 𝐴 = 1𝑛×𝑚, 𝜏 = 0 in Tab. VI

the matrix 𝐴 completely unknown to be estimated and also no
a priori 𝑞(Θ) in consideration, the problem becomes learning
a standard NFA, and the last one BYY-NFA(n+f) is actually
the BYY-NFA proposed in Sect. 5 of [18] and Sect. IV(C) in
[6], which is extended here by considering either or both of a
priori connectivity and a priori distribution 𝑞(Θ).

The above is a brief introduction to BYY based on NFA.
Readers are referred to not only a summary of nine aspects
on the novelty and favorable natures of BYY best harmony
learning, made at the end of Sect. 4.1 in [17], but also the
roadmap shown in Fig. A2 of in [17], as well as to a systematic
outline on the 13 topics about best harmony learning in Sect.
7 of [19].

III. RESULTS

A. On simulated data

First, we demonstrate the effectiveness of the proposed
algorithm by simulated data sets. We set 𝑛 = 6,𝑚 =
2, 𝑘1 = 𝑘2 = 2,Σ𝑒 = 0.1I𝑛,a0 = 0. The mixing matrix
𝐴 is randomly generated and then randomly set 𝑝𝑠 = 40%
percentage of the entries to be zero. The final mixing matrix
is given by 𝐴𝑜 in Eq.(9). The factor distributions 𝑞(𝑦𝑟) are
given in Fig. 1. Then, a synthetic data set 𝑋𝑁 of sample size
𝑁 = 100 is randomly generated according to the NFA model
given in Eq.(3)-(5).

Given the data set 𝑋𝑁 , the learning task consists of infer-
encing the activities of the factors {y𝑡}, estimating the param-
eters Θ = {𝐴,Σ𝑒,a0, 𝛼𝑟𝑗𝑟 , 𝜇𝑟𝑗𝑟 , 𝜎

2
𝑟𝑗𝑟
}. The BYY-NFA(s+f)

is implemented by randomly initializing Θ. The latent factor
activities {y𝑡} are accurately estimated as shown in Fig. 2.
Given in Eq.(11), the estimated mixing/connectivity matrix
𝐴𝑠𝑓 not only approximates non-zero connection strengths of
the original one 𝐴𝑜 well, but also pushes the elements to zero
where there are no connections between the factors and the
observation dimensions with the help of the imposed sparsity
constraint by Eq.(7). If Eq.(7) is not imposed on 𝐴, the
obtained 𝐴𝑛𝑓 in Eq.(10) by BYY-NFA(n+f) is not so sparse
as 𝐴𝑠𝑓 .
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Fig. 1. The true 2-component GMM distributions (in red curves) and the
histograms of the synthetic data of sample size 𝑁 = 100 (in blue bars) of
the two factors, 𝑞(𝑦1) in the above and 𝑞(𝑦2) at the bottom.

𝐴𝑜 =

⎛⎜⎜⎜⎜⎜⎜⎝
−0.6440 0
−1.1045 −1.2155
−1.2183 0
2.1293 −0.0369

0 −1.0647
0 −1.0775

⎞⎟⎟⎟⎟⎟⎟⎠ (9)

𝐴𝑛𝑓 =

⎛⎜⎜⎜⎜⎜⎜⎝
−0.6113 0.1076
−1.1072 −1.0784
−1.1792 0.1413
2.0782 −0.2382
0.0195 −1.0181
−0.0027 −1.0197

⎞⎟⎟⎟⎟⎟⎟⎠ (10)

𝐴𝑠𝑓 =

⎛⎜⎜⎜⎜⎜⎜⎝
−0.5954 0.0096
−1.1003 −1.1069
−1.1676 0.0001
2.0578 0.0019
0.0092 −0.9290
−0.0010 −0.9436

⎞⎟⎟⎟⎟⎟⎟⎠ (11)

B. On real data

1) Yeast cell-cycle data: In this study, we apply our algo-
rithm to microarray data sets that are about yeast cell-cycle
regulation. The data were taken from wild-type S. cerevisiae
cultures synchronized by three independent methods, 𝛼-factor
arrest, elutriation, and arrest of a cdc15 and temperature-
sensitive mutant [12], as well as cdc28 data [20]. The con-
nectivity information between transcription factors and their
regulated genes comes from the genomewide location or ChIP-
chip assay [21].

We focus on 6 transcription factors (TF) that are known
to be related to cell-cycle regulation [21], [1]. Based on the
”NCA Toolbox” [1], 137 genes regulated by these TFs were
selected, with the connectivity information obtained from [21].

0 20 40 60 80 100
−3

−2

−1

0

1

2

0 20 40 60 80 100
−2

−1

0

1

2

 

 

true
estimate

Fig. 2. The true activities (in blue) and the estimated ones (in red) of the
latent factors. (Noted that some blue points are now shown evidently because
they are covered by the red points.)

TABLE II
YEAST CELL CYCLE DATA POINTS IN COMBINED DATASET TIME POINTS

(MIN)

data time-points experiment

1-4 cln3-1, cln3-2, clb2-2, clb2-1 Cln3 and Clb2

5-22 0,7,14,21,. . . ,119 𝛼-factor

23-46 10,30,50,70,80,90,. . . ,240,250,270,290 cdc15

47-63 0,10,20,. . . ,150,160 cdc28

64-77 0,30,60,. . . ,360,390 elutriation

First, we implement the BYY-NFA(n+c) (i.e., without uti-
lizing the sparse prior). The elements of the mixing matrix 𝐴
are fixed at zeros where there is no connection indicated by
the connectivity data, in the same way as the NCA algorithm
does. The reconstruction mean square errors (MSE), i.e.,

𝑀𝑆𝐸 =
1

𝑛𝑁

𝑁∑
𝑡=1

∥𝒙𝑡 −𝐴�̂�𝑡 − â0∥2 (12)

are given in Tab. V, where 𝒙𝑡 is the gene expression vector
at time 𝑡, and 𝐴, �̂�𝑡, â0 are connectivity matrix, TF activities
and mean vector, estimated by NCA or BYY-NFA(n+c). The
two algorithms both reconstruct the microarray expression data
with small errors. The estimated regulatory activities of TFs
are presented in Fig. 3&4. It should be noted that both NCA
and BYY-NFA can only reconstruct TFA up to a normalization
factor, and thus for an easy comparison, the TFA profile by
BYY-NFA is normalized in the same way as NCA does in
”NCA Toolbox” [1], [6]. Similar to NCA results, the dynamics
of the TF activities estimated by the BYY-NFA(n+c) also show
cyclic behavior, which reveals the role of each TF during cell
cycle regulation. The reconstructed regulatory signals by NCA
and by BYY-NFA(n+c) are very similar with a high average
correlation coefficient (CC) 0.9781 of the six TFs.

Second, we implement BYY-NFA(s+c), still constraining 𝐴
according to the connectivity data. The estimated TFA profile
is given in Fig. 5, which resembles Fig. 3 for most TFs except
FKH1. According to Tab. IV, 130 of 203 connections from the
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TABLE III
RECONSTRUCTION MEAN SQUARE ERRORS (MSE) OF NCA AND

BYY-NFA ON YEAST CELL-CYCLE DATA. NCA AND BYY-NFA ARE

IMPLEMENTED ACCORDING TO TAB. I.

algorithm MSE(n+c) MSE(s+c) MSE(s+f)

NCA 0.1320 - -
BYY-NFA 0.1311 0.1373 0.0951
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Fig. 3. The estimated TFA profile by NCA

ChIP-chip assay were shut off by the sparsity during learning,
which indicates the 130 connections might be false positive or
a mechanism of redundancy to ensure the robustness [22].

Third, we implement BYY-NFA(s+f) with all entries of 𝐴
being variables. Table IV shows that a large part of the relaxed
connections are switched off, and about half of the remaining
connections are consistent with the ChIP-chip experiment. As
in Fig. 6, most of TFAs still preserve the cyclic pattern and
resemble to the corresponding one in Fig. 6, except ACE2
which does not have evident cyclic pattern as in Fig. 6 and
thus decreases the average correlation coefficient to 0.72240.

Finally, we test the sensitivity of TFA profile to ran-
dom insertions in the connectivity from ChIP-chip data, as
in [23]. The available connectivity is altered by randomly
adding an extra percentage 𝑃𝑖𝑛 of connections to the mixing
matrix 𝐴. Using the TFA profile by NCA in Fig. 3 as
a reference, the correlation coefficients (CC) between the
estimated TFA profiles to the reference are calculated and
averaged in Tab. V for 10 independent runs for each 𝑃𝑖𝑛 ∈
{0%, 10%, 30%, 50%, 100%}. A high CC value indicates a
strong resemblance to the reference TFA profile in Fig. 3.
Both NCA and BYY-NFA(n+c) are sensitive to 𝑃𝑖𝑛 > 50%,
while BYY-NFA(s+c) shows differences for no insertions (in
Fig. 5) but keeps the CC values more constantly around 80%
with the cyclic patterns preserved.

2) E. coli carbon source transition data: We further apply
BYY-NFA to temporal gene expression profiles of E. coli
during transition from glucose to acetate, with samples taken
at 5, 15, 30, 60 min and every hour until 6 h after transition
[4]. Similar to [4], the repeated data points are averaged, and
we demonstrate the effectiveness of BYY-NFA on 5 of 16
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Fig. 4. The estimated TFA profile by BYY-NFA(n+c). The average of the
correlation coefficients of the TFAs in this profile to the corresponding ones
in Fig. 3 is 0.9781.
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Fig. 5. The estimated TFA profile by BYY-NFA(s+c). The average of the
correlation coefficients of the TFAs in this profile to the corresponding ones
in Fig. 3 is 0.8875.
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Fig. 6. The estimated TFA profile by BYY-NFA(s+f). The average of the
correlation coefficients of the TFAs in this profile to the corresponding ones
in Fig. 3 is 0.7240.

TFs that were analyzed by NCA in [4]. Based on the available
connectivity data and the applicability for NCA, 22 genes were
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TABLE IV
CONFUSION MATRICES OF THE RECONSTRUCTED CONNECTIVITY BY

SPARSE BYY-NFA ON YEAST CELL-CYCLE DATA AGAINST THE KNOWN

CONNECTIVITY FROM AVAILABLE EXPERIMENTS. FOR SPARSE BYY-NFA,
A CONNECTION IS DETERMINED TO BE PRESENT IF THE ABSOLUTE VALUE

OF ITS ESTIMATED CONTROL STRENGTH IS LARGER THAN A THRESHOLD

0.02. NOTATIONS: 0̂ OR 1̂ DENOTES RECONSTRUCTION, 0∗ OR 1
∗

DENOTES THE KNOWN CONNECTIVITY.

BYY-NFA(s+c)

0
∗

1
∗

0̂ 0 130
1̂ 0 73

BYY-NFA(s+f)

0
∗

1
∗

0̂ 572 154
1̂ 47 49

TABLE V
SENSITIVITY OF TFA PROFILES TO RANDOMLY INSERTING CONNECTIONS

IN CONNECTIVITY FROM CHIP-CHIP DATA. THE AVERAGE CORRELATION

COEFFICIENT FOR EACH CASE IS CALCULATED.

algorithm 0% 10% 30% 50% 70% 100%

NCA 1.0 0.975 0.937 0.913 0.778 0.665
BYY-NFA(n+c) 0.978 0.954 0.943 0.904 0.794 0.781
BYY-NFA(s+c) 0.888 0.899 0.873 0.833 0.765 0.732
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Fig. 7. The estimated TFA profiles on E.Coli data by NCA with MSE
0.0117.

selected by the NCA toolbox [1], and there were 30 regulations
from TFs to genes.

Similar to the patterns of the reconstructed TFA profile
by NCA in Fig. 7, the TFAs by BYY-NFA(s+c) in Fig. 8
show activation immediate after transition and then gradually
become stable, corresponding to the adaptation of cells to the
new environmental condition. Moreover, 2 of 30 regulation
strengths are pushed to zero, i.e., the corresponding regulations
are shut off by BYY-NFA. Similar to Fig. 4-6, the results by
other implementations of BYY-NFA can also be computed.

IV. CONCLUSION

Based on the NCA framework, we modify NCA to model
the gene transcriptional regulation by NFA, which assumes the
latent regulatory dynamics independently come from GMM
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Fig. 8. The estimated TFA profiles on E.Coli data by BYY-NFA(s+c) with
MSE 0.0077 and average CC 0.8926, which is calculated with respect to the
corresponding ones in Fig. 7.

densities. Formulated within Bayesian paradigm, NFA can
properly incorporate the a priori knowledge from experiments
and the sparseness feature on the connectivity matrix via a
Normal-Jeffreys prior. Synthetic experiments have demonstrat-
ed the effectiveness of our derived sparse BYY-NFA algorithm
in uncovering the latent TFA profile, estimating the control
strengths. The extra connections are shut off by pushing the
corresponding control strengths to zeros due to the sparseness
feature. Moreover, a preliminary application to Saccharomyces
cerevisiae cell cycle data and Escherichia coli carbon source
transition data shows that BYY-NFA not only reconstructs the
hidden TF regulatory signals comparably as NCA does, but
also improves NCA to be capable of shutting off unnecessary
or unreliable connections. This property may be useful to pro-
vide candidate TF-gene interactions for biological experiments
or to double check those unreliable interactions for further
experimental investigations.

APPENDIX

In Yang representation, the empirical density 𝑝(𝑋) =
𝛿(𝑋 − 𝑋𝑁 ) is adopted with 𝑋𝑁 = {𝒙𝑡}, and all the other
components are free, i.e., no constraints on their probability
functions. In such a setting, the best harmony, i.e, maximizing
𝐻(𝑝∥𝑞), leads the unknown Yang components to be Dirac
delta functions, 𝑝(Θ∣𝑋) = 𝛿(Θ − Θ∗) and 𝑝(𝒚𝑡, j∣𝒙𝑡) =
𝛿([𝒚, j]− [𝒚∗

𝑡 , j
∗
𝑡 ]). It follows that Eq.(8) becomes

𝐻(𝑝∥𝑞) ≈
𝑁∑
𝑡=1

ℒ(𝒙𝑡,𝒚𝑡, j∣Θ) + 𝜏 ln 𝑞(𝐴∣𝜸)𝑞(𝜸), (13)

ℒ = ln[𝐺(𝒙𝑡∣𝐴𝒚𝑡 + a0,Σ𝑒)𝜶j∗𝐺(𝒚∗
𝑡 ∣𝝁j∗ ,Λj∗)],

[𝒚∗
𝑡 , j

∗
𝑡 ] = argmax

𝒚𝑡,j𝑡
ℒ(𝒙𝑡,𝒚𝑡, j∣Θ), (14)

where j = [𝑗1, . . . , 𝑗𝑚] with 𝑞(𝑦𝑟∣𝑗𝑟) = 𝐺(𝑦𝑟∣𝜇𝑟𝑗𝑟 , 𝜎
2
𝑟𝑗𝑟

),
and 𝑞(𝒚𝑡∣j) is a multivariate Gaussian density with mean
𝝁j = [𝜇1,𝑗1 , . . . , 𝜇𝑚,𝑗𝑚 ] and covariance matrix Λ =
𝑑𝑖𝑎𝑔[𝜎2

1,𝑗1
, . . . , 𝜎2

𝑚,𝑗𝑚
], and 𝑑𝑖𝑎𝑔[u] denotes a diagonal matrix
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with the vector u as its diagonal, and 𝑞(j) = 𝜶j =
∏𝑚

𝑟=1 𝛼𝑟𝑗𝑟 ,
and 𝜏 is an indicator of whether the last term in Eq.(13) takes
effects. Specifically, 𝜏 = 0 shuts off the effects from the last
term.

A Ying-Yang alternative procedure is implemented between
“Step 𝑌 ” and “Step 𝜽 with details given in Tab. VI. The
obtained algorithm is called BYY-NFA. It should be noted
that 𝜏 = 0 removes the sparsity constraint in BYY-NFA, which
degenerates back to the one in Sect. 5 of [18] and Sect. IV(C)
in [6]. The binary matrix 𝐴 is used to incorporate known
connectivity data, and it is set to be a matrix of all ones when
no connectivity is available.

TABLE VI
THE BYY-NFA ALGORITHM

Objective: maximize 𝐻(𝑝∥𝑞) by Eq.(13)

Initialization: initialize Θ, 𝑚, 𝑘1, . . . , 𝑘𝑚.

Step 𝑌 : get 𝒚∗
𝑡 and 𝒋∗𝑡 = [𝑗∗1𝑡, . . . , 𝑗

∗
𝑚𝑡], for 𝑡 = 1, . . . , 𝑁 .

𝒚∗
𝑡 (𝒙𝑡∣j𝑡) = 𝑄−1

j𝑡
[𝐴𝑇

Σ
−1
𝑒 (𝒙𝑡 − 𝒂0) + Λ

−1
j𝑡

𝝁j𝑡
],

j∗𝑡 = argmaxj∈ℳ ln[𝐺(𝒙𝑡∣𝐴𝒚∗
𝑡 + a0,Σ𝑒)𝛼j𝐺(𝒚∗

𝑡 ∣𝝁j,Λj)],
where j = [𝑗1, . . . , 𝑗𝑚], 𝜶j =

∏𝑚
𝑟=1 𝛼𝑟,𝑗𝑟 ,

and 𝝁j = [𝜇1,𝑗1 , . . . , 𝜇𝑚,𝑗𝑚 ], 𝑄j𝑡 = Λ
−1
j𝑡

+𝐴𝑇
Σ

−1
𝑒 𝐴

and Λj = 𝑑𝑖𝑎𝑔[𝜎2
1,𝑗1

, . . . , 𝜎2
𝑚,𝑗𝑚

],

and ℳ = {j ∣ 𝑗𝑟 = 1, . . . , 𝑘𝑟; 1 ≤ 𝑟 ≤ 𝑚}.
Step 𝜽: by gradient method 𝜽𝑛𝑒𝑤 ← 𝜽𝑜𝑙𝑑

+ 𝜂 ⋅ ∂𝜽,

∂𝜽 =
∂𝐻(𝑝∥𝑞)

∂𝜽

∣∣∣
𝜽=𝜽𝑜𝑙𝑑

, ∀𝜽 ∈ {𝐴,Σ𝑒,a0, 𝛼𝑟𝑗𝑟 , 𝜇𝑟𝑗𝑟 , 𝜎
2
𝑟𝑗𝑟
}.

a0 ← a0 + 𝜂 ⋅
∑𝑁

𝑡=1{Σ
−1
𝑒 e𝑡}, e = 𝒙𝑡 −𝐴𝒚𝑡 − a0,

𝐴←
[
𝐴+ 𝜂 ⋅

{∑𝑁
𝑡=1

{
Σ

−1
𝑒 e𝑡𝒚𝑇

𝑡

}
+ 𝜏 ⋅𝐵

}]
∘𝐴,

Σ𝑒 ← Σ𝑒 + 𝜂 ⋅
∑𝑁

𝑡=1

{
− 1

2
Σ

−1
𝑒 − 1

2
Σ

−1
𝑒 e𝑡e𝑇𝑡 Σ

−1
𝑒

}
,

𝛾𝑖𝑗 ← 𝛾𝑖𝑗 + 𝜂 ⋅ 𝜏 ⋅
{
− 3

2𝛾𝑖𝑗
+

𝑎2
𝑖𝑗

2𝛾2
𝑖𝑗

}
, 𝛾𝑖𝑗 > 0,

𝛽𝑟ℓ′ ← 𝛽𝑟ℓ′ + 𝜂 ⋅ {
∑𝑁

𝑡=1 𝑧𝑟ℓ′𝑡 − 𝛼𝑟ℓ′𝑁}
𝛼𝑟𝑗𝑟 ← exp{𝛽𝑟𝑗𝑟}/

∑𝑘𝑟
ℓ′=1

exp{𝛽𝑟ℓ′}, 𝐵 = −𝑎𝑖𝑗/𝛾𝑖𝑗 ;

𝜇𝑗ℓ ← 𝜇𝑗ℓ + 𝜂 ⋅
∑𝑁

𝑡=1

(
𝑦𝑧𝑗ℓ𝑡/

∑𝑁
𝑡=1 𝑦

𝑧
𝑗ℓ𝑡

)
𝑦𝑟𝑗𝑡,

𝜎2
𝑟ℓ ← 𝜎2

𝑟ℓ − 𝜂 ⋅ 1
2
𝜆−2
𝑟ℓ

[
𝜆𝑟ℓ(

∑
𝑡 𝑧𝑟ℓ𝑡)−

∑
𝑡 𝑧𝑟ℓ𝑡(𝑦𝑟𝑡 − 𝜇𝑟ℓ)

2
]
,

where 𝑧𝑟ℓ𝑡 = 1 if ℓ = 𝑗∗𝑟 , otherwise 𝑧𝑟ℓ𝑡 = 0, ∀ℓ ∈ {1, . . . , 𝑘𝑟},
𝛼𝑟𝑗𝑟 is relaxed to updating 𝛽𝑟𝑗𝑟 , and 𝜂 is a small learning step
size, and 𝜏 = 1, 0 indicate whether or not sparsity is taken into
account respectively, and 𝐴 = [�̃�𝑖𝑗 ]𝑛×𝑚 ∈ {0, 1}𝑛×𝑚 is specified
according to the connectivity constraint, and the operator “∘”
denotes an element-wise product.

Convergence: repeat Step 𝑌 and Step Θ until ℋ = 𝐻(𝑝∥𝑞) converges,
i.e., ∣ℋ𝑛𝑒𝑤 −ℋ𝑜𝑙𝑑∣/∣ℋ𝑜𝑙𝑑∣ < 10

−4.
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