# Approximation Resistance from Pairwise Independent Subgroups

Siu On Chan UC Berkeley

#### Max-CSP

**Goal:** Satisfy the maximum fraction of constraints Examples:

1. Max-3XOR:

$$x_1 + x_{10} + x_{27} = 1$$
$$x_4 + x_5 + x_{16} = 0$$
$$\vdots$$

2. Max-3SAT:

$$x_2 \lor \overline{x_9} \lor x_{31}$$
$$x_8 \lor x_{15} \lor \overline{x_{17}}$$
$$\vdots$$

#### Max-CSP

**Goal:** Satisfy the maximum fraction of constraints Examples:

1. Max-3XOR: 
$$(\frac{1}{2}+\varepsilon)$$
-hardness [Håstad 01] 
$$x_1+x_{10}+x_{27}=1$$
 
$$x_4+x_5+x_{16}=0$$
 
$$\vdots$$

2. Max-3SAT: 
$$(\frac{7}{8}+\varepsilon)$$
-hardness [Håstad 01]  $x_2 \vee \overline{x_9} \vee x_{31}$   $x_8 \vee x_{15} \vee \overline{x_{17}}$   $\vdots$ 

## Definition (Approximation resistance)

NP-hard to beat a random assignment even when almost satisfiable

That is, NP-hard to decide if an instance of Max-CSP has value 
$$\geqslant 1-\varepsilon$$
 or  $\leqslant$  "random assignment value"  $+\varepsilon$ 

Examples: Max-3XOR, Max-3SAT

#### Question

Which CSPs are approximation resistant? Why?

#### Partial answer

If given by a predicate C that is a "pairwise independent subgroup" [Chan13]

# Max-CSP(C)

#### Max-CSP(C) or Max-C:

#### Each clause

- involves the same number, k, of literals
- lacktriangle accepts the same collection  $\mathcal{C}\subseteq\mathbb{Z}_2^k$  of local assignments

## Examples (k = 3):

1. 
$$C = \begin{cases} 000 & 001 & 011 & 010 \\ 100 & 101 & 111 & 110 \end{cases} \Rightarrow MAX-C = MAX-3XOR$$
2.  $C = \begin{cases} 000 & 001 & 011 & 010 \\ 100 & 101 & 111 & 110 \end{cases} \Rightarrow MAX-C = MAX-3SAT$ 

Random assignment value  $= |c|/2^k$ 

## Previous work

| Arity         | Approximation resistant Max-CSP(C)                          |
|---------------|-------------------------------------------------------------|
| 2             | none [Goemans–Williamson95, Håstad05]                       |
| 3             | contains all strings of the same parity [Håstad01, Zwick98] |
| 4             | many examples [Guruswami–Lewin–Sudan–Trevisan98, Hast05]    |
| $\geqslant 5$ | scattered results [Håstad01, Samorodnitsky–Trevisan00]      |
|               | [Engebretsen–Holmerin08, Hast05, Håstad11]                  |

 ${\sf Arity} = \# {\sf variables} \ {\sf per} \ {\sf constraint}$ 



Criteria for approximation resistance (red region):



#### Criteria for approximation resistance (red region):

- [Austrin-Mossel09]: contains pairwise independent subset, assuming Unique-Games Conjecture
  - *C* is pairwise independent if  $\forall i \neq j \in [k], \forall a, b \in \mathbb{Z}_2$ ,

$$\Pr_{\boldsymbol{c} \in \mathcal{C}}[\boldsymbol{c}_i = a, \boldsymbol{c}_j = b] = 1/|\mathbb{Z}_2|^2$$

Example:  $C = \{k\text{-bit strings of even parity}\} = kXOR$ 



#### Criteria for approximation resistance (red region):

- [Austrin-Mossel09]: contains pairwise independent subset, assuming Unique-Games Conjecture
  - *C* is pairwise independent if  $\forall i \neq j \in [k], \forall a, b \in \mathbb{Z}_2$ ,

$$\Pr_{\boldsymbol{c} \in C}[\boldsymbol{c}_i = a, \boldsymbol{c}_j = b] = 1/|\mathbb{Z}_2|^2$$

Example:  $C = \{k \text{-bit strings of even parity}\} = k XOR$ 

- ► [Chan13]: contains pairwise independent subgroup
  - ► Almost all Max-CSP(C) [Håstad09]

#### Corollaries

- ▶ Optimal  $\Theta(k/2^k)$ -hardness for Max-kCSP, using predicate in [Samorodnitsky–Trevisan09]
- lacktriangle Optimal query-efficient Probabilistically Checkable Proof (PCP) for  $\overline{NP}$
- ▶ Optimal  $\Theta(qk/q^k)$ -hardness for non-boolean Max-kCSP when  $k \geqslant$  domain size q, using predicate of [Håstad12]

#### Corollaries

- ▶ Optimal  $\Theta(k/2^k)$ -hardness for Max-kCSP, using predicate in [Samorodnitsky–Trevisan09]
- Optimal query-efficient Probabilistically Checkable Proof (PCP) for NP
- ▶ Optimal  $\Theta(qk/q^k)$ -hardness for non-boolean Max-kCSP when  $k \ge$  domain size q, using predicate of [Håstad12]
- ► Improved hardness of Almost-Coloring, Independent-Set on bounded degree graphs, 2Prover-1Round-Game
  - network connectivity problems [Laekhanukit12]
- ► Follow-up works: [Khot-Tulsiani-Worah12, Huang13a, Huang13b]

Motivated by integrality gaps in sum-of-square programs (the strongest known semidefinite programs) [Schoenebeck08, Tulsiani09, Chan13]

#### **Proof sketch**

#### **Theorem**

If  $C\subseteq \mathbb{Z}_2^k$  is a subgroup that is pairwise independent, then Max-CSP(C) is approximation resistant

#### Definition

C is pairwise independent if  $\forall i \neq j \in [k]$ ,  $\forall a, b \in \mathbb{Z}_2$ ,

$$\Pr_{oldsymbol{c} \in \mathcal{C}}[oldsymbol{c}_i = a, oldsymbol{c}_j = b] = 1/|\mathbb{Z}_2|^2$$

8/19

# Proof overview

|      | Label-Cover | $\stackrel{composition}{\longmapsto}$ | Max-C                       |
|------|-------------|---------------------------------------|-----------------------------|
| Yes: | 1           |                                       | $\approx 1$                 |
| No:  | o(1)        |                                       | $\approx  \mathcal{C} /2^k$ |

# Proof overview

|      | Label-Cover | $\stackrel{composition}{\longmapsto}$ | Max-C             | $\stackrel{XOR}{\longmapsto}$ | Max-C                       |
|------|-------------|---------------------------------------|-------------------|-------------------------------|-----------------------------|
| Yes: | 1           |                                       | $\approx 1$       |                               | $\approx 1$                 |
| No:  | o(1)        |                                       | $\approx  c /2^k$ |                               | $\approx  \mathcal{C} /2^k$ |

## Label-Cover $\longrightarrow$ Max- $C \equiv$ Game

k players try to convince a judge that a Max-C instance M is satisfiable



- 1. Judge picks random clause  $(\vec{\boldsymbol{v}}, \vec{\boldsymbol{b}}) = ((\boldsymbol{v}_1, \dots, \boldsymbol{v}_k), (\boldsymbol{b}_1, \dots, \boldsymbol{b}_k))$  from Max-C instance M ( $\vec{\boldsymbol{b}} \in \mathbb{Z}_2^k$  specifies positive/negative literals)
- 2. Gets assignments  $f_i(\mathbf{v}_i) \in \mathbb{Z}_2$  from k players

## Label-Cover $\longrightarrow$ Max- $C \equiv$ Game

k players try to convince a judge that a Max-C instance M is satisfiable



- 1. Judge picks random clause  $(\vec{\boldsymbol{v}}, \vec{\boldsymbol{b}}) = ((\boldsymbol{v}_1, \dots, \boldsymbol{v}_k), (\boldsymbol{b}_1, \dots, \boldsymbol{b}_k))$  from Max-C instance M ( $\vec{\boldsymbol{b}} \in \mathbb{Z}_2^k$  specifies positive/negative literals)
- 2. Gets assignments  $f_i(\mathbf{v}_i) \in \mathbb{Z}_2$  from k players
- 3. Accepts  $\Leftrightarrow \vec{f}(\vec{v}) \vec{b} \in C$

## Label-Cover $\longrightarrow$ MAX-C

Two parties try to convince a judge that a CSP instance L is satisfiable



- 1. Judge picks clause and variable from at random
- 3. Accepts if the assignments agree at •

Winning probability 1 or  $\approx 0?\ NP$  -hard to tell! (PCP Theorem and Parallel Repetition Theorem)

# Label-Cover $\longrightarrow$ Max-C (Composition)

*k* players try to convince a judge that a CSP instance *L* has a satisfying assignment *A* 



- 1. Judge picks *→* and from *L* as in LABEL-COVER
- 2. Asks  $( , z_i )$  or  $( , z_i )$  from each player  $z_i$ : subset of satisfying assignments to clause  $\longrightarrow$  or variable  $\bullet$
- 3. Get boolean replies  $y_i$  from k players
- 4. Accept  $\Leftrightarrow (\mathbf{y}_1 \mathbf{b}_1, \dots, \mathbf{y}_k \mathbf{b}_k) \in C$

# Label-Cover $\longrightarrow$ Max-C (Composition)

*k* players try to convince a judge that a CSP instance *L* has a satisfying assignment *A* 



- 2. Asks  $( , z_i )$  or  $( , z_i )$  from each player  $z_i$ : subset of satisfying assignments to clause  $\longrightarrow$  or variable  $\bullet$
- 3. Get boolean replies  $y_i$  from k players
- 4. Accept  $\Leftrightarrow (\mathbf{y}_1 \mathbf{b}_1, \dots, \mathbf{y}_k \mathbf{b}_k) \in C$

 $\pmb{z}_1,\ldots,\pmb{z}_k,\pmb{b}_1,\ldots,\pmb{b}_k$  are correlated, as specified by "dictator test"

# Composition barrier

|     |                     | LABEL-C | OVER | $\stackrel{composition}{\longmapsto}$ | Max-C         |                   |
|-----|---------------------|---------|------|---------------------------------------|---------------|-------------------|
|     | Yes:                |         | 1    |                                       | $\approx 1$   |                   |
|     | No:                 |         | o(1) |                                       | $\approx  C $ | $/2^k$            |
|     |                     |         |      |                                       |               |                   |
| (M) |                     |         | G    | M                                     | • • •         | (M)               |
|     | <b>✓</b> , <b>z</b> | 1)      |      | (                                     | )             | $(ullet$ , $z_k)$ |
|     |                     |         |      |                                       |               |                   |

Some players share , others share ⇒ replies not random [Bellare-Goldreich-Sudan98, Sudan-Trevisan98]

## **XOR**

#### XOR of games:

- Parallel repetition without blowing up alphabet size
- Each player should respond with the XOR of replies to individual games

#### Game $M \oplus M'$ :

- 1. Judge picks random clauses  $(\vec{\pmb{v}}, \vec{\pmb{b}})$  from M and  $(\vec{\pmb{v}}', \vec{\pmb{b}}')$  from M'
- 2. Gets boolean assignments  $f_i(\mathbf{v}_i, \mathbf{v}_i')$  from k players
- 3. Accepts  $\Leftrightarrow \vec{f}(\vec{\pmb{v}}, \vec{\pmb{v}'}) \vec{\pmb{b}} \vec{\pmb{b}'} \in C$

Preseves almost-satisfiability when C is a subgroup

#### XOR-lemma?

## Wishful thinking (XOR-lemma)

$$\operatorname{val}(\mathbf{M}) \leqslant 0.9 \quad \Rightarrow \quad \operatorname{val}(\mathbf{M} \oplus \ldots \oplus \mathbf{M}) \to |\mathbf{C}|/2^k$$

Counterexample: Mermin's game [Briët-Buhrman-Lee-Vidick13]

#### Observation

Correlation can only decrease upon taking XOR

|     | Label-Cover | $\stackrel{composition}{\longmapsto}$ | Max-C           | $\stackrel{XOR}{\longmapsto}$ | Max-C  |
|-----|-------------|---------------------------------------|-----------------|-------------------------------|--------|
| No: | o(1)        |                                       | player <i>j</i> |                               | random |
|     |             |                                       | uncorrelated    |                               |        |
|     | $M_1$ :     | ₩ <sub>i</sub>                        | m m             |                               |        |

#### Observation

## Correlation can only decrease upon taking XOR

|     | Label-Cov | /ER              | composi                  | tion<br>> | Мах-С                      |                          | $\stackrel{XOR}{\longmapsto}$ | Max-C  |
|-----|-----------|------------------|--------------------------|-----------|----------------------------|--------------------------|-------------------------------|--------|
| No: | 0(        | (1)              |                          |           | player <i>j</i><br>uncorre |                          |                               | random |
|     | ı         | $M_1$ :          | ₩.                       | M         | M                          | <u>M</u>                 |                               |        |
|     | I         | M <sub>2</sub> : | (M)                      | ~?<br>?   | <u>m</u>                   | <u>M</u>                 |                               |        |
|     | I         | М <sub>3</sub> : | (M)                      | <u>m</u>  | $\sim$                     | <u>M</u>                 |                               |        |
|     | <i>1</i>  | M <sub>4</sub> : | <u>m</u>                 | <u>M</u>  | (M)                        | <u>∞</u> ?               | _                             |        |
|     |           | $\oplus$         | $\widetilde{\omega}_{i}$ | ₩?        | <b>∞</b> ?                 | $\widetilde{\omega}_{i}$ |                               |        |

$$\begin{split} \vec{f}(\vec{\pmb{v}}) - \vec{\pmb{b}} &\triangleq (f_1(\pmb{v}_1) - \pmb{b}_1, \dots, f_k(\pmb{v}_k) - \pmb{b}_k) \in \mathbb{Z}_2^k \\ \| \mathbf{M} \|_\chi &\triangleq \max_{\vec{t}: \vec{V} \rightarrow \mathbb{Z}_2^k} \left| \underset{(\vec{\pmb{v}}, \vec{\pmb{b}})}{\mathbb{E}} \chi(\vec{f}(\vec{\pmb{v}}) - \vec{\pmb{b}}) \right|, \qquad \chi \in \widehat{\mathbb{Z}_2^k} \end{split}$$

#### Lemma

$$||M \oplus M'||_{\chi} \leqslant \min\{||M||_{\chi}, ||M'||_{\chi}\}$$

$$ec{f}(ec{m{v}}) - ec{m{b}} riangleq (f_1(m{v}_1) - m{b}_1, \dots, f_k(m{v}_k) - m{b}_k) \in \mathbb{Z}_2^k$$
 $\|m{M}\|_{\chi} riangleq \max_{ec{f}: ec{m{v}} o \mathbb{Z}_2^k} \left| \mathop{\mathbb{E}}_{(ec{m{v}}, ec{m{b}})} \chi(ec{f}(ec{m{v}}) - ec{m{b}}) 
ight|, \qquad \chi \in \widehat{\mathbb{Z}_2^k}$ 

#### Lemma

$$||M \oplus M'||_{\chi} \leqslant \min\{||M||_{\chi}, ||M'||_{\chi}\}$$

$$\begin{vmatrix} \mathbb{E} & \mathbb{E} \\ (\vec{\mathbf{v}}, \vec{\mathbf{b}}) & (\vec{\mathbf{v}}', \vec{\mathbf{b}}') \end{vmatrix} \times \langle \vec{f}(\vec{\mathbf{v}}, \vec{\mathbf{v}}') - \vec{\mathbf{b}} - \vec{\mathbf{b}}') \end{vmatrix}$$

$$\leq \mathbb{E} \left( \vec{\mathbf{v}}, \vec{\mathbf{b}}) \begin{vmatrix} \mathbb{E} \\ (\vec{\mathbf{v}}', \vec{\mathbf{b}}') \end{pmatrix} \times \langle \vec{f}(\vec{\mathbf{v}}, \vec{\mathbf{v}}') - \vec{\mathbf{b}} - \vec{\mathbf{b}}') \end{vmatrix} \qquad \Box$$

| Label-Cover | $\overset{composition}{\longmapsto}$ | Max-C                         | $\stackrel{XOR}{\longmapsto}$ | Max-C            |
|-------------|--------------------------------------|-------------------------------|-------------------------------|------------------|
| o(1)        |                                      | $\ \cdot\ _{\chi} = o(1)$     |                               | $ C /2^k + o(1)$ |
|             |                                      | $\forall \chi: \chi_j \neq 1$ |                               |                  |

## Uses pairwise independence and invariance principle

[Mossel-O'Donnell-Oleszkiewicz10, Mossel10, O'Donnell-Wright12]

#### Conclusion

- New gap-amplification technique: XOR/direct sum
- Optimal hardness of Max-kCSP and optimal query-efficient PCP
- General criteria for approximation resistance

## Open problems

- 1. Optimal hardness of satisfiable Max-kCSP?
  - Progress by [Huang13] in the next talk
- 2. Derandomizing XOR/direct sum



#### Conclusion

- New gap-amplification technique: XOR/direct sum
- Optimal hardness of Max-kCSP and optimal query-efficient PCP
- General criteria for approximation resistance

## Open problems

- 1. Optimal hardness of satisfiable Max-kCSP?
  - Progress by [Huang13] in the next talk
- 2. Derandomizing XOR/direct sum



Emoticons modified from

http://www.texample.net/tikz/examples/emoticons/

Gavel from

http://openclipart.org/detail/69745/judge-hammer-by-bocian