
A PSD LIFTING QUESTION OF LEE

SIU ON CHAN

Abstract. In this short note, we show a lower bound of Ω̃(
√
dε) for the Lipschitz constant of

a measurable map F from the d-dimensional unit sphere to the infinite-dimensional unit sphere,
where F maps ε-almost orthogonal vectors to orthogonal vectors. Our lower bound has optimal
dependence on d, answering an embedding question of Lee.

Let Sd−1 = {x ∈ Rd | ‖x‖2 = 1} be the (d− 1)-dimensional unit sphere. In a blog post [Lee11],
Lee asked the following question: Given a map F : Sd−1 → S∞ such that

|〈u, v〉| 6 ε =⇒ 〈F (u), F (v)〉 = 0 ∀u, v ∈ Sd−1,

what is the smallest possible Lipschitz constant ‖F‖Lip. Recall that

‖F‖Lip , sup
u6=v∈Sd−1

‖F (u)− F (v)‖
‖u− v‖

.

Lee’s question was motivated by a possible approach to construct integrality gaps for Unique
Games with large alphabet; i.e. an instance on n variables and alphabet size (log n)ω(1). Lee also

constructed a map such that ‖F‖Lip �
√
d/(1 − ε),1 and asked whether the dependence on d is

optimal. We answer that question completely here.

Theorem 1. Let F : Sd−1 → S∞ be an “SDP solution” that maps almost orthogonal vectors to
orthogonal ones, i.e. 〈F (u), F (v)〉 = 0 whenever |〈u, v〉| 6 ε. Then ‖F‖Lip �

√
dε/
√

log(1/ε).

In other words, we rule out Lee’s approach to large alphabet integrality gaps for Unique Games.
Our results were obtained in July 2011. Concurrently and independently, Barak, Gopalan,

H̊astad, Meka, Raghavendra, and Steurer constructed large alphabet integraly gap instances using
another approach (derandomizing the noisy hypercube via Reed–Muller code) [BGH+12].

Proof of Theorem 1. Without loss of generality, assume 〈F (u), F (v)〉 depends only on 〈u, v〉 for
u, v ∈ Sd−1. This is done by symmetrizing F over all rotations, i.e. redefining F (u) as the direct

integral F ′(u) =
∫ ⊕

F (ρu) dρ over all isometries ρ ∈ O(d). By symmetry,

〈F ′(u), F ′(v)〉 = E
p,q∈Sd−1

[〈F (p), F (q)〉 | 〈p, q〉 = 〈u, v〉].

Clearly, F ′ inherits orthogonality and Lipschitz bound from F .
Let 〈F (u), F (v)〉 = f(〈u, v〉) for u, v ∈ Sd−1. Such a function f : [−1, 1]→ R is positive definite

on Sd−1. By [Sch42], f has a series expansion

(1) f(x) =
∑
n>0

anPn(x) an > 0 for all n,
∑
n>0

an <∞.

Here, we adopt the normalization Pn = C
(d−2)/2
n (x)/C

(d−2)/2
n (1), where Cλn(x) are Gegenbauer

polynomials (also known as ultraspherical polynomials). With this normalization, we have

(2) |Pn(x)| 6 Pn(1) = 1

1We use the notation A� B to mean A 6 CB for some universal constant C.
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for any n ∈ N and any −1 6 x 6 1 [Gro96, Lemma 3.3.5]. Note that
∑

n an =
∑

n anPn(1) =
f(1) = 1, so the coefficients an are nonnegative weights that sum to one.

Roughly speaking, ‖F‖2Lip > f ′(1) because

‖F‖2Lip = sup
u,v∈Sd−1

‖F (u)− F (v)‖2

‖u− v‖2
= sup

u,v∈Sd−1

f(1)− f(〈u, v〉)
1− 〈u, v〉

.

For the second eqaulity, we have used ‖F (u) − F (v)‖2 = ‖F (u)‖2 + ‖F (v)‖2 − 2〈F (u), F (v)〉 =
2(f(1)− f(〈u, v〉)) for the numerator (and a similar relation for the denominator).

We will need two claims (proven later).

Claim 2.

(3) sup
−16x<1

f(1)− f(x)

1− x
>
∑
n>0

anP
′
n(1),

Claim 3. For t = βd with β � ε2/ log(1/ε),∑
06n<t

an = o(1).

Together with the derivative formula P ′n(1) = n(n + d − 2)/(d − 1) [Gro96, Lemma 3.3.9], our
lower bound follows because with our choice of t in Claim 3,

‖F‖2Lip >
∑
n>0

anP
′
n(1) >

∑
n>t

atP
′
t(1)

= (1− o(1))P ′t(1)� t. �

It remains to prove the two claims.

Proof of Claim 3. We need the relation

(4) E
u,v∈Sd−1

f(〈u, v〉)2 =
∑
n>0

a2n
N(d, n)

,

where N(d, n) = 2n+d−2
n+d−2

(
n+d−2
d−2

)
is the dimension of the space of spherical harmonics of de-

gree n. (Equation (4) is proved using standard othorgonality relations among the Pn’s, namely

Ev∈Sd−1 Pm(〈u, v〉)Pn(〈u, v〉) = δmn/N(d, n) for any u ∈ Sd−1.)
Orthogonality of F and Lévy concentration shows that the LHS of (4) is at most 2 exp(−dε2/2).

Thus the first t levels have squared weight

(5)
∑

06n<t

a2n 6 2 exp(−dε2/2)N(d, t).

With our choice of t, we have N(d, t) �
(
n+d−2
d−2

)
= 2(1+o(1))H(β/(1+β))(1+β)d, where H(·) is the

binary entropy function. Further H(β/(1 + β)) � ε2, so the RHS of (5) is at most exp(−Ω(dε2)).
It then follows from Cauchy–Schwarz that( ∑

06n<t

an

)2

6
∑

06n<t

a2n · t 6 exp(−Ω(dε2)) · dε2

log(1/ε)
,

which tends to zero as dε2 →∞. �

Proof of (3). Fix any m ∈ N. We have for any −1 6 x < 1,

f(1)− f(x)

1− x
>
∑
n6m

an
Pn(1)− Pn(x)

1− x
,
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since an > 0 and Pn(1) > Pn(x) for all n (by (1) and (2)). Letting x→ 1, we get

sup
−16x<1

f(1)− f(x)

1− x
>
∑
n6m

anP
′
n(1).

Now take m→∞, and the claim follows. �
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