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ABSTRACT
In-browser cryptojacking is an urgent threat to web users, where an
attacker abuses the users’ computing resources without obtaining
their consent. In-browser mining programs are usually developed
in WebAssembly (Wasm) for its great performance. Several prior
works have measured cryptojacking in the wild and proposed detec-
tion methods using static features and dynamic features. However,
there exists no good defense mechanism within the user’s browser
to stop the malicious drive-by mining behavior.

In this work, we propose MineThrottle, a browser-based defense
mechanism against Wasm cryptojacking. MineThrottle instruments
Wasm code on the fly to detect mining behavior using block-level
program profiling. It then throttles drive-by mining behavior based
on a user-configurable policy. Our evaluation of MineThrottle with
the Alexa top 1M websites demonstrates that it can accurately
detect and mitigate in-browser cryptojacking with both a low false
positive rate and a low false negative rate.

CCS CONCEPTS
• Security and privacy → Browser security; Malware and its
mitigation.
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1 INTRODUCTION
Traditionally, websites host online ads as the main revenue source
for monetizing their “free” services. Mining cryptocurrencies has
become an alternative and attractive way to generate revenue be-
cause of the rising value of cryptocurrencies [21]. The miner has to
solve a computationally difficult puzzle in return for a coin. Some
puzzles (e.g., those of BitCoin [4]) are very difficult to solve using
a commodity computer and require special dedicated hardware to
make a profit. The development of new blockchain algorithms and
cryptocurrencies (e.g., CryptoNight [12] andMonero [7]) make com-
modity CPU mining practical and profitable. The recent advances
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in web technologies (e.g., WebAssembly (Wasm) [8] and asm.js [3])
further enable efficient in-browser cryptocurrency mining.

Today, websites can leverage their visitors’ computing capabili-
ties to mine cryptocurrency cooperatively. They can place a code
snippet in the visitors’ browsers, which then join a distributed min-
ing pool operated by the website owners or some other dedicated
brokers. The mining code is often implemented using Wasm, which
has been recently supported by all mainstream browsers [10, 14,
16, 24], for its great computational efficiency. However, a malicious
website may not obtain any consent from the users before plac-
ing the mining code. Such malicious practice is called as drive-by
cryptocurrency mining, or cryptojacking [11].

Cryptojacking has become an emerging threat to web users.
According to a recent report in 2018 [2], there had been a 459
percent increase in illicit cryptocurrency mining malware detec-
tion since 2017. Many studies have shown that website owners
deploy cryptocurrency mining code for extra profit [9, 15, 28, 30].
Recently, researchers have started to investigate cryptojacking in
the wild [11, 26] and proposed several detection strategies [17, 19,
20, 29]. Some detection methods leverage community-maintained
blacklists [1, 5, 6, 18] that can be included by ad-blocking software.
More advanced techniques rely on either static and/or dynamic
features (e.g., code signature [17, 19, 20, 26, 29], CPU usage [23],
JS callstack snapshot [17], CPU cache performance data [20], net-
work traffic [19, 26], etc.) of cryptocurrency mining websites. Most
of such studies aim to measure the malicious practices on a large
scale. The findings of these studies can help build better blacklists,
whose effectiveness depends on timely updates. However, these
mechanisms cannot be leveraged directly by the end users. For
example, some method [20] would require the administrator privi-
lege, thus may not be suitable for a normal user. Currently, there
exists no good defense mechanism that can help the users suppress
in-browser cryptojacking in real time.

In this work, we aim to develop a real time defense mechanism
against Wasm in-browser cryptojacking. We face several challenges.
First, attackers may apply advanced techniques to evade the detec-
tion, e.g., by self-throttling, using random servers, or code obfus-
cation. A blacklist-based or a static feature-based approach would
not work well because of the limitation discussed above. Second,
as we also aim to automatically mitigate the mining activities in
real time, the defense mechanism shall be able to well distinguish
benign websites from cryptojacking websites. Third, the defense
mechanism itself shall require minimum computing resources. Ei-
ther a high false positive rate or a high performance overhead can
significantly disrupt the user’s browsing experience. Finally, the
mechanism shall work well for a non-expert user without requiring
the administrator privilege.

3112

https://doi.org/10.1145/3366423.3380085
https://doi.org/10.1145/3366423.3380085


To solve the above challenges, we developMineThrottle, a browser-
based defense mechanism against Wasm in-browser cryptojacking.
MineThrottle detects cryptocurrencyminingWasm programs (more
specifically, threads) with just-in-time code instrumentation and
light-weight block-level program profiling. Our method is inspired
by the observation that Wasm miners heavily leverage Wasm in-
structions that are distinct from those frequently used by benign
programs. This is evident both from the nature of cryptocurrency
mining algorithms—repetitive or iterative computation, and from
the instruction execution traces we collect in our study. On the
one hand, we discover that the execution traces of cryptocurrency
mining programs exhibit huge numbers of repeated sequences of
instructions. In other words, most of the CPU time is spent by very
few code blocks. On the other hand, such patterns are not observed
from the traces of non-mining programs such as games or graphics
applications.

MineThrottle first detects similar mining related code blocks at
the Wasm just-in-time compilation time using a few block-level sta-
tistical instruction features that can well distinguish mining related
code blocks from other blocks. It then instruments the suspicious
code blocks with performance profiling code. The profiling is very
light-weight as it is applied at block level instead of instruction
level. At runtime, MineThrottle periodically calculates the effective
mining speed of a Wasm program (thread)—the number of executed
instructions per unit CPU time. Only if the measured mining speed
is close to the baseline values learned from a set of known mining
programs, it labels it as a positive case. MineThrottle then penalizes
the mining thread to release the CPU resource that would be occu-
pied by it to other important tasks of the user. We further allow the
users to adjust several custom parameters to control the sensitivity
of MineThrottle’s detection to limit the impact on false positive
cases if any.

We implemented a prototype of MineThrottle based on the V8
engine of the Chromium browser. In particular, we modified the
V8 Wasm interpreter and compiler to analyze Wasm instruction
execution traces and to inject runtime analysis code, respectively.
We performed a large scale experiment on the Alexa top 1M web-
sites, and detected 109 true positive Wasm cryptojacking websites,
including a few that were not detected by a state-of-the-art de-
tection mechanism. Our evaluation shows that MineThrottle can
accurately and effectively suppress cryptojacking, with both a low
false positive rate and a low false negative rate.

In summary, we make the following contributions.

• We develop MineThrottle, a browser-based defense mecha-
nism against Wasm in-browser cryptojacking.

• We perform a measurement study on the Alexa top 1M web-
sites and detect 109 positive mining websites.

• We show that MineThrottle is an effective and robust defense
mechanism against cryptojacking.

2 PROBLEM STATEMENT
We focus on detecting the drive-by in-browser cryptocurrency min-
ing behavior, i.e., cryptojacking, where the mining procedure starts
automatically without obtaining the user’s consent or without any
user action. Further, we aim to detect and defend against crypto-
jacking in real time in a user’s browser.

We assume a remote web attacker who controls a website that a
user may visit. The attacker can include arbitrary JavaScript code
and Wasm code in his/her website. He/She uses mainly Wasm code
for cryptocurrency mining, and uses JavaScript code for managing
the mining tasks and communicating with a remote server.

The attacker may obfuscate the JavaScript code and Wasm code
to evade detection. In other words, simply computing a code or file
signature is unable to reliably identify a mining script. Methods that
build a script signature by using the function names are also likely
to fail. Since Wasm code obfuscation is not widely observed yet,
we assume the attacker can perform some basic obfuscation opera-
tions, including inserting dummy instructions at random locations.
In addition, the attacker may self-throttle mining to circumvent
detection methods that rely on observing a high CPU usage. Finally,
the attacker may communicate with his/her own custom servers
instead of the servers of publicly known mining pools to bypass
detection methods using community-maintained public blacklists
(e.g., the NoCoin ad block list [18]).

3 METHODOLOGY
In this section, we present our methodology to defend against
in-browser cryptojacking. We first present our strategies on identi-
fying mining-related code blocks (§3.1), then discuss how to detect
(§3.2) and suppress (§3.3) Wasm cryptojacking, respectively.

3.1 Identifying Mining-related Wasm Code
We seek to understand the behavioral or semantic difference be-
tween cryptocurrency mining programs and other programs. In
order to perform cryptocurrency mining, a Wasm program usually
exhibits the activities of repeating certain computation. In other
words, some specific sequences of Wasm instructions would be
executed much more frequently on the cryptojacking websites than
other websites. This is evident in a prior study [29] which finds
that mining programs exhibited different top Wasm instructions
than other programs in their profiling, and each mining program
may have a distinguishing distribution of top instructions.

We could implement a similar instruction-level profiler at run-
time to identify cryptojacking websites. However, this approach
would not work in practice for the following reasons. First, an at-
tacker can inject dummy code (e.g., many i32.and instructions) to
deviate the instruction distribution from the reference ones to by-
pass detection. Second, profiling at instruction level is not practical.
We could leverage some advanced hardware performance moni-
toring technologies (e.g., Intel Processor Tracing [25])) to profile
the programs. However, such advanced features may require the
root privilege and they are not necessarily available on all con-
sumer computers. We could also profile a Wasm instruction using
additional Wasm code, with an extremely high overhead—four ad-
ditional instructions are needed to count one.

To overcome the above problems, we extract block-level fea-
tures that can represent mining activities, i.e., the hash-like op-
erations. We compare the Wasm instruction execution traces of
several different applications, including several known cryptocur-
rency mining websites (e.g., CoinHive and CryptoLoot), with a
modified Chromium browser. We count each unique basic block

3113



Table 1: Number of unique top basic blocks of Wasm applications.
CoinHive CryptoLoot LightMiner Crypto Webminer Coin Web Mining

3 4 10 4 3
Tanks Wasm Astar Wasm Asteroids Qt Hello Window Wasm Vim
1541 82 63 278 45

in the collected trace, and find the top blocks that consumed ac-
cumulatively 90% of the CPU time, which is approximated by the
number of instructions of each basic block.

Not surprisingly, on the one hand, the bulk of computation re-
source was spent by several top blocks in mining programs. On
the other hand, there exists almost no block that consumed a large
amount (> 5%) of CPU resource in the other programs. In particular,
we can find more than 50 distinct code blocks in the top 90% blocks
of non-mining programs (e.g., games, graphics), whereas there are
less than 10 distinct code blocks in the top 90% blocks of mining
programs. We present the number of unique top basic blocks of
different Wasm applications in Table 1. We compute the frequency
distribution of Wasm instructions in the top basic blocks, and find
eight top instructions—the discriminating instructions—that can
discriminate between top mining and non-mining blocks.

Therefore, we use both the ratio of discriminating instructions in
a basic block and the size of a basic block to identify cryptocurrency
mining-related basic blocks. We set a threshold for the discrimi-
nating instructions identified in a basic block by learning a linear
model from the top blocks we identify previously. We report a pos-
itive match if the calculated ratio excluding NOP instructions of a
basic block is greater than the threshold. However, an attacker may
bypass this detection by injecting a lot of dummy code. We argue
that this would increase the mining cost of the attacker and lowers
the mining efficiency. Nevertheless, to defend against this kind
of attacks, we use a lower ratio threshold for larger basic blocks
to tolerate the extra injected instructions. In addition, attackers
might break a large basic block into several smaller ones to bypass
our detection. Thus, we use the absolute number of discriminating
instructions to detect small mining blocks.

Although we might label correctly some positive top mining
blocks, our method can have false positives. It is likely that a non-
mining program would require to perform some operations that
are similar to those of the top mining blocks, e.g., calculating a hash
value. However, mislabels would not be problematic if they are
rare at runtime. We discuss next how we check the frequency that
mining-related blocks execute at runtime.

3.2 Detecting Cryptojacking
We check at runtime if the CPU time of one Wasm program (more
precisely, a thread) is spent mostly in mining-related code blocks.
Measuring the CPU time of every code block would be difficult
and unnecessary. Instead, we first compute a baseline average CPU
usage that represents the average mining speed of the sample min-
ing programs. Then at runtime, we compute the same metric and
compare it with the baseline value.

We measure the runtime CPU usage of mining-related code
blocks by performing block-level profiling. For each identified posi-
tive block, we dynamically instrument it at the just-in-time compi-
lation time to insert profiling code. Since the mining-related basic
blocks typically are very large, the runtime overhead caused by
our profiling code would be almost negligible and significantly

lower than that of instruction-level profiling. Specifically, the pro-
filing code would increment a global performance counter by the
number of instructions in the corresponding block each time it
executes. By periodically checking the performance counter over a
fixed detection interval, we can estimate how many mining-related
instructions have been executed since the last check. Note that
the detection interval needs to be measured in CPU time instead of
wallclock time, because a thread may share the same CPU core with
many other threads/processes. Dividing the increment in the last
detection interval by the interval gives us a temporal mining speed
of the thread. It represents how much computation is performed
by the mining-related code blocks given a fixed amount of CPU
resource (time).

To capture potential variation of the mining activities, we mea-
sure the temporal mining speeds of true-positive Wasm mining
programs in many intervals. We then compute a baseline average
speed—S—that represents the average mining speed of mining pro-
grams. We also obtain the standard deviation σ when calculating
the baseline average speed. Note that for processors with different
frequencies, the baseline average speed needs and can be adjusted
accordingly. At runtime, we would compute in the same interval
a mining speed—speed—of a Wasm thread and compare it with
the baseline speed. We then would make a negative decision if
the mining speed is much smaller than the baseline speed. This
avoids reporting legitimate Wasm programs that employ very lim-
ited amount of mining-related operations as a false positive. To
tolerate slower mining threads or to detect mining threads that self-
throttle, we use a parameter Tσ to control the absolute detection
distance from the baseline speed. A positive decision is made if the
following inequality is true. On the one hand, a larger threshold
would be more difficult to bypass but may also cause a lot of false
positives. On the other hand, a smaller threshold may result in a
high false negative rate. We will evaluate the threshold in §5.2.

speed ≥ S −Tσσ (1)

3.3 Defending against Cryptojacking
To preserve the CPU resource of a victim user’s machine from
cryptojacking, we need to stop the mining activities. However,
killing theminingworker thread in the browsermay lead to runtime
errors, in particular if that thread performs other tasks in addition
to controlling a Wasm mining module. Further, in the case of a
false positive decision, we could disrupt the normal operation of a
legitimate website.

To reduce the impact of false positives, we suspend a positive
thread as a penalty, instead of abruptly killing it. If it were a true
positive, the mining activity would be effectively stopped temporar-
ily in a sleep interval. We would be able to detect it again after it
resumes and continues mining. On the contrary, if it were a false
positive, we would cause only a delay in completing its jobs instead
of disrupting it. A delay would usually be expected because the
worker thread may share the processor with many other threads
and processes. To avoid a significant delay, a user can configure a
smaller sleep interval. We will discuss how this parameter affect’s
the performance of our defense mechanism in §6.1.

Next, we depict how we implement our methodology in our
system—MineThrottle—a browser-based defensemechanism against
drive-by Wasm cryptocurrency mining.
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4 MINETHROTTLE
In this section, we present the design and implementation of Mine-
Throttle, a system that can throttle Wasm in-browser cryptojacking
in real time. MineThrottle can operate in three modes. In the inter-
preting mode, it can log all Wasm instructions that are interpreted
to help study the semantic features of Wasm programs. In the de-
tection mode, it performs just-in-time Wasm code instrumentation
and block-level program profiling to detect mining-related threads.
In the defense mode, it further penalizes the mining-related threads
to preserve CPU resources. We next describe our prototype imple-
mentation of MineThrottle based on the V8 JavaScript engine of
the Chromium browser (version 71.0.3578.98).

4.1 Interpreting Mode
The Chromium V8 engine can both compile and interpret Wasm
code. To obtain the Wasm instruction execution trace, we configure
the V8 engine to execute the Wasm instructions in its interpreter.
We further hook the V8 Wasm interpreter to inspect the Wasm
bytecode that is being interpreted one by one. Specifically, MineTh-
rottle hooks the method ThreadImpl::Execute() of the interpreter
to inspect all the executed Wasm instructions and dump the op-
code stream into a local file for further analysis. With the dumped
execution trace, we can identify top instructions, top subsequences
of instructions, and top basic blocks, as we had discussed in §3.

4.2 Detection Mode
MineThrottle performs just-in-time Wasm code instrumentation
for block-level program profiling and detection of cryptocurrency
mining-related threads. We modify the V8 Wasm compiler to insert
our custom profiling and detection code.

The basic executable unit of Wasm code is a module, which is
structured into multiple functional sections, e.g., the type, function,
global and code sections, etc. To profile the mining-related basic
blocks, we inject one extra global performance counter into the
global section of each module. The V8 Wasm compiler compiles the
modules at the granularity of functions. Therefore, we hook the
V8 method for decoding Wasm function body to identify mining-
related basic blocks. When it detects a basic block that is mining-
related, according to our method in §3.2, MineThrottle injects a
trigger at the end of the basic block. The trigger updates the global
performance counter by the size of the corresponding basic block.

For each module, we further define an extra module_info struc-
ture, which contains the id of the thread that is executing the mod-
ule, the CPU time spent by the thread and the value of the global
performance counter since last check. We then further register a
custom signal handler within the module compiler to periodically
inspect the current cumulative CPU usages and the performance
counters of all Wasm threads. With these performance data, Mine-
Throttle can calculate the mining speed of each thread. Specifically,
it would check for each Wasm thread if the CPU time difference
since the last update is greater than the detection interval. If true,
it calculates the mining speed by dividing the difference in the
two performance counter values by the elapsed CPU time. It then
updates the performance data in the thread’s module_info with the
latest measurement. Next, it checks if the condition specified in

Table 2: Mining speeds of sample cryptojacking websites.
Benchmark Detection Interval (ms)

100 250 500 1000
Average 2,118,789 2,276,725 2,275,011 2,277,306
Std-Dev. 1,069,980 327,670 280,611 182,818

Equation 1 is met to label the current thread as performing mining-
related operations in the last detection interval.

4.3 Defense Mode
In the defense mode, MineThrottle can further penalize a suspicious
mining-related thread to release occupied computing resources.
Specifically, it checks the corresponding thread ID and sends a
customized signal SIGUSR1 to the target thread. The signal handler,
which is registered in the module compiler as well, calls the sleep()
function to put the mining thread into sleep for the duration of
sleep interval seconds. The sleep interval can be configured by the
user and can also be adjusted dynamically depending on the CPU
resource availability of the system and the amount of CPU time
that has been consumed by the thread and the process.

The above procedure keeps running until the execution of the
Wasm program completes. In other words, when the mining thread
becomes active again, it could still be detected and penalized by
MineThrottle. In this way, we can effectively slow down the mining
threads as a defense against cryptojacking, without impacting the
execution of other normal threads. Further, the runtime overhead
caused by MineThrottle would be negligible for benign programs
not performing many mining-related operations, because our pro-
filing code will not be executed frequently. Even for a true positive
mining program the overhead is still low, because we perform
block-level profiling instead of instruction-level profiling.

5 DETECTION EVALUATION
In this section, we evaluate if MineThrottle can accurately detect
Wasm in-browser cryptojacking in the real world.

5.1 Experiment Setup and Data
We performed a large-scale experiment by visiting the main pages
of the Alexa top 1M websites in September, 2019. We configured the
MineThrottle prototype to log the performance counters and other
necessary data of each website (frame) in a file. We discovered 659
websites that employed Wasm code in our experiment. We then
manually visited each Wasm-related website for up to 3 times to
verify it was indeed performing drive-by cryptocurrency mining. In
total, we found 109 cryptojacking websites. Our prototype failed to
load 2 cryptojacking websites correctly because of some unknown
implementation bug. We leave it as a future engineering work.

5.2 Detection Result
We adjusted the parameters of our detection algorithm to evaluate
its performance. We evaluated four different values (100 ms, 250
ms, 500 ms, and 1000 ms) for the detection interval. We randomly
selected 5 top mining websites to train the detection model. The
baseline averages and standard deviations of the mining speeds
learned from the top websites are shown in Table 2.

The average mining speeds in different detection intervals are
quite close. However, the standard deviation increased significantly
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Table 3: Detection performance evaluation of MineThrottle.

Benchmark
MineThrottle Tσ

0.3 1 3
Detection Interval (ms) Detection Interval (ms) Detection Interval (ms)
100 250 500 1000 100 250 500 1000 100 250 500 1000

FP (#) 0 0 0 0 2 0 0 0 47 0 0 0
FPR (%) 0 0 0 0 0.36 0 0 0 8.55 0 0 0
FN (#) 2 2 2 13 2 2 2 11 2 2 2 2
FNR (%) 1.83 1.83 1.83 11.93 1.83 1.83 1.83 10.09 1.83 1.83 1.83 1.83

with the drop of detection interval. Therefore, a large detection
interval would be preferred for reliable detection. Otherwise, we
need a small Tσ for small detection intervals. In our experiment,
we set Tσ to 0.3, 1, and 3, respectively.

We report one website as mining only if Equation 1 is true for at
least 5 times of a thread. The evaluation result is shown in Table 3.
There are always 2 false negative (FN) cases that our prototype
failed to render when the detection interval is less than 1000 ms.
Excluding the two websites, we would have a 0 false-negative rate
(FNR). However, we havemore FN cases when the detection interval
is 1000 ms, because the standard deviation is the smallest. Therefore,
many speeds may fall under the threshold, particularly when Tσ is
smaller than 3.

We observed some false positive (FP) cases when the detection
interval is 100 ms, where the standard deviation is almost 50% of
the baseline average. Given a large Tσ , e.g., 1 or 3, many benign
threads may be classified as positive because their mining speeds
can easily exceed the threshold. In particular, when Tσ is greater
than 2, Equation 1 is always true. We had only 47 false positive
cases because only they contained basic blocks that were detected
as mining related. For the rest websites, our profiling code was
never injected.

5.2.1 Comparison with Other Tools. We compared MineThrottle
with a state-of-the-art cryptocurrencymining detection tool –Mine-
Sweeper [20], which detects the mining behavior based on static
Wasm code analysis and runtime CPU performance measurement
data. We also tried to use other recent detection tools like Outguard
[19] and CMTracker [17]. We were not able to use their released
code to generate valid data for analysis.

We ran MineSweeper with its default setting to check the same
659 websites for 5 times. MineSweeper achieved a 0.54% FPR and a
27.10% FNR. MineThrottle was able to detect 29 extra positive cases,
and all the positive cases detected by MineSweeper except for the
2 that it failed to load. MineSweeper always failed to load 13 posi-
tive cases, and labeled the other 16 as negative cases because they
either implemented different functions not fingerprinted by Mine-
Sweeper or started mining after MineSweeper’s profiling period.
MineSweeper detected 3 false positive cases, because all of them
failed to establish aWebSocket connection to remote mining servers
that were shut down. Our evaluation shows that MineThrottle can
accurately detect true mining activities.

6 DEFENSE EVALUATION
In this section, we first demonstrate how MineThrottle can effec-
tively throttle such unwanted mining behaviors (§6.1). Next, we
evaluate the performance impact on benign websites that do not
perform cryptocurrency mining usingWasm (§6.2). All experiments

Table 4: Performance measurement when evaluating sleep interval
and detection interval.

Website Benchmark Vanilla
MineThrottle Sleep Interval (s)

5 10
Detection Interval (ms) Detection Interval (ms)
100 250 500 1000 100 250 500 1000

filmaidykai.net System CPU (%) 96.15 3.50 7.19 10.88 18.79 2.31 4.23 6.14 11.12
Browser CPU (%) 95.35 2.61 6.32 10.11 17.91 1.45 3.28 5.31 10.29

300mbfilms.co System CPU (%) 84.23 4.05 6.21 10.32 16.16 2.22 3.66 5.70 9.74
Browser CPU (%) 83.43 3.16 5.33 9.54 15.48 1.29 2.88 5.03 8.73

browsermine.com System CPU (%) 81.10 3.43 7.13 12.98 20.38 2.55 4.43 6.66 11.70
Browser CPU (%) 80.55 2.74 6.48 12.32 19.52 1.97 3.78 6.02 11.04

seriesf.lv System CPU (%) 40.52 3.91 7.16 10.40 15.87 2.65 4.71 6.72 10.49
Browser CPU (%) 39.56 2.98 6.27 9.61 15.23 1.82 3.76 5.83 9.64

are run on a Debian 4.19 desktop machine equipped with an Intel
Core i7-8700K processor and 64GB RAM.

6.1 Cryptojacking Websites
We evaluate how MineThrottle can suppress drive-by Wasm cryp-
tocurrency mining. We select four mining websites that can be
detected by MineThrottle. We use both MineThrottle and a vanilla
Chromium browser of the same version to visit each website for at
least 60 seconds. We collect the whole system CPU usage measured
as %CPU during the visit using the tool mpstat. In the meanwhile,
we also monitor the CPU usages of the browser process and its
threads using the tool pidstat. The collected CPU usages are nor-
malized by the two tools to a maximum value of 100%.

We evaluate four values (100 ms, 250 ms, 500 ms, and 1000 ms)
for the detection interval, which is the CPU-time interval that
MineThrottle uses to measure how much CPU resource a thread
spends on executing code related to cryptocurrency mining in the
last window (interval). We evaluate two values (5 seconds, and 10
seconds) for the sleep time, for which MineThrottle suspends a
suspicious mining thread. We set Tσ to 1.

We present the results in Table 4. The four mining websites con-
sumed from 39.56% up to 95.35% CPU of all cores on average with
the vanilla Chromium browser. MineThrottle effectively throttled
the drive-by mining activities when visiting all the four mining
websites. In particular, when configured with a 10-second sleep
interval and 100-millisecond CPU-time detection interval, the aver-
age browser CPU usage when visiting filmaidykai.net and seriesf.lv
plunged from 95.35% to 1.45% and from 39.56% to 1.82%, respec-
tively. We can also observe significant CPU usage drop to 1.29%
and 1.97% for 300mbfilms.co and browsermine.com, respectively.

Although we discover a fall in CPU usage for all configurations
of MineThrottle, the descents are quite different. First, when the
sleep interval is fixed, a larger detection interval would cause a
higher CPU usage, because MineThrottle needs to wait for longer
in CPU time for each thread to make a decision. This gives the
mining threads more time to execute, resulting higher CPU usages.
On the contrary, a smaller detection interval would allow MineTh-
rottle to detect cryptojacking earlier. Second, when the detection
interval is fixed, a larger sleep interval would preserve more CPU
resources for the other legitimate tasks running on the user’s ma-
chine. Setting a large sleep interval is desired if the CPU power
is scarce with respect to the workload. However, if a non-mining
thread is mistakenly detected as mining (a false positive), a large
sleep interval would prevent it from completing its jobs promptly.
Thanks to MineThrottle’s strong ability of accurately fingerprinting
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Table 5: Performance measurement when visiting lordz.io.

Benchmark Vanilla
MineThrottle

Detection Interval (ms)

100 250 500 1000

System CPU (%) 12.61 12.34 13.27 12.70 13.12

Renderer-Process CPU (%) 5.03 4.77 5.08 5.08 4.96

GPU-Process CPU (%) 2.55 2.63 2.58 2.57 2.57

Table 6: Performance measurement when visiting google.com.

Benchmark Vanilla
MineThrottle

Detection Interval (ms)

100 250 500 1000

System CPU (%) 0.35 0.34 0.31 0.30 0.34

Browser CPU (%) 0.01 0.01 0.01 0.03 0.01

and detecting Wasm mining algorithms, such false positive cases
would be very rare, as we had demonstrated in §5.

6.2 Benign Websites
We evaluate the performance overhead that may be incurred due to
MineThrottle’s periodic detection routine. We show that MineThro-
ttle does not affect the operation of benign websites. We select two
benign websites—a non-mining Wasm website lordz.io, and a non-
Wasm website google.com—in our evaluation. The Tσ is set to 1.
The same performance measurement is collected in the experiment.
Non-mining WasmWebsites. We present in Table 5 the perfor-
mance measurement result when visiting the website lordz.io, a
game website implemented with Wasm and asm.js. With a vanilla
Chromium browser, the average system CPU usage was as high as
12.61%. When visited with MineThrottle using different detection
intervals, the system CPU usage and the browser CPU usages al-
most did not vary. This demonstrates that the runtime performance
overhead caused by MineThrottle is negligible, because it performs
mostly primitive arithmetic calculations at a low frequency (at most
once per 100 ms).

We did observe that this website had two threads that included
mining-related basic blocks. For all settings of detection interval,
MineThrottle did not report any positive thread because the mining
speeds calculated were much smaller than its detection thresh-
old. This shows that our algorithm can correctly recognize benign
Wasm applications that perform a light amount of mining-related
operations, e.g., calculating hash values.
Non-Wasm Websites. We present in Table 6 the performance
measurement result when visiting the website google.com, on
which we did not detect any Wasm code. MineThrottle did not
introduce any observable runtime CPU overhead, because its de-
tection code would not be executed at all on non-Wasm websites.

7 RELATEDWORK
Blacklist-based Defense. The most widely used cryptojacking
detection and defense mechanisms rely on blacklist filtering [1,
5, 6, 18]. Generally, the blacklists are maintained by communities
and are compatible with mainstream ad blocking software and
browser extensions. However, this mechanism suffers from both
high false positive rate and false negative rate, because the updates
on blacklists are usually lagging, and the features can be easily
manipulated by attackers.

Static or Dynamic Features Based Detection. MineSweeper
proposed to build code signatures upon three cryptographic related
instructions to identify cryptocurrency mining code [20]. It also
showed that the mining code exhibits higher frequency of data
load and store events in CPU cache, which could serve as an alter-
native feature. However, monitoring CPU cache events requires
the administrator privilege, which makes it infeasible to be used
as defense for common users. Hong et al. designed two types of
profilers that capture cryptojacking behaviors [17]. Specifically, the
hash based profiler monitors the hash functions with certain fixed
names, and the stack structure profiler examines if the same call
stack appears periodically. Musch et al. combined the continuously
high CPU usage with the number of Web Workers and presence
of WebAssembly code to detect miners [23]. However, it has been
proved that CPU profiling is unreliable, because the attacker can
perform CPU throttling to evade the detection [17, 20]. Rüth et al.
proposed to monitor WebSockets and WebAssembly code as the
indicators of cryptojacking [26]. Similarly, Kharraz et al. introduced
a novel method to detect cryptojacking using an SVM classifier
trained on seven distinct features, (e.g., parallel tasks, WebSock-
ets, hash algorithms, etc.) [19]. They detected hash algorithms by
searching for the specific function names or code signatures, which
can be easily evaded by code obfuscation. Moreover, they built the
ground truth dataset based on community-maintained blacklists
which may have misclassifications. In addition, Wasm analysis has
been studied by several works [13, 22, 27].
Semantic-based Detection. Wang et al. introduced SEISMIC to
detect cryptojacking based on semantic signatures [29]. SEISMIC
instruments WebAssembly code to maintain counters of certainWe-
bAssembly instructions. This approach mitigates the effects of basic
code obfuscation, but creates high overhead. The idea of SEISMIC
is quite similar to ours. However, we use block-level semantic fea-
tures to detect cryptojacking. Our method introduces much lower
overhead and is more robust to obfuscation. We implemented our
detection mechanism in the Chromium browser so that we can
detect cryptojacking at runtime with minimal human intervention.
We also implemented the defense mechanism to suppress mining
threads at runtime, which is not supported by most existing detec-
tion systems.

8 CONCLUSION
We proposed MineThrottle, a browser-based system, to defend
against Wasm in-browser cryptojacking. It accurately detects cryp-
tocurrency mining behavior by performing light-weight basic block
level profiling. It then penalizes the mining thread to preserve a
victim user’s CPU resource. MineThrottle achieved a 0% false posi-
tive rate and a 1.83% false negative rate in our evaluation with the
Alexa TOP 1M websites, and was able to effectively throttle the
drive-by mining activities.
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