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ABSTRACT
Finding efficient, expressive and yet intuitive programming models
for data-parallel computing system is an important and open prob-
lem. Systems like Hadoop and Spark have been widely adopted
for massive data processing, as coarse-grained primitives like map
and reduce are succinct and easy to master. However, sometimes
over-simplified API hinders programmers from more fine-grained
control and designing more efficient algorithms. Developers may
have to resort to sophisticated domain-specific languages (DSLs),
or even low-level layers like MPI, but this raises development cost—
learning many mutually exclusive systems prolongs the develop-
ment schedule, and the use of low-level tools may result in bug-
prone programming.

This motivated us to start the Husky open-source project, which
is an attempt to strike a better balance between high performance
and low development cost. Husky is developed mainly for in-
memory large scale data mining, and also serves as a general re-
search platform for designing efficient distributed algorithms. We
show that many existing frameworks can be easily implemented
and bridged together inside Husky, and Husky is able to achieve
similar or even better performance compared with domain-specific
systems.

1. INTRODUCTION
Distributed computing systems, such as Spark [31], Dryad [15],

FlumeJava [8], and Flink [3], offer functional or declarative pro-
gramming interfaces, with the basic idea that, programmers express
the application logic in simple coarse-grained primitives like map
and reduce [9], while the underlying system handles distributed ex-
ecution and fault tolerance. This simplifies programming for dis-
tributed algorithms, as users need not worry about the underlying
optimization or network topology.

However, such coarse-grained programming paradigm often does
not result in efficient programs [11,23]. In situations where perfor-
mance is critical, programmers may want to have fine-grained con-
trol of the data access pattern, or even explicitly express the global
data interaction pattern in order to reduce network traffic. For ex-
ample, to support more efficient graph analytics, GraphX [13] ex-
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tends Spark, and Gelly [3] extends Flink, to expose to programmers
fine-grained control over the access patterns on vertices and their
communication patterns.

Over-simplified functional or declarative programming interfaces
with only coarse-grained primitives also limit the flexibility in de-
signing efficient distributed algorithms. For instance, there is re-
cent interest in machine learning algorithms that compute by fre-
quently and asynchronously accessing and mutating global states
(e.g., some entries in a large global key-value table) in a fine-grained
manner [14, 19, 24, 30]. It is not clear how to program such algo-
rithms using only synchronous and coarse-grained operators (e.g.,
map, reduce, and join), and even with immutable data abstraction
(e.g., Spark’s RDDs).

While easy application development by systems such as Spark
is attractive, performance is equally critical, especially in cloud
services where one pays for computing resources. Consider com-
puting PageRank or single source shortest path, which are com-
monly used for social network analysis, Spark/GraphX can be 10
times slower than a domain-specific system like Giraph [4] and
GraphLab [12] according to our experiments in Section 5.2; such
poor performance implies that users would need to increase their
budget for the cloud service by 10 times.

There are also other domain-specific frameworks developed to
offer satisfactory performance, e.g., the Pregel [20] or GAS [12]
computing frameworks for graph computing, and the Parameter
Server (PS) framework [14, 18, 25] for machine learning. In ad-
dition, many low-level distributed programs are also available for
solving specific problems. However, these frameworks and pro-
grams rely on completely different DSLs and internal data abstrac-
tion (e.g., vertices and edges in Pregel/GAS, but key-value stores
and training points in PS). Thus, to develop real-world applica-
tion with them, programmers not only need to spend time learn-
ing many different frameworks, but also have to suffer from the
cost of context switch—data have to be dumped to distributed file
system, loaded into the next system and then parsed, between con-
secutive stages that use different domain-specific systems, which
involves unnecessary disk IO, network traffic and serialization/de-
serialization. The context switch overhead can make the overall
process even slower than general-purpose systems like Spark, which
can move seamlessly between stages (even though each individual
stage may be slower).

The above discussion reveals the weaknesses in both existing
general-purpose systems and domain-specific systems, which mo-
tivates us to develop the Husky open-source system. Husky gives
developers freedom to express more data interaction patterns, but
at the same time minimizes programming complexity and guaran-
tees automatic fault tolerance and load balancing. In Husky, com-
putation happens by fine-grained object interaction, where objects



are meaningful data abstractions such as Customers, Products
and Pages. Husky objects are mutable, and can be easily com-
posed with other objects so as to minimize programming efforts.
Moreover, we can realize existing frameworks such as MapRe-
duce, Pregel, or PS in Husky, so that these different domain-specific
frameworks can now be integrated into a unified framework, while
the Husky API still allows users to program in the same way as
using familiar existing APIs as in MapReduce, Pregel, or PS.

Husky offers a simple and yet expressive set of object interac-
tion primitives, and can serve as a platform for developing dis-
tributed algorithms with comparable efficiency as low-level codes
(e.g., MPI), while allowing much more succinct coding. For exam-
ple, we show that a sophisticated asynchronous matrix factorization
program [30], which has more than 2000 lines of low-level code in
MPI, can be expressed using Husky’s primitives in just 100 lines
of code in total. More importantly, in Husky such highly efficient
programs can be composed into an integrated workflow, which may
include specialized codes implemented in MapReduce (e.g. non-
iterative bulk workloads), Pregel (e.g., iterative, fine-grained graph
analytics), PS (e.g., asynchronous machine learning), etc. Under-
lying such an expressive API, Husky offers high performance with
its efficient backend engine, and is able to achieve similar or even
better performance compared with existing specialized systems or
programs.

In the following sections, we first present the programming model
and key concepts (Section 2), discuss the system implementation
details (Section 3), and then demonstrate how to program in Husky
using a list of applications (Section 4). We then discuss experimen-
tal results (Section 5) and related work (Section 6), followed by a
conclusion of our work (Section 7).

2. PROGRAMMING MODEL
Husky is an in-memory system running on a cluster of machines

based on a shared nothing architecture. Each machine can run mul-
tiple workers, and each worker manages its own partitions of ob-
jects.

2.1 Core Concepts
Lists of structured objects. Husky supports different types of
objects. The Husky library provides a variety of commonly used
objects. Users may use objects from the library, or define their own
objects. For example, a graph application uses Vertex objects, a
machine learning developer may use Vector and Matrix objects,
and a text mining application such as TF-IDF may define objects
like Term and Document.

All the objects are subclasses of the base object class, which
automatically handles data racing, socket programming, and data
layout under the hood. Users just extend the base class with spe-
cific application semantics (e.g., adding the neighbors of a Vertex
object in a graph). Different objects can also be composed to cre-
ate new object types. For example, users may further subclass
Vertex with a TeraSort object in the library, such that the new
compounded objects can be sorted (e.g., by the PageRank values of
the Vertex objects).

Objects are organized into object lists by workers according to
their types. The native support of reusable, arbitrarily structured
objects reduces development efforts and increase the overall system
expressiveness.

Workers. A worker can be regarded as a special type of objects
that can read from external sources, e.g., Hadoop distributed file
system (HDFS), and create objects. Husky allows users to spec-
ify a partition function to assign objects to different workers.

An application can achieve better performance if the partition
function groups objects that frequently interact with each other in
the same partition.

Execution. The execute function of an object type specifies
how an object performs local computation and global interaction,
by pushing/pulling messages and/or migration (described later). To
simultaneously invoke execute for all objects, users can invoke
the list execute function of a worker by providing an object
list as the argument. We may also further extend list execute
to support more coarse-grained operations. Thus, Husky naturally
supports both coarse-grained computation as in MapReduce and
Spark, and fine-grained execution as in Pregel and PS.

Global and local objects. We classify objects into two visibility
levels: global objects and local objects. A global object is visi-
ble globally by any object, while a local object is only visible by
objects in the same worker. Global object facilitates communica-
tion across workers. Local object is an advanced feature of Husky,
which helps optimize local computation when it can proceed inde-
pendently or asynchronously without any global synchronization.
Users can explicitly specify an object list to be local so that the
runtime can apply optimization accordingly.

Interaction protocol. There are four ways in which objects inter-
act with each other in Husky, listed as follows:

• Global/local objects can push messages to global objects.

• Global/local objects can pull messages from global objects.

• Global/local objects can push messages to or pull messages
from local objects in the same worker.

• Global/local objects can broadcast messages to one or more
workers (regarded as global objects), and the messages are
then accessible by all objects in the respective worker.

Dynamic object creation and migration. Besides instructing
a worker to create objects before computation starts, objects can
also be created dynamically during computation. In addition, ob-
jects can be created by existing object via messaging—an object
can push a message to a not-yet-existing object, which is then con-
structed upon the receipt of the message using the message con-
structor. This feature provides applications a new, flexible way to
dynamically create new objects based on the current states of ex-
isting objects, and it is handy for various purposes which we will
illustrate in Section 4.

Newly created objects can be inserted into an existing object list
or a new object list, while existing objects can be removed from an
object list. An application can also dynamically change a global
object list to a local list, and vice versa. Besides, objects have the
ability to migrate from one worker to another worker. Object mi-
gration is particularly useful in operations such as system load bal-
ancing which we will discuss in Section 3.5.

Synchronous and asynchronous computation. Husky supports
switching between synchronous and asynchronous computation. In
synchronous mode, conceptually all objects are processed in one
round. At the end of a round the workers flush out the outgoing
communications generated by the objects in the current round. This
computation pattern adheres to BSP-style consistency, maximizes
network traffic reduction, and is easy to reason about. In the ac-
tual implementation, it is possible to pipeline these processes to
increase throughput.



class BaseWorker:
def load(url, format)
def create_list(name)
def globalize_list(obj_list)
def localize_list(obj_list)
def add_object(obj_list, obj)
def list_execute{obj_list, mode}

Listing 1: Husky Worker API

class BaseObject:
def partition() # return partition id
def execute()
# The following are used inside execute()
def get_msgs() # get incoming messages
def push(msg, id)
def pull(id)
def migrate(worker_id)
def broadcast(msg, worker_id)

Listing 2: Husky Object API

Developers are free to choose asynchronous mode for an appli-
cation, in which computation does not proceed through synchro-
nized rounds, but in an asynchronous and non-deterministic way.
For algorithms that do not require strict consistency guarantee (e.g.,
Stochastic Gradient Descent [30]), asynchronous computation leads
to faster convergence.

Listing 1 and 2 summarize the Husky API discussed in this sec-
tion.

2.2 The Husky Approach
There have been a lot of distributed frameworks and programs

developed for various purposes, but they cannot cooperate with
each other in an efficient way. We now describe the Husky ap-
proach that composes different efficient programs into a unified
framework with little overhead.

Cooperation of Different Objects
A real-world application usually involves the cooperation of many
different components. For example, the PageRank values com-
puted using a graph framework may later be used by a machine
learning component as training features. This can be easily achieved
in Husky, since all objects can cooperate through the basic pull,
push, and migrate primitives, even though they belong to different
types (e.g., the PageRank values of Vertex objects can be directly
pushed to or pulled by objects in a machine learning component).

Composing Object Interaction Patterns with Husky
The way that objects interact is called an object interaction pat-
tern, or simply a pattern. We can naturally create patterns of many
existing frameworks in Husky, as shown in Figure 1. For exam-
ple, connecting global objects (i.e., vertices in a graph) using pure
push-based messaging results in the Pregel framework. Parameter
Server is created by letting local objects (i.e., clients in PS) pull
(read) and push (update) parameter data from a set of partitioned
global objects (i.e., servers in PS). We can also create a pattern for
a chain of MapReduce jobs as shown in Figure 1. Note that Re-
ducers in each round of MapReduce are dynamically created, and
there is no Mappers following Reducers since one-to-one transfor-
mation can be directly applied from the outputs of Reducers in the
previous round to Reducers in the next round.
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Figure 1: Different object interaction patterns

There are far more possibilities in addition to the above three pat-
terns. For example, with the asynchronous mode enabled, by letting
objects migrating and pulling local training points, we created a so-
phisticated pattern dedicated for high-performance machine learn-
ing, which will be discussed in Section 4.3.2.

Another great advantage of such a design is that users who are
not familiar with Husky can simply import predefined frameworks,
e.g., MapReduce and Pregel (implemented as patterns), from the
Husky library, then code in MapReduce and Pregel styles, and ob-
tain a pipelined workflow with in-memory MapReduce and Pregel
programs. Husky also allows developers the freedom to create spe-
cialized patterns to solve specific problems so as to maximize per-
formance, as is shown in our TF-IDF example in Section 4.1.

3. SYSTEM IMPLEMENTATION
This section discusses the details of how the concepts discussed

in Section 2 are implemented, as well as other important details
such as load balancing and fault tolerance.

3.1 Master-Worker Architecture
A Husky cluster consists of one master and multiple workers.

The master is responsible to coordinate the workers, and workers
perform actual computations.

To perform a round of computation (by calling list execute),
a worker first receives all incoming communications1 (if any) from
other workers, dispatches messages to objects and invokes their
execute function, and finally flushes the outgoing communica-
tions that the objects have generated.

In synchronous mode, at the i-th execution round, a worker will
only process incoming communications (if any) generated from the
(i − 1)-th round. Any incoming communication of the i-th round
will be (asynchronously) received and cached for the (i + 1)-th
round, even during the process when the worker itself is still work-
ing on the i-th round. Usually a worker flushes outgoing commu-
nications only after all workers on its same host finishes the cur-
rent execution round. The purpose is to exploit the effective shuf-
fle combiner technique (to be discussed in Section 3.3.2) to maxi-
mize message reduction. However, when no combiner is provided,
Husky will batch and flush messages right after they are generated,
in order to interleave CPU usage and networking IO.

In asynchronous mode, object computation is triggered right af-
ter the worker receives any incoming communication. Outgoing
communications are also flushed asynchronously right after they
are generated.
1We use the term “communication” to refer to both messages and
migrating objects.
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Figure 2: Consistent hashing with virtual nodes

3.2 Consistent Hashing-based Object Manage-
ment

In Husky, global objects are partitioned and distributed to dif-
ferent workers based on consistent hashing [17]. The consistent
hashing-based layout supports dynamic addition and removal of
machines without the need of rehashing everything, and it is also
important for Husky in designing load balancing and fault toler-
ance strategies. A few default partition functions (e.g., hash
functions for numbers and for strings) are available, while users
can supply their own partition functions specifically designed
for their data. Object ids are hashed to {0 . . . Hmax − 1}, where
Hmax is usually set as a large number (e.g., 232).

The hash range can be visualized as a hash ring with perimeter
Hmax, and workers are inserted into the ring. Let W1 be a worker
on the ring and W2 be the worker next to W1 in counter-clockwise
direction. All objects falling into the range between W2 (exclusive)
and W1 (inclusive) are distributed to and managed by W1, as shown
in Figure 2a. The master keeps a copy of the hash ring arrangement,
and each worker caches it locally. The master will notify workers
when there is any change to the hash ring.

We also apply the virtual node technique [10], by which a worker
is hashed to multiple locations on the ring and owns multiple ranges,
as shown in Figure 2a. This helps load balancing, especially when
the distribution of objects is non-uniform.

Local objects are managed locally without the restriction of con-
sistent hashing. Communication among local objects does not go
through the network and is more efficient. Lookup of a local object
does not need to use a global partition function, but simply use
a local index to locate the object. In jobs for which heavy compu-
tation needs to be performed on local data, it can be efficient to cre-
ate local objects to work on the local data. If subsequent pipelined
jobs require more global interactions among the objects, they can
be converted to global ones and the system will automatically par-
tition and migrate these global objects. For example, a developer
may work on local objects in the process of extracting graph struc-
tures from a Wikipedia corpus, but later convert the graph global
to computing PageRank, where global interaction happens (see an
example in Section 4.4).

3.3 Implementation of Primitives
Any Husky application boils down to the composition of primi-

tives such as push, pull, and migrate. We discuss the implementa-
tion of these primitives in this subsection.

3.3.1 Compressed Pull
There are a wide range of applications that rely on globally shared

states (e.g., machine learning applications that operate on globally
shared matrix), and they need pull to retrieve these states.

In systems such as Hadoop and Spark, the shared state prob-
lem is usually solved by broadcasting all the global states to all
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Figure 3: Performance of pull

workers. Spark provides the broadcast primitive, and Hadoop pro-
vides distributed cache. But such a design has two limitations:
1) many applications may just access a fraction of the global states
in each round, so broadcasting all shared objects every time is
too expensive; and 2) the shared objects have to be read-only and
immutable—a worker will not be aware of the modification done
by another worker. In fact, these limitations necessitate the dis-
tributed mutable key-value table design like Parameter Server, for
many machine learning applications.

Let us first consider the synchronous mode. A standard imple-
mentation is to represent a pull request as a pair, (Wid, oid), where
Wid is the worker id of the requester and oid is the id of the global
object being requested. At the end of an execution round, worker
Wid flushes all its pull requests, and waits for the responses to come
in the next execution round. One problem with this design is that
compared with a push communication, a pull consists of a request
and a response, thus doubling the network traffic.

To reduce network traffic, we use Bloom filter to compress pull
requests. Worker Wid creates a Bloom filter B for all requests sent
to another worker W ′id, and inserts (the hash values of) the ids of all
these requestees in B. Then, worker Wid only sends (Wid, B) to
worker W ′id. This effectively reduces the network traffic to O(|B|)
if we regard the number of workers as a constant; thus, the pull
operation can enjoy almost the same efficiency of a push.

We can further reduce the network traffic by sending compressed
Bloom filters (e.g., by run-length encoding), which also addresses
the issue when the number of requestees is small. Figure 3a shows
the effectiveness of the pull request compression, while Figure 3b
shows the reduction of network traffic by pull, compared with the
broadcast strategy. The results were measured in the process of
extracting a Wikipedia link graph (see details in Section 4.4).

Another effective optimization to reduce network traffic is to
share responses to the same machine. Multiple objects in multiple
workers sitting in the same machine may request the same informa-
tion from a global object. We can combine all identical responses to
the same machine into a single response. Then, the workers in the
same machine share a buffer for incoming responses, from which
the requesting objects obtain their responses.

The asynchronous mode is different in that, after a pull request,
the corresponding response may come at a non-deterministic time.
We leave the flexibility to developers and they can choose to in-
struct the objects to wait for the latest responses, or allow them to
use the old ones, resulting in a relaxed consistency model similar
to the Stale Synchronous Parallel [14].

3.3.2 Shuffle Combiner
Many systems use combiner to reduce outbound messages of a

worker, as fewer messages mean lower network latency and shorter
message processing time (e.g., serialization and de-serialization).
For example, in MapReduce [9], users can specify a combiner to
combine the output of a mapper. In Pregel [20], users can use a
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Figure 4: Combiner design

combiner to combine the outgoing messages of a worker.
However, such a design of applying combiner to each single

worker/mapper poses a potential scalability problem when the sys-
tem is deployed in a modern cluster with many multi-core ma-
chines. In general, a multi-core machine hosts multiple workers.
In this setting, when each worker only combines its own messages,
more workers means less efficiency of the combiner. With the num-
ber of workers increasing, there exists a critical point beyond which
the cost of processing more messages overtakes the benefit of more
workers. For example, when running PageRank on a Twitter graph
with this standard combiner design, as shown in Figure 4a, the
speedup relative to a single thread implementation becomes less
obvious when the number of workers in each machine increases,
and the system almost stops to scale when there are more than 8
workers per machine.

We propose a shuffle combiner design to address the above-
mentioned scalability problem as follows. After the first pass of
message combining, workers in the same machine shuffle outgo-
ing messages among each other according to the destinations of
the messages, as shown in Figure 4b. Then, each worker further
combines the messages that are shuffled to it in a second pass, and
flushes them to the destination worker(s).

Although the shuffle combiner requires synchronization as a tra-
deoff, the overall running time can be significantly reduced in a
Gigabit (or slower) Ethernet network. As shown in Figure 4a, shuf-
fle combiner not only has greater speedup, but also has much bet-
ter scalability than standard combiner. This technique benefits all
models (e.g., Pregel, PS, and MapReduce) built on Husky that ap-
ply combiner on push messages.

3.3.3 Cache-Aware Optimization
To handle fine-grained operations inside an object list, the sys-

tem has to support fast object lookup. A standard way is to imple-
ment a hashmap or a tree structure to organize the objects, which
facilitates fast lookup, insertion and deletion. However, such a data
structure may not be efficient for coarse-grained operations due to
poor locality. For example, batch object creation and incoming
communication handling essentially become random walks over
main memory, resulting in cache thrashing and degraded perfor-
mance.

In order to support both fine-grained and coarse-grained oper-
ations, we design dedicated data structures for Husky as follows.
Consider a single object list for simplicity. We store the list of ob-
jects in contiguous memory spaces for better spatial locality. The
objects are sorted according to their ids. In addition, we use two
auxiliary data structures, a bitmap and a hashmap. The bitmap is
used to facilitate lazy deletion—object deletion is done by mark-

ing the corresponding position in the bitmap. The hashmap is used
for dynamic object creation, where the new objects are appended
to the end of the object list and indexed by the hashmap. Thus, the
object list consists of two parts, where the first part is ordered by
object ids and the second part indexed by the hashmap. When the
number of deleted objects and dynamically created objects reaches
a threshold, the system automatically rebuilds the whole list, and in
this way the cost of sorting during the rebuild is amortized.

With this design, batch object creation is done by building and
sorting the object list. During execution, dynamically created ob-
jects are appended to the unordered part and then indexed by the
hashmap. An object lookup consists of a binary search over the
ordered part and then a hashmap lookup. As messages come in
order (due to sort-based combiner), our object lookup design is
significantly faster than a standard hashmap lookup design, since
consecutive searches access similar locations and therefore exploit
cache temporal locality. We observed that this brings around 20%
improvements for applications that heavily depend on messaging
(which requires extensive object lookups).

3.4 Fault Tolerance
The basic fault tolerance mechanism in Husky is checkpoint-

based recovery. The master asks workers to save their current
states to HDFS at every fixed time interval (e.g., every 10 min-
utes). Workers periodically send heartbeats to the master, and the
master marks a worker “failed” if it does not receive the heartbeats
of the worker within a time limit. In this case, the master instructs
all workers to rollback to the most recent checkpoint, and restart
from there.

While checkpoint-based recovery is necessary as otherwise re-
covery would have to start from the beginning, it is a time con-
suming process. To support efficient recovery, Husky provides an
additional fault tolerance mechanism based on consistent hashing
and upstream backup. Upstream backup is a technique proven to be
robust and widely used in stream processing systems which empha-
size low-latency data processing [1, 2, 6, 26]. In upstream backup,
each processing node logs the messages before pushing them to
the downstream nodes. Failed nodes are re-created on healthy ma-
chines, and their upstream nodes push logged messages to them to
recover the lost states.

A simple way to apply this technique in Husky is to let each
worker log all the outgoing communication before flushing them.
To hide I/O latency, the logging can be done asynchronously while
the worker is performing other tasks. For fault recovery, the re-
covering workers obtain objects in the failed workers from the last
checkpoint, and receive logged communications (that were sent to
the failed workers) from healthy workers, while filtering out logged
communications to healthy workers. Then, the recovering workers
only need to communicate among themselves to repeat all the lost
execution rounds until they catch up with the healthy workers, by
then the recovery completes.

The above recovery process, however, is still not efficient enough
as we show by the following analysis. Suppose the total time for
one execution round in a failed worker is Tcomp + Tcomm, where
Tcomp is the computation time and Tcomm is the communication
time. The above method may significantly reduce Tcomm but not
Tcomp , unless a more powerful recovering worker is used to re-
place a failed worker. Thus, this method is inefficient when Tcomp

is relatively large.
While it is a must to create new processing units to replace failed

ones in streaming systems, we do not have to create new wor-
kers in Husky by employing consistent hashing for fault recovery.
When fault occurs, the Husky master simply takes away the failed



worker(s) from the hash ring, and so objects in its ranges (includ-
ing its virtual nodes) are automatically merged into the ranges of
neighboring healthy workers, as shown in Figure 2b where we re-
move W3. In this way, the recovery workload is parallelized and
shared by all workers, hence reducing both Tcomp and Tcomm. We
show in Section 5.5 that fault recovery in Husky is much more effi-
cient than that by Spark’s lineage recovery.

3.5 Load Balancing
In distributed computing, the appearance of stragglers is usu-

ally the sign of load imbalance. Stragglers may be due to skewed
data distribution, heterogeneous machine configurations, or other
local tasks running in parallel contending for resources. The first
case can be solved in the application layer by investigating (e.g.,
sampling) the data characteristics and making a better partitioning
scheme, and we discuss how we handle the last two cases as fol-
lows.

A common way to achieve load balancing is to configure each
machine individually by taking the capacity differences of the ma-
chines into account, which is similar to the Hadoop practice. How-
ever, this works well only if developers have prior knowledge of
the machine configurations.

In situations when the above strategy is ineffective or inapplica-
ble (e.g., machine configurations are not known), Husky also pro-
vides a dynamic load balancing scheme to address any imbalanced
workloads during computation. The master monitors the progress
of workers. Each worker samples its running time statistics and
sends to the master, and the master determines whether a worker
is a straggler. In the current Husky implementation, a worker re-
ports (Tcomp + Toutcomm) as its running time, where Tcomp is the
computation time taken by a worker and Toutcomm is the time of
processing outgoing communications. We omit Tincomm (time for
processing incoming communications) because it can be affected
by stragglers and cannot reflect the true capacity of the worker.
Upon the receipt of the statistics, the master identifies stragglers
as those workers whose running time is larger than (1 + p) · tavg ,
where tavg is the average reported time and p (p > 0) indicates the
tolerance level of load imbalance (larger p means greater tolerance,
0.1 by default). Workers may report more statistics (e.g., network
condition, CPU rate) to the master, so that the master may make
better decisions (we leave this to future work).

When stragglers are identified, the master then models the capac-
ities of workers according to the running times they reported, and
adjusts the arrangement on the hash ring. Specifically, the master
first selects d tslow−tavg

tslow
|Pslow|e partitions from the partitions of

a straggler, where tslow is the time reported by the straggler and
|Pslow| is the number of data partitions assigned to the straggler.
This process repeats for all stragglers. Then the master merges the
selected partitions into the partitions (or ranges) of the neighboring
non-stragglers, in order to preserve data locality. The master may
also apply heuristics and choose faster workers to absorb more par-
titions from the stragglers.

The master then broadcasts the new hash ring arrangement to all
workers, which triggers a bulk migration of objects among wor-
kers. During the process, most objects stay intact, and only objects
affected by the new arrangement move (from stragglers) to their
new owners. This process is usually fast (as verified in Section 5.6)
because with the aid of consistent hashing, each object migration
does not need to be globally announced.

4. APPLICATIONS
In this section, we illustrate how we can build applications on

Husky with a number of examples, including non-iterative bulk

1st_map(line):
emit ((t, d), 1)

1st_reduce((t, d), [1, 1, ...])
emit ((t, d), count)

2nd_map((t, d), count):
emit (d, (t, count))

2nd_reduce(d, [(t_1, c_1), (t_1, c_2), ...]):
emit ((t, d), tf)

3rd_map((t, d), tf):
emit (t, (d, tf))

3rd_reduce(t, [(d_1, tf_1), (d_1, tf_2), ...]):
emit ((t, d), tfidf)

Figure 5: TF-IDF in MapReduce

workloads, iterative computation, asynchronous algorithms, and
pipelined tasks. Performance figures of these applications will be
reported in Section 5.

4.1 Bulk Transformation Workloads
MapReduce [9] and Hadoop [5] were primarily developed for

handling non-iterative workloads that involve bulk data movements
and transformations, such as computing word counts or TF-IDF
from a large corpus, data preprocessing (e.g., extracting structures
from raw data), etc. We discuss how to compute TF-IDF using
Husky as an example.

TF-IDF reflects the importance of a term t to a document d in a
corpus D, defined as tf -idf(t, d,D) = tf(t, d)×idf(t,D), where
tf(t, d) = count(t, d)/|d| and idf(t,D) = log(|D|/|{d ∈ D :
t ∈ d}|): count(t, d) is the count of t in d, |d| is the total number
of terms in d, and |D| is the number of documents in D. A common
MapReduce algorithm to compute TF-IDF involves three rounds of
Map and Reduce as illustrated in Figure 5.

Users may use the predefined MapReduce framework (discussed
in Section 2.2) from the Husky library to compute TF-IDF, and then
seamlessly pass them to any other framework (e.g., use them as
ML features) in Husky. MapReduce on Husky achieves good per-
formance compared with popular in-memory MapReduce systems
such as Spark, but Husky is usually faster due to the use of shuf-
fle combiner. However, we are more interested in how a developer
may be able to design a more efficient algorithm using Husky’s na-
tive primitives. We present the details of the algorithm as follows
(Figure 6 shows the object interaction pattern):

1. Workers read the corpus from HDFS. As a worker reads a
document with id = d, for each term t it reads in the docu-
ment, it pushes a message “1” to a local TermDoc object with
id = (t, d) (which may not exist yet) on the fly. Upon finish-
ing the document, the worker creates a local Doc object with
id = d and records the total number of terms in it, denoted
by |d|.

2. Each TermDoc object, which is created (with id = (t, d))
upon receiving the first message from its worker, counts the
number of received messages to obtain count(t, d). Then, it
pulls |d| from the local Doc object with id = d to calculate
tf(t, d).

3. Each TermDoc object, with id = (t, d), also pushes a mes-
sage “1” to a global Term object with id = t (which may
not exist yet). Upon the receipt of the messages, the global
Term object with id = t knows the number of documents
containing t, and so derives idf(t,D).
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Figure 6: TF-IDF in Husky’s native primitives

4. Each TermDoc object, with id = (t, d), pulls idf(t,D) from
the global Term object with id = t, and multiplies idf(t,D)
by tf(t, d) to obtain tf -idf(t, d,D).

The above algorithm is intuitive as users think of meaningful ob-
jects related to the TF-IDF equation, just like object-oriented pro-
gramming, instead of key-value lists and functional primitives like
map and reduce. It can also better utilize the computing cluster,
bringing about 8.6 to 16 times improvement as reported in Sec-
tion 5.1. Specifically, the use of local objects eliminates network
traffic (Steps 1 and 2); while the fine-grained pull operation ensures
that each object only picks what it needs from a large vocabulary
(Step 4), without shuffling the whole vocabulary. This helps avoid
a large amount of unnecessary network traffic.

4.2 Graph Analytics
Graph analytics has received a lot of attention in recent years.

The Husky library implements the Pregel framework [20], as dis-
cussed in Section 2.2, though other existing graph-parallel models
such as GraphLab (or PowerGraph [12]) can also be implemented.

Users can simply design their algorithms based Pregel’s “think-
like-a-vertex” philosophy, write vertex programs and run them on
Husky. We implemented PageRank and single source shortest path
(SSSP) to test Husky’s capability in performing graph analysis.
PageRank involves both heavy computation and heavy network traf-
fic, as all vertices are active in every execution round. SSSP re-
quires fine-grained updates to only partial individual vertices dur-
ing the computation, and hence communication loads can be more
biased. Section 5.2 shows that Husky can be 5.0, 5.6, 16.4 and 36.6
times faster than GraphLab, Naiad [21], Giraph and GraphX for
PageRank, respectively, and 4.6, 5.5, 7.2 and over 50 times faster
for SSSP.

4.3 Collaborative Filtering
Collaborative Filtering (CF) is a technique popularly used in

many recommender systems. A common technique for CF is to
mathematically interpret the original recommendation problem as a
Matrix Factorization (MF) problem, which models users and items
as fixed-size vectors of latent factors.

We discuss two very different ways of training this model, the
synchronous and iterative Alternative Least Squares, and the asyn-
chronous Stochastic Gradient Descent. The latter is more efficient,
but hard to implement in frameworks that do not support asyn-
chronous messaging.

4.3.1 Alternating Least Squares (ALS)
Using the Parameter Server (PS) framework from the Husky li-

brary, we can easily implement ALS. However, in this case, each
update is pushed to the server object and then pulled by client ob-
jects in need, resulting in doubled network traffic. Besides, PS does
not allow interaction between clients, limiting the flexibility of de-
signing more efficient algorithm.

We consider the sparse rating matrix as a bipartite graph between
users and items. Then, we define User objects and Item objects,
where each User (Item) object keeps the ids of its neighboring
Item (User) objects in the bipartite graph. At each training iter-
ation, neighboring User objects and Item objects exchange their
latent factors. The transmission of these latent factors is done us-
ing Husky’s broadcast primitive, instead of the push primitive so
as to eliminate identical variables in the pushes of an object to its
many neighbors, thereby reducing network traffic. Note that Husky
does not broadcast variables to workers who do not need them.

Our experiments showed that ALS on Husky significantly out-
performs ALS on existing systems such as Petuum [14, 18] (the
state-of-the-art PS), GraphLab, and Spark. This is mainly because
Husky’s fine-grained broadcast saves network traffic, and Husky is
also free of the client-server-client indirect network communica-
tion overhead in PS.

4.3.2 Stochastic Gradient Descent (SGD)
Theoretically, SGD for MF has linear complexity while ALS has

cubic complexity. But in practice, efficient SGD MF implementa-
tion is not common in existing distributed systems, as it requires a
computing framework that supports fast asynchronous fine-grained
updates. Otherwise, since each iteration of SGD tends to be very
short and it usually requires thousands of execution rounds until
convergence, frequent global synchronization leads to poor net-
work and CPU utilization.

We implemented an asynchronous SGD algorithm called NO-
MAD [30], which runs much faster compared with the synchronous
counterparts, as reported in [30]. Here we briefly discuss how this
algorithm is implemented. We define three types of objects: the
global User object (storing the latent factors of a user), the global
DataBlock object (storing a partition of training data points), and
the local Item object (storing the latent factors of an item). Each
training data point is a triplet (user, item, rating), and the User ob-
jects and DataBlock objects are co-partitioned across workers by
user ids. During the computation, each Item object i continuously
migrates from one worker to another worker, and upon arrival it
performs the following operations:

1. Pull the corresponding training data points (user, item = i,
rating) from the DataBlock object in the worker where i has
just migrated to.

2. Pull the corresponding User objects and update the gradi-
ents.

We run Husky in asynchronous mode as required by the algo-
rithm, and achieve performance very close to the native MPI im-
plementation in [30]. While the native MPI program has over 2000
lines of low-level code, the implementation in Husky takes only
around 100 lines, using just the pull and migrates primitives.

4.4 A Demonstration of Pipelined Workflow
Our final application is a demonstration how we can efficiently

compose a workflow, which consists of tasks with different charac-
teristics. Suppose we want to recommend some Wikipedia pages
to Wikipedia editors. In addition, we make the PageRank scores



of the pages available so that we can recommend more influential
pages. Thus, the problem is how to obtain the PageRank scores of
the pages and the latent factors of both the pages and editors.

Conceptually, we can implement the workflow by the following
pipelined steps:

1. Load the Wikipedia XML data.

2. Extract the page graph.

3. Extract the page-editor sparse matrix.

4. Compute PageRank on the page graph.

5. Factorize the page-editor sparse matrix.

The Wikipedia datasets consist of the page data and the revision
data. The page data contain pages in Wikipedia (including Cate-
gories, Talks, etc.). The revision data contain the revisions of the
pages, which we use to extract the history of the modifications done
by the editors.

The page data are loaded page by page. After loading each page,
we create a local Page object containing all the information about
the page. However, a problem is that the links in the Wikipedia
pages are shown as titles instead of page ids. We may use the title
of a page as its id; but for message passing in PageRank compu-
tation, sending textual titles usually incur much higher communi-
cation cost than sending integer ids. Using title hashes may poten-
tially lead to hash collisions and inaccurate results as the number of
pages is large. With Husky’s model, we can easily create the cor-
responding page id for a page title that appears as a link in another
page, which we show as follows.

Each Page object pushes a message to create a global Title
object with its title as the object id, where Title object also keeps
the id of the Page object. This is essentially creating a dictionary
with title as key and Page id as value. In the next step, we can
use Title to get its corresponding Page id from the dictionary as
follows. For each Page object, p, let T be the set of links in the
page of p (i.e., the titles of other pages that p links to), do: for
each title t in T , p pulls the id of the corresponding Page object
from the Title object with key t. This process constructs the set
of out-neighbors for each Page object and hence the page graph.

After that, we convert the Page objects to global objects to facil-
itate the processing in subsequent steps. Then, we read the revision
data and send the editor ids to the corresponding Page object upon
reading a revision record. After reading the revision data, each
Page object now also contains its editors. Each Page object then
also initializes its latent factors, and pushes messages to create and
initialize Editor objects (as well as their latent factors). This pro-
cess constructs the page-editor sparse matrix.

At this point we have done the first three steps in the job pipeline.
The remaining two steps are just to perform PageRank on the Page
objects (Step 4) and Matrix Factorization (e.g., by ALS) on the
Page objects and Editor objects (Step 5). Readers may refer to
Sections 4.2 and 4.3 for PageRank and MF computation in Husky.

5. EXPERIMENTAL EVALUATION
We conducted extensive experiments to verify our arguments that

the design of Husky leads to low system overhead, while at the
same time allowing users to express a variety of algorithms and
frameworks. In particular, we tested Husky with different work-
loads, including non-iterative coarse-grained workloads, iterative
fine-grained graph analytics, synchronous and asynchronous ma-
chine learning, and pipelined workflow of mixed jobs. We also

evaluated Husky’s scalability and its performance on fault toler-
ance and load balancing.

We ran all experiments on a Linux computing cluster, where
each machine is equipped with 48GB RAM, two 2.0GHz Intel(R)
Xeon(R) CPU (12 physical cores in total), a 450GB SATA disk
(6Gb/s, 10k rpm, 64MB cache), and a Broadcom Gigabit Ether-
net NIC. We allocate 300 cores of our cluster for all experiments.
The Hadoop version we use is 2.6.0. Spark (version 1.3.1) was de-
ployed Standalone Mode and carefully tuned for best performance.
For GraphLab [12], Giraph [4], Petuum [14, 18], and Naiad [21],
we installed the latest versions according to their manuals. For all
systems we tested in each of our experiments, we used the best set-
tings that gave the best performance. All graph and machine learn-
ing implementations were taken from the libraries or the authors of
the respective systems, if provided.

Husky was implemented in C++. The source codes of Husky and
all its applications presented in this paper are available on
http://www.husky-project.com/. The latest version also
supports a Python API.

5.1 Performance on Bulk Workload
We first tested TF-IDF, which involves bulk data movements and

is non-iterative computing. Such workload is what MapReduce is
designed for, and hence we compared with Hadoop and Spark. The
dataset we used is the English Wikipedia corpus2, denoted by “en-
wiki × 1”, which contains over 4.8 million documents and 1.7 bil-
lion terms. We also tested heavier workloads by duplicating “en-
wiki × 1” by 2 and 3 times, denoted by “enwiki × 2” and “enwiki
× 3”.
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Figure 7: Performance on TF-IDF

As reported in Figure 7, Spark is 39% to 58% faster than Hadoop,
but Husky is even around 10 times faster than Spark. Spark out-
performs Hadoop mainly because Spark is in-memory MapReduce
system and hence it does not do context switch (i.e., dump/load
data to/from HDFS) between consecutive stages, which saves a lot
of time. Husky’s superior performance can be explained as follows.

Due to bulk data movements, TF-IDF is essentially network-
bounded. In this case, the use of local objects and fine-grained
pull in Husky reduce a large amount of network traffic. To verify it,
we collected the number of bytes transmitted in different systems,
and observed that the network traffic of Husky is over an order of
magnitude lower than Spark and Hadoop. The advantage is more
significant when the datasets get larger.

5.2 Performance on Graph Analytics
Next, we tested Husky on iterative graph analytics workloads.

We used two large publicly available graphs, WebUK and Twitter,

2https://en.wikipedia.org/wiki/Wikipedia:Database download/
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Figure 8: Performance on PageRank (30 iterations) and SSSP

and Table 1 lists their number of vertices and edges, and maxi-
mum and average degree. We implemented two popular graph al-
gorithms, PageRank and SSSP, as discussed in Section 4.2. PageR-
ank updates all vertices and generates |E| messages at each round,
while SSSP requires fine-grained updates to only partial vertices at
each round.

|V | |E| max-deg avg-deg
WebUK 133,633,040 5,507,679,822 22,429 41.21
Twitter 52,579,682 1,963,263,821 779,958 37.33

Table 1: Graph datasets

We compared Husky with Giraph, GraphLab PowerGraph, Spark
GraphX, and Naiad. Giraph and GraphLab are two popular efficient
graph computing systems. GraphX is built on the MapReduce-
based system Spark. Naiad abstracts a graph as a stream of edges
and was reported to achieve good performance for graph comput-
ing [21]. The graphs were loaded with the default settings of the
respective systems, without doing any advanced partitioning as this
is not our focus.

Figure 8 reports the results. GraphLab, Giraph, and Naiad all
outperform GraphX significantly, among which GraphLab shows
the best performance, but is still slower than Husky. We observed
that the improvement of Husky over GraphLab largely comes from
the use of shuffle combiner (see Section 3.3.2), with which the net-
work traffic of each iteration in Husky is around 3 times lower than
that in GraphLab. To further confirm the effect of shuffle combiner,
we turned it off and observed that the Husky result was degraded
and close to that of GraphLab.

All the systems, except GraphX, support fine-grained data ac-
cess, which is essential for graph computing. On the contrary, in
GraphX, graph operations are transformed into maintenance and
joins of several immutable distributed tables, resulting in high mem-
ory footprint. For example, in running SSSP on WebUK, GraphX
ran out all the available memory and started spilling to disks. Note
that the poor performance is not because GraphX is JVM-based,
since Giraph is also based on JVM, but it implements the right
Pregel model and hence used less than 30% of the memory. The
coarse-grained primitives of Spark significantly worsen the perfor-
mance of graph computing especially for SSSP, where there are a

lot of short-lived iterations and only a fraction of data is touched in
most iterations.

5.3 Performance on Machine Learning
Next, we tested Husky’s performance on two collaborative filter-

ing algorithms, ALS and asynchronous SGD. ALS is a synchronous
algorithm and can be easily parallelized, which is popularly adopted
in various systems. The asynchronous SGD, on the other hand, are
not effectively supported by many systems as it requires the sup-
port of asynchronous and fine-grained updates. We used the song
rating data from Yahoo! Music3 and Netflix movie rating data [7].
Some statistics of the datasets are shown in Table 2.

Users Items Ratings
Netflix 480,189 17,770 100,480,507
YahooMusic 1,823,179 136,736 699,640,226

Table 2: Rating datasets

We compare Husky with Petuum, GraphLab, and Spark. Petuum
is the state-of-the-art Parameter Server implementation. GraphLab
is able to perform machine learning by modeling it as a graph
problem. Both Petuum and GraphLab were written in C++. We
measured how efficient a system can compute a high quality result
based on the given input, by reporting training root-mean-square
error (RMSE) versus training time. The faster the RMSE decreases
over time, the better is the performance of the system.

Alternating Least Squares. Petuum provides the CCD++ [28]
implementation, accelerated by the STRADS scheduler [18], where
CCD++ can be regarded as an improved ALS algorithm. GraphLab
models parameters as shared states and ensures consistency through
locking (it may lock across network). Spark uses the blocked ALS
algorithm in its MLlib. ALS implementation in Husky is discussed
in Section 4.3.1. The regularization parameter is set to 0.1 and the
rank is set to 20 for all systems.

We obtained the results as shown in Figures 9. The overhead
of locking over network in GraphLab is too high (also observed
in [30]), and we cannot properly plot the GraphLab lines as oth-
ers. As a dedicated machine learning framework, Petuum performs
much better than Spark, while Husky further outperforms Petuum
as Husky overcomes the shortage of Parameter Server by avoiding
indirect communication.
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Figure 9: Performance on ALS

We also remark that comparing the easiness of development us-
ing different systems, in Husky computation happens by object in-
teraction and hence it is intuitive to reason the algorithm logic as
3http://webscope.sandbox.yahoo.com/



users and products (objects) exchanging their information (latent
factors), while mapping such algorithm logic into coarse-grained
functional operators is not easy work.

Stochastic Gradient Descent. We implemented NOMAD [30] in
Husky, as discussed in Section 4.3.2, and we also compared with its
specialized native MPI program by [30] in order to study the system
overhead of Husky. We also compared with Petuum and GraphLab
as references, both of which are able to exploit asynchronization.
It is not clear how to implement asynchronous algorithm in Spark
and hence we did not include Spark in this experiment. We set the
SGD regularization parameter to 0.05 and the learning rate to 0.01
for all systems.

Figure 10 shows that the native MPI program achieves great effi-
ciency, but the performance of Husky is very close to it. In contrast,
we found that the support for asynchronization in both Petuum and
GraphLab is still quite limited and the performance is far worse.
For GraphLab, the model diverged in all trials. The performance
of Petuum is better but still far from satisfactory when compared
with Husky and the native MPI program (both converged in several
seconds). Note that the performance of Petuum (version 0.93) is
similar to that reported in Figure 3 of the Petuum paper [14].
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Figure 10: Performance on SGD

Compared with the native MPI program, the Husky framework
frees researchers from the complexity of developing distributed pro-
grams in low-level MPI from scratch. Moreover, porting this pat-
tern into the Husky library results in a re-usable component, which
can be composed together with other components into pipelined
workflows in Husky with little overhead.

5.4 Performance on Wikipedia Pipeline
Next, we demonstrate that Husky is efficient for pipelined jobs

that require context switches. There are a number of dataflow sys-
tems, for example, Dryad [15], DryadLINQ [29] and Naiad [21] by
Microsoft Research, and also Spark [31] and epiC [16]. We only
compared with Spark and Naiad, since Naiad has significantly bet-
ter performance than Dryad/DryadLINQ [21] and epiC is not open
source.

We used the Wikipedia pipelined workflow described in Sec-
tion 4.4. We also used specialized systems to run each job in the
pipeline, i.e., Hadoop for preprocessing (i.e., Steps 1-3 of the work-
flow), GraphLab for PageRank (Step 4), and Petuum for MF (Step
5).

The result, reported in Figure 11, verifies the efficiency of Husky,
as both its overall running time and the running time of each indi-
vidual job are significantly shorter than those of the other systems.
The overhead of context switch between jobs in Husky is negligi-
ble. Spark has better overall performance than specialized systems,

even though GraphX in Spark is much slower than GraphLab for
running PageRank. This is partly because Spark has negligible con-
text switch overhead, and partly because the page-editor matrix is
quite sparse and Petuum cannot handle a large sparse matrix effi-
ciently compared with others. Compared with Husky, Spark is still
6.2 times slower.

For Naiad, we used the Naiad LINQ interface to do preprocess-
ing in a similar way as Hadoop and Spark. However, We did not
plot the Naiad figures since the preprocessing time for Naiad is
even larger than the overall running time of the other systems. We
tried but failed to fix the data loading problem in Naiad4. How-
ever, we did observe that Naiad achieved satisfactory performance
for PageRank computation on the page graph (i.e., Step 4 of the
workflow), which takes 160 seconds (compared with 157 seconds
using GraphLab, 59 seconds using Husky, and 1431 seconds using
GraphX). The result of graph computing is also consistent with our
results reported in Section 5.2.
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Figure 11: Performance on pipelined jobs

5.5 Performance on Fault Tolerance
We evaluated fault tolerance by randomly disconnecting a physi-

cal machine during the computation of a job. We compared Husky
with Spark, which provides lineage-based recovery—a method that
shows better performance than traditional checkpoint recovery [31].
Both Husky and Spark ran iterative PageRank on the Twitter graph,
and we simulated a machine failure at the 15-th iteration.

Figure 12 shows that, while Husky took a short time to recover,
the recovery time of Spark is even longer than re-running the job.
This result verifies the effectiveness of Husky’s fault recovery tech-
nique. We also examined the cause to Spark’s costly fault recovery,
which we explain as follows.
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Figure 12: Performance on fault tolerance

There are two possible cases of fault recovery in Spark. The first
one is as follows: healthy workers read the shuffle output on the
disks of failed machines to recover lost partitions. This works for
situations where the machine is running fine but the workers on it

4We also communicated with one of the authors for assistance, but
learnt that Naiad was no longer a maintained project.



disappear for some reason. The second one is the lineage recov-
ery that can sustain general failures like machine outage and net-
work partition. We found that when we used the first recovery by
killing a worker process, the recovery of Spark was fast as reported
in [31]. However, when we used lineage recovery by disconnecting
a physical machine, the recovery time of Spark was approximately
the same as re-running the whole job. This is because jobs like
PageRank, as well as most graph algorithms and machine learn-
ing algorithms, have shuffle dependencies between RDDs, and for
these jobs the lineage recovery effectively reduces to a complete
re-execution [31]. The lineage of a data partition can also grow too
long and cause stack overflow. This is a serious problem for jobs
requiring many iterations, e.g., SGD and k-core computation.

5.6 Performance on Load Balancing
According to Section 3.5, the design of dynamic load balancing

strategy should allow Husky to dynamically balance the workloads
across different machines according to their workload situations.
We tested the effectiveness of this method as well as the over-
head, through a machine learning algorithm (ALS on YahooMusic
dataset) and a graph algorithm (PageRank on Twitter graph). To
simulate heterogeneous configuration and resource contention, we
deliberately limit the CPU rate of one machine to half of its origi-
nal capacity. We set the interval required for the master to collect
enough statistics from workers to detect a load imbalance to be 4
rounds (note that an application may adjust the interval length to
increase the sensitivity).

As shown in Figures 13a and 13b, the master confirmed the load
imbalance at Round 4 and initiated load re-balancing. The mas-
ter adjusted the hash ring, which triggered a bulk migration among
workers. All migrating objects settled at Round 5. Consistent hash-
ing makes load balancing in Husky simple and fast, as the load bal-
ancing overhead in Rounds 4 and 5 was only a small fraction of the
running time at each round. In contrast, the benefit brought was
obvious as the running time at each round after Round 5 was al-
most halved, since before Round 5 the stragglers were taking the
same workloads as other workers that had twice of their computing
power.
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Figure 13: Performance on load balancing

5.7 Performance on Scalability
Finally, we tested the scalability of Husky by an iterative task and

a non-iterative task, PageRank and WordCount. We ran PageR-
ank on the WebUK graph. PageRank is both CPU-intensive and
network-intensive, and we tested the scalability of Husky by in-
creasing the number of cores used. Then we tested the scalability
of Husky by increasing the input data size by running WordCount.
As WordCount is I/O-intensive, we fixed the machine settings and
varied the size of a synthetic corpus (generated by Hadoop Ran-
domTextWriter) from 200GB to 1,000GB.

The results are reported in Figures 14a and 14b, which verify
that Husky achieves nearly linear scalability in both cases.
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Figure 14: Performance on scalability

6. RELATED WORK
Recently there is great interest in building general-purpose dis-

tributed systems that support high-level languages, especially func-
tional primitives (e.g., Spark [31], FlumeJava [8], and Flink [3]).
The key idea is that functional primitives like map and reduce can
be trivially parallelized and they hide the underlying distributed ex-
ecution from developers. However, it has been shown [11, 23] that
although these coarse-grained primitives are ideally suited for bulk
processing, they may not be efficient for iterative and fine-grained
computation. They also hinder programmers from having finer con-
trol and composing more efficient programs. The above discussion
indicates that a more efficient distributed framework should support
coarse-grained transformations, but also natively allow fine-grained
data access when necessary(e.g., pushing messages to a specific ob-
ject, or migrating some objects to another worker).

In order to attain higher performance in large-scale graph mining
or machine learning, researchers have been exploring new comput-
ing models. The Pregel model [20] frees from the inefficiency of
map and reduce operators by implementing graph-specific message-
passing operations, and achieves substantially better performance
in distributed graph processing. Blogel [27] introduces the block-
centric model to eliminate Pregel’s performance bottlenecks caused
by real-world graph characteristics, namely skewed degree distri-
bution, large diameter, and high density. With a similar idea as
Pregel but in a more general approach, Piccolo [23] enables de-
velopers to program by accessing and mutating entries of global
key-value tables in a fine-grained manner. Such approach is fur-
ther exploited in the Parameter Server (PS) model [14, 19, 25], as
machine learning applications generally need to have fine-grained
or even asynchronous access to the global statistical model. The
epiC system [16] uses a similar architecture as PS but stores global
states on HDFS. Compared with PS, Piccolo and epiC do not sup-
port asynchronous operations, while all of them lack features like
Husky’s fine-grained object migration and dynamic object creation.
The PS systems are specialized for fine-grained machine learning
tasks, and do not support coarse-grained operations (e.g., map and
reduce) as in Husky. Besides, PS and epiC force all data com-
munication through global key-value tables, which incurs indirect
communication and unnecessary network traffic. In addition to the
above differences, Husky also supports pipelined tasks and mixed
data interaction patterns from different domains (including Pregel,
PS, MapReduce, as shown in Section 2.2).

SDG [11] allows developers to parallelize single-machine im-
perative Java programs by adding annotations. Some features of
Husky are also implemented in SDG, for example, independent
local states and fine-grained data access. However, SDG focuses
more on parallelizing imperative machine learning algorithms. On



the contrary, Husky provides a rich set of object primitives and
bridges many existing models and components inside one system
(as discussed in Sections 2.2 and 4.4).

Stream processing systems such as S4 [22], Storm [26] and Mill-
Wheel [1], achieve real-time computation over streaming data. Na-
iad [21] generalizes the streaming model and abstracts general dis-
tributed computation as stream processing problems. Naiad is able
to achieve satisfactory performance for distributed computation on
both streaming and static graphs, by casting graph problems as pro-
cessing streams of edges. In contrast, in Husky developers work
with meaningful objects and think about their interactions. This can
be more intuitive for modeling general offline applications, which
is the focus of Husky in this paper. Online stream processing is an
important topic, but is beyond the scope of this work and we leave
it to future work.

7. CONCLUSIONS
We presented Husky, which is an attempt towards a more effi-

cient and expressive computing model with an easy-to-use inter-
face. We showed that Husky is able to implement applications
of different characteristics, for example, coarse-grained and fine-
grained, iterative and non-iterative, synchronous and asynchronous
workloads, and achieves performance close to or better than spe-
cialized systems and programs. We also verified that Husky is scal-
able, efficient in fault recovery, and effective in load balancing.
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Gunda, and J. Currey. DryadLINQ: A system for
general-purpose distributed data-parallel computing using a
high-level language. In OSDI, pages 1–14, 2008.

[30] H. Yun, H. Yu, C. Hsieh, S. V. N. Vishwanathan, and I. S.
Dhillon. NOMAD: nonlocking, stochastic multi-machine
algorithm for asynchronous and decentralized matrix
completion. PVLDB, 7(11):975–986, 2014.

[31] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In NSDI, pages 15–28, 2012.


