
SALT: Provably Good Routing Topology by a Novel Steiner

Shallow-Light Tree Algorithm
Gengjie Chen, Peishan Tu, and Evangeline F. Y. Young

Department of Computer Science and Engineering, The Chinese University of Hong Kong, NT, Hong Kong

{gjchen,pstu,fyyoung}@cse.cuhk.edu.hk

Abstract—In a weighted undirected graph, a spanning/Steiner shallow-

light tree (SLT) simultaneously approximates (i) shortest distances from a
root to the other vertices, and (ii) the minimum tree weight. The Steiner SLT

has been proved to be exponentially lighter than the spanning one [1], [2]. In
this paper, we propose a novel Steiner SLT construction method called SALT
(Steiner shAllow-Light Tree), which is efficient and has the tightest bound

over all the state-of-the-art SLT algorithms. Applying SALT to Manhattan
space offers a smooth trade-off between rectilinear Steiner minimum tree
(RSMT) and rectilinear Steiner minimum arborescence (RSMA) for VLSI

routing. In addition, the adaption further reduces the time complexity from
O(n2) to O(n logn). The experimental results show that SALT can achieve

not only short path lengths and wirelength but also small delay, compared
to both classical and recent routing tree construction methods.

I. INTRODUCTION

Timing and power have been being crucial issues in chip design

since more than two decades ago and become increasingly critical

as technology scales. For example, 50% – 80% of gates in high-

performance ICs today are repeaters, which do not perform useful

computation but work for timing closure [3]; over 50% of the chip

at 8nm will be powered off and cannot be utilized due to the power

constraint [4].

Interconnect, as the carrier of signals, determines the timing quality

of ICs directly. It also significantly influences power and consumes

more power than computation nowadays. In routing tree construction,

both tree weight (i.e., wirelength) and path length are important.

Essentially, tree weight implies routing resource usage (routability),

power consumption, cell delay and wire delay, while path length implies

wire delay.

It is a well-studied problem if only one of the objectives between

tree weight and path length should be minimized, whether the domain

is the spanning tree or the rectilinear Steiner one. For spanning trees,

the minimum spanning tree (MST) can be obtained by various classical

algorithms like Prim’s and Kruskal’s algorithms in O(m + n log n)
time; the shortest-path tree (SPT) can be constructed by Dijkstra’s

algorithm in O(m+n log n) time [5]. For rectilinear Steiner trees, the

one with minimum tree weight is called a rectilinear Steiner minimum

tree (RSMT), while the one with all paths from root being shortest is

a rectilinear Steiner minimum arborescence (RSMA).

Both RSMT and RSMA construction are NP-hard [6], [7], but there

are efficient heuristics to solve them with near optimal quality. For

RSMT, rectilinear MST (RMST) achieves an 1.5-approximation [8] and

can be constructed in O(n log n) time [9]. Many fast algorithms (e.g.,

[10]–[12]) are also proposed in order to pursue a smaller tree weight.

For RSMA, a 2-approximation can be obtained in O(n log n) time [13],

[14], and some examples of efficient heuristics are [15], [16].

The spanning/Steiner shallow-light tree (SLT) combines the objec-

tives of path length and tree weight together, as TABLE I and Fig. 1

show. In a spanning/Steiner tree with shallowness α and lightness β,

each path length is at most α times the shortest-path distance, while

This work was partially supported by the Research Grants Council of Hong
Kong SAR, China (Project No. CUHK14209214).

TABLE I: Spanning and Steiner Shallow-Light Tree Comparison
shallowest lightest shallow light

spanning
spanning SPT MST spanning

(O(m+ n logn)) (O(m+ n logn)) SLT

Steiner
Steiner SPT SMT Steiner
(NP hard) (NP hard) SLT

rectilinear RSMA RSMT rectilinear
Steiner (NP hard) (NP hard) Steiner SLT

(a) A net on a regular
grid

(b) Spanning SPT
(α = 182

13
, β = 14

39
)

(c) RMST/RSMT
(α = 39

13
, β = 39

39
)

(d) RSMA
(α = 13

13
, β = 54

39
)

(e) Spanning SLT
(α = 15

13
, β = 61

39
)

(f) Steiner SLT
(α = 15

13
, β = 44

39
)

Fig. 1: Different routing topologies on the same net (the root is marked

by red, α and β denote shallowness and lightness).

the tree weight is β times the minimum tree weight. In an (ᾱ, β̄)-SLT,

α ≤ ᾱ and β ≤ β̄. A spanning SLT approximates SPT and MST

simultaneously, where the trade-off is in the order of (1 + ǫ, O(1
ǫ
)).

The ABP and BRBC algorithms [17], [18] are in fact identical and

provide a bound of (1 + 2ǫ, 1 + 2
ǫ
). After them, the KRY algorithm

[19] reduces the bound to (1+ǫ, 1+ 2
ǫ
) and proves that it is tight. KRY

also provides a smooth trade-off between SPT and MST controlled by

ǫ, while ABP does not (e.g., a MST is not implied when ǫ = +∞).

Besides, the PD algorithm [20] smoothly trades off between SPT and

MST, but the resulted tree is not guaranteed to be SLT. Recently, Steiner

SLTs are proved to be exponentially lighter than spanning ones by Elkin

and Solomon [1], [2]. The ES algorithm can efficiently build a Steiner

(1+ǫ, O(log 1
ǫ
))-SLT with a time complexity of O(n2). The constants

in the bound (1+2ǫ, 4+2⌈log 2
ǫ
⌉) are, however, quite large (log denotes

log2 in this paper).

We propose an efficient algorithm called SALT for constructing

a Steiner SLT and apply it to routing topology construction. Our

contributions are summarized as follows.

1) We propose SALT for the Steiner SLT on general graphs, whose

shallowness-lightness bound is (1 + ǫ, 2 + ⌈log 2
ǫ
⌉). To the best

978-1-5386-3093-8/17/$31.00 ©2017 IEEE 569

TABLE II: Notations Used in ES
MST (G) Minimum spanning tree on graph G

dG(u, v) Distance between vertices u and v in graph G

Pi i-th vertex on path P

of our knowledge, the bound is much tighter than all existing

methods for constructing spanning/Steiner SLTs.

2) We simplify SALT and reduce the runtime from O(n2) to

O(n log n), when applying it to the Manhattan space for VLSI

routing.

3) We further decrease path lengths and tree weight in the Manhattan

space by integrating SALT with the classical RSMA [13] and

RSMT [12] algorithms. The method (rectilinear SALT) provides

a smooth trade-off between RSMA and RSMT controlled by ǫ.

This is similar to what KRY and PD algorithms do for MST and

SPT, but with an exponentially tighter bound.

4) Several effective post-processing methods are also proposed to

further improve the result.

As a geometric approach for VLSI routing, our method directly

targets wirelength and path lengths instead of a highly accurate timing

model. However, this is not only valid but also desirable due to

three reasons. First, SALT provides a bounded trade-off and has much

stronger global view. It can generate high-quality initial solutions for

later stage optimization. Second, the linear delay model is reasonable

due to buffering [21], wire sizing and layer assignment, compared

to the Elmore delay model. Third, in the experiment, SALT is also

comparable in terms of Elmore delay with the state-of-the-art Steiner

tree construction method targeting Elmore delay directly [22], [23].

Last but not least, we want to highlight that even though the bound

analysis of SALT is complex, it can be easily implemented with

hundreds of lines of codes.

II. STEINER SHALLOW-LIGHT TREE ALGORITHM

The exact problem formulation and the ES algorithm [2] for the Steiner

SLT are first briefly introduced as preliminaries. The framework as

well as the light Steiner SPT construction of SALT is then described,

followed by the bound analysis.

A. Preliminaries

1) Problem Formulation

Our Steiner SLT algorithm on general graphs is under the same

problem formulation used in [2]. A spanning/Steiner tree T of a

weighted undirected n-vertex graph G = (V,E,w) with respect to

a root vertex r is called an SLT if (i) it approximates all shortest-

path distances dG(r, v) from r to v ∈ V , and (ii) its weight w(T)
is bounded by that of MST w(MST (G)). For a (ᾱ, β̄)-SLT, (i)

the shallowness α = max{ dT (r,v)
dG(r,v)

|v ∈ V \{r}} ≤ ᾱ, and (ii)

lightness β = w(T)
w(MST (G))

≤ β̄. Note that on a graph that is metric

(i.e., with edge weights satisfying triangle inequality), a lightness

bound with respect to MST infers one with respect to SMT because

w(MST (G)) ≤ 2 · w(SMT (G)) (i.e., w(T) ≤ β̄ · w(MST (G)) ≤
2 · β̄ · w(SMT (G))). For rectilinear Steiner trees, the gap is smaller

with w(RMST (G)) ≤ 1.5 · w(RSMT (G)).

Considering the general metric scenario, a Steiner tree for a graph

G = (V,E,w) is defined as a tree T = (V ′, E′, w′) with V ′ ⊇ V

and w′ : E′ → R
+ that dominates the metric MG induced by G, i.e.,

∀u, v ∈ V, dT (u, v) ≥ dG(u, v). Even though such Steiner SLT cannot

be embedded into some metric spaces (e.g., Euclidean space), it is

applicable to the Manhattan space, which will be shown in Section III.

For simplicity of illustration, we henceforth assume all the input graph

G is complete and metric. Indeed, any weighted undirected graph G∗

defines a metric space and thus implies a graph G that is complete and

metric.

Algorithm 1 ES

Require: Graph G = (V,E,w), root r, trade-off parameter ǫ;

Ensure: Steiner SLT T = (V ′, E′, w′) with V ′ ⊇ V that dominates

G;

1: TM ←MST (G);
2: P ← Hamiltonian path based on TM starting from r;

3: Breakpoint set B ← ∅;
4: Breakpoint b← r;

5: for v ← P1 to Pn do

6: if dP (b, v) > ǫ · dG(r, v) then

7: b← v;

8: B ← B ∪ {b};

9: TB ← Steiner SPT on G[B ∪ {r}] rooted at r;

10: T ← spanning SPT on graph TM ∪ TB ;

(a) MST TM (b) Path P (c) Graph
TM ∪ TB

(d) ES T

Fig. 2: Sample run of Algorithm 1 on a net (ǫ = 1). (a) Construct

MST TM (shallowness α = 3.14 with worst sink circled by blue,

lightness β = 1). (b) Identify breakpoints B (circled by green) on

the Hamiltonian path P , where each blue arrow points from a non-

breakpoint v to its previous vertex for accumulating distance dP (b, v) .

(c) Obtain the Steiner SPT TB on G[B∪{r}], and get graph TM ∪TB .

(d) Construct the spanning SPT on TM ∪ TB , which is the desired

Steiner SLT T (α = 1.90, β = 1.06).

2) ES Algorithm

The ES algorithm extends the ABP algorithm for spanning SLTs to

Steiner ones. The key steps are shown in Algorithm 1 and Fig. 2 with

notations summarized in TABLE II. Its main idea is to accumulate

the distance along a Hamiltonian path P and identify a breakpoint b

whenever the accumulated distance becomes too long. Breakpoints are

then connected to the root r directly by a Steiner SPT (line 9). In this

way, the distance dT (r, b) between a breakpoint b and r in the tree

T becomes the shortest-path distance dG(r, b). For other vertices, the

path length is bounded.

The Steiner SPT for connecting breaking points is a dedicated design

(refer to Section 2 of [2] for details). Applying it to a graph G′ leads to

the lightness bound β̄ = 1+2⌈log n⌉. The algorithm starts by building

a skeleton of a full balanced binary tree, of which the leaves are the

original vertices and the inner nodes are Steiner points. From bottom

to top, the edge weights are assigned carefully, to make sure the tree

will be a SPT that dominates G.

ES is not complicated, but surprisingly, it leads to an exponentially

lighter SLT than ABP. Besides, it is reasonably fast. The exact bounds

are shown by Theorem 1.

Theorem 1. The ES algorithm generates a Steiner (1 + 2ǫ, 4 +
2⌈log 2

ǫ
⌉)-SLT in O(n2) time.

Proof. See Lemmas 3.4, 3.5 and 3.6 of [2].

B. Framework

SALT first identifies some breakpoints on an initial topology and

then connect them to the root by a Steiner SPT, which is similar

to ES. Inspired by the KRY algorithm [19], we propose to use (i)

570

TABLE III: Additional Notations Used in SALT
p[v] Parent of vertex v

d[v] Current distance estimate from r to vertex v

Algorithm 2 SALT

Require: Graph G = (V,E,w), root r, trade-off parameter ǫ;

Ensure: Steiner SLT T = (V ′, E′, w′) with V ′ ⊇ V that dominates

G;

1: Initialize (B ← ∅, d[r] = 0, ∀v ∈ V, d[v] = +∞, p[v] = null);

2: TM ←MST (G);
3: DFS(r, TM);

4: Forest F ← {(v, p[v])|v ∈ V \(B ∪ {r})};
5: TB ← Steiner SPT rooted at r for G[B ∪ {r}] by Algorithm 3;

6: T ← F ∪ TB ;

7: function DFS(v, TM)

8: if d[v] > (1 + ǫ) · dG(r, v) then

9: B ← B ∪ {v};
10: d[v]← dG(r, v);

11: for each child u of v in TM do

12: Relax(v, u);

13: DFS(u, TM);

14: Relax(u, v);

15: function Relax(u, v)

16: if d[v] > d[u] + w(uv) then

17: d[v]← d[u] + w(uv);
18: p[v]← u;

19: else if d[v] = d[u] + w(uv) and w(p[v]v) < w(uv) then

20: p[v]← u;

a tighter criterion for identifying breakpoints and (ii) a better initial

topology (i.e., a MST instead of a Hamiltonian path) in the Steiner

SLT construction. The framework with the two effective techniques is

illustrated by Algorithm 2 and Fig. 3. As a subroutine, the light Steiner

SPT construction method will be described by Algorithm 3 in the next

subsection.

In SALT, the solution is initialized to an MST and gradually modified

towards a Steiner SLT. The major routine is based on a depth-first search

on the MST (function DFS). During DFS, if the shallowness constraint

is violated at a vertex, the vertex will become a breakpoint (line 9). In

the end, breakpoints will be connected to r via a SPT, so its distance

estimate d[v] is set to the shortest-path distance dG(r, v) for relaxing

the distance estimates of the other vertices (line 10). Two relaxations are

conducted on each edge, from parent to child and from child to parent

(lines 12 and 14). After DFS, edges (v, p[v]) for non-breakpoints v

define a forest F , with tree roots being breakpoints. In the last step,

breakpoints are connected to r by a Steiner SPT TB .

The relaxation (function Relax) from vertex u to v means updating

distance estimate d[v] if the path from r via u to v is shorter (line 16).

Different from KRY, we also update the parent p[v] of v even if d[v]
can not be shortened but its edge to the parent can becomes shorter

(line 19). The latter situation actually frequently happens in Manhattan

space and it benefits the tree weight.

The two techniques mentioned above are detailed here. First, break-

points are identified by checking distance estimate d[v] instead of the

accumulated distance dP (b, v) on the Hamiltonian cycle (in Algo-

rithm 1 line 6). As a straight-forward modification, d[v] can be the sum

of the shortest-path length dG(r, b) (from r to the previous breakpoint b)

and the path length dP (b, v) (from b to v), which is an upper bound on

dT (r, v) in the final T . More specifically, we can change the condition

dP (b, v) > ǫ · dG(r, v) to dG(r, b) + dP (b, v) > (1 + ǫ) · dG(r, v).

(a) MST TM (b) Forest F (c) SALT T

Fig. 3: Sample run of Algorithm 2 on a net (ǫ = 1). (a) Construct MST

TM , where each blue arrow points from a vertex v to its parent p[v].
(b) Update p[v] and identify breakpoints B (circled by green) during

the DFS on TM , which results to a forest F with tree roots being B.

(c) Obtain the Steiner SPT TB on G[B ∪ {r}], and T = F ∪ TB is

the final Steiner SLT (shallowness α = 1.43 with worst sink circled by

blue, lightness β = 1.05).

Note that the value of d[v] in Algorithm 2 is computed correctly by the

relaxation steps before and after each recursive call (lines 12 and 14).

Second, the initial topology is an MST instead of a Hamiltonian path.

In this way, the distance estimate d[v] is according to the MST, which

is tighter than d[v] = dG(r, b) + dP (b, v) based on the Hamiltonian

path and can trigger fewer breakpoints. Note that in extreme cases, the

second technique brings no benefit (e.g., MST is also a Hamiltonian

path), but it does help in most practical cases.

C. Light Steiner Shortest-Path Tree

A light Steiner SPT can be constructed by Algorithm 3, which has

smaller tree weight than that in the ES algorithm. Notations used are

in TABLE IV and Fig. 4.

Same as the Steiner SPT in ES, our SPT is also a full balanced

binary tree, with leaves being the given vertices and inner nodes being

Steiner vertices. Initially, the vertex sequence L contains all the given

vertices. In each iteration of the main loop (line 4-13), neighboring

vertices are merged (i.e., connected to a parent Steiner vertex) pair by

pair to form the vertex sequence L′ for the next iteration. Note that

the vertex number is reduced by half in each iteration and eventually

becomes one.

When a Steiner vertex z is inserted as the parent for vertices zl and

zr , the edge weights are assigned under the consideration of disbalance

b and distance surplus s:

b(zl, zr) = t(zl)− t(zr), (1)

s(zl, zr) = max{dG(vl, vr)− (dT (zl, vl) + dT (zr, vr))

|vl ∈ Leaves(zl), vr ∈ Leaves(zr)},
(2)

where t(z) is the distance from root r to vertex z in the final SPT.

It is straight-forward that t(z) = dG(r, z) if z is a leaf. t and b help

maintain T to be a SPT and require the choice of edge weights w′(zzl)
and w′(zzr) to satisfy:

w
′(zzl)− w

′(zzr) = b(zl, zr). (3)

In this way, t(zl) = t(z) + w′(zzl) and t(zr) = t(z) + w′(zzr) can

be true at the same time. For distance surplus s, w′(zzl) and w′(zzr)
should satisfy:

w
′(zzl) + w

′(zzr) ≥ s(zl, zr). (4)

This guarantees dG(vl, vr) ≤ dT (zl, vl) + w′(zzl) + w′(zzr) +
dT (zr, vr) = dT (vl, vr) (i.e., T dominates G). Algorithmic details

are in function AddSteiner. Note that in line 23, arbitrary v ∈
Leaves(z) can be picked to calculate t(z) due to the following lemma.

Lemma 1. In Algorithm 3, for any vertex z in T and any vertex v ∈
Leaves(z), dG(r, v)− dT (z, v) is a constant.

Proof. See Lemma 2.2 of [2].

571

TABLE IV: Additional Notations Used in Light Steiner SPT
T (z) Subtree rooted at vertex z

Leaves(z) Set of leaf vertices in Tz

t(z) Distance from root r to vertex z in the SPT

b(zl, zr) Disbalance between vertices zl and zr
s(zl, zr) Distance surplus between vertices zl and zr
c(zl, zr) Edge cost between vertices zl and zr
L Vertex sequence

Li i-th vertex of L

|L| Vertex number in |L|
vi i-th vertex along the traveling salesman circle

f(z) First index of Leaves(z) = {vf(z), vf(z)+1, ..., vl(z)}
l(z) Last index of Leaves(z) = {vf(z), vf(z)+1, ..., vl(z)}

W (i, j) Length of path (vi, vi+1, ..., vj):
∑j−1

k=i
dG(vk, vk+1)

W ′
i Total weight of edges added in the i-th iteration

�

�௟ = �௞
�� = �௞+1

௟ݒ �ݒ

��ሺ�௟ , ��௟ሻ ��ሺݒ , ሻ�ݒ

 ሺ���ሻ′ݓ ሺ��௟ሻ′ݓ
……

 �௞ �௞+1

�

�′ �

……

�

Fig. 4: During the Steiner SPT construction, neighboring vertices in

L are merged pair by pair into Steiner vertices in L′. Shown by the

enlarged the figure, vertices Lk (i.e., zl) and Lk+1 (i.e., zr) are merged

to a Steiner vertex z in L′.

Unlike the ES algorithm, which first determines the full-tree topology

based on a Hamiltonian path and then assigns weight to the edges, our

algorithm calculates the edge cost c(Lk, Lk+1) along L at each level

and selects a good matching ML to add Steiner vertices. According to

the function AddSteiner, if a Steiner point z is inserted, the sum

c(zl, zr) of the weights of the two edges added will be

c(zl, zr) = w
′(zzl) + w

′(zzr) = max{|b(zl, zr)|, s(zl, zr)}. (5)

Since a cycle of even (resp. odd) number of edges can be decomposed

into two perfect (resp. near perfect) matching, the weight of the lighter

one will be no more than half of the cycle weight. In this way, the sum

of the weights of the added edges is bounded.

Another technique that we use is to include the root r into the initial

Hamiltonian circle. In this way, an edge between the final Steiner point

and r is avoided and saved.

The resulted tree T is a SPT, of which the proof is simple and is

similar to that in [2].

D. Bound Analysis

We first analyze the lightness β of the Steiner SPT generated by

Algorithm 3.

Lemma 2. In Algorithm 3, for any vertex z in T , there exist vi, vj ∈
Leaves(z), such that dT (z, vi) + dT (z, vj) = dG(vi, vj).

Proof. See Appendix A.

The next lemma is the key to our weight analysis, which shows that

the weight of the circle defined by L and c is bounded by the weight

of the initial Hamiltonian cycle W (1, n+ 1) =
∑n

k=1 dG(vk, vk+1).

Lemma 3. For the vertex sequence L in any iteration of Algorithm 3,
∑|L|−1

k=1 c(Lk, Lk+1) ≤W (1, n+ 1).

Proof. See Appendix B.

Algorithm 3 Light Steiner SPT

Require: Graph G = (V,E,w), root r;

Ensure: Steiner SPT T = (V ′, E′, w′) with V ′ ⊇ V that dominates

G;

1: Initialize (V ′ ← V,E′ ← ∅, ∀v ∈ V, t(v)← dG(r, v));
2: L← Hamiltonian circle based on MST (G) (Ln+1 = L1);

3: while |L| > 1 do

4: for k = 1 to n do

5: Calculate b(Lk, Lk+1), s(Lk, Lk+1) by (1) (2);

6: c(Lk, Lk+1)← max{s(Lk, Lk+1), |b(Lk, Lk+1)|};

7: ML ← a light perfect (or near perfect) matching on the circle

defined by L and c;

8: L′ ← empty vertex sequence;

9: for LkLk+1 ∈ML do

10: AddSteiner(Lk, Lk+1);

11: if |L| is odd then

12: Append the unmatched vertex to L′;

13: L← L′;

14: function AddSteiner(zl, zr)

15: Add a Steiner vertex z into V ′;

16: Add edges zzl and zzr into E′;

17: if |b(zl, zr)| ≤ s(zl, zr) then

18: w′(zzl)←
s(zl,zr)+b(zl,zr)

2
;

19: w′(zzr)←
s(zl,zr)−b(zl,zr)

2
;

20: else

21: w′(zzl)← max{b(zl, zr), 0};
22: w′(zzr)← max{−b(zl, zr), 0};

23: t(z)← dG(r, v)− dT (z, v) for an arbitrary v ∈ Leaves(z);
24: Append z to L′;

Lemma 4. In the i-th iteration of Algorithm 3, the total weight of

added edges W ′
i ≤ w(MST (G)).

Proof. Due to the perfect (or near perfect) matching used and Lemma 3,

W ′
i ≤

1
2
·
∑|L|−1

k=1 c(Lk, Lk+1) ≤
1
2
·W (1, n+1). Because of triangle

inequality, W (1, n+1) ≤ 2·w(MST (G)). By combining them, W ′
i ≤

w(MST (G)).

With the help of Lamma 4, the lightness bound of Algorithm 3 can

be easily proved to be β̄ = ⌈log n⌉. Note that the Steiner SPT in ES

has β̄ = 1 + 2⌈log n⌉, which is more than twice of ours.

Theorem 2. The Steiner SPT T generated by Algorithm 3 has lightness

bound β̄ = ⌈log n⌉.

Proof. With ⌈log n⌉ iterations, |L| can be reduced from n to 1.

Therefore, w(T) =
∑⌈logn⌉

i=1 W ′
i ≤ ⌈log n⌉ · w(MST (G)).

We then analyze the bounds on shallowness α and lightness β of

SALT. Two lemmas are first needed.

Lemma 5. In Algorithm 3, if
∑

v∈V \{r} dG(r, v) ≤ θ · η (θ ≥ 1, η >

0), then w(T) ≤ ⌈log θ⌉ · w(MST (G)) + η.

Proof. See Appendix C.

Lemma 6. In SALT,
∑

v∈B
dG(r, v) ≤

2
ǫ
· w(MST (G)).

Proof. See Lemma 3.2 of [19].

According to Lemma 6, KRY, which connects breakpoints to root r

by edges directly, leads to a spanning (1 + ǫ, 1 + 2
ǫ
)-SLT. Introducing

Steiner points by Algorithm 3 makes the bound tighter.

Theorem 3. SALT generates a Steiner (1 + ǫ, 2 + ⌈log 2
ǫ
⌉)-SLT.

Proof. Whenever d[v] of a vertex v exceeds (1 + ǫ) times its shortest-

path length dG(r, v), d[v] is set to dG(r, v) and fixed. Therefore, we

572

Algorithm 4 Rectilinear SALT

Require: Points V on Manhattan plane, root r;

Ensure: Rectilinear Steiner SLT T = (V ′, E′) with V ′ ⊇ V ;

1: Initialize (B ← ∅, d[r] = 0, ∀v ∈ V, d[v] = +∞, p[v] = null);

2: TM ← RSMT on V by FLUTE ;

3: DFS(r, TM);

4: Forest F ← {(v, p[v])|v ∈ V \(B ∪ {r})};
5: TB ← RSMA rooted at r on B ∪ {r} by CL ;

6: T ← F ∪ TB ;

7: function DFS(v, TM)

8: if v ∈ V and d[v] > (1 + ǫ) · dG(r, v) then

9: B ← B ∪ {v};
10: d[v]← dG(r, v);

11: for each child u of v in TM do

12: Relax(v, u);

13: DFS(u, TM);

14: Relax(u, v);

(a) RSMT TM

by FLUTE
(b) Forest F (c) Rectilinear

SALT T
(d) RSMA by

CL

Fig. 5: Sample run of Algorithm 4 on a net (ǫ = 1). (a) Construct

RSMT TM by FLUTE (shallowness α = 2.66 with worst sink circled

by blue, lightness β = 0.91). (b) Get breakpoints B (circled by green)

and forest F . (c) Obtain the RSMA TB on G[B ∪ {r}] by CL, and

T = F ∪ TB is the rectilinear Steiner SLT. (α = 1.22, β = 1.01). (d)

RSMA by CL on the net (α = 1, β = 1.11).

have shallowness α ≤ 1 + ǫ.

Since TB is a Steiner SPT on graph G[B ∪{r}], substituting θ = 2
ǫ

and η = w(MST (G)) (by Lemma 6) into Lemma 5 makes w(TB) ≤
(1+ ⌈log 2

ǫ
⌉) ·w(MST (G)). Besides, w(F) ≤ w(MST (G)) because

F ⊂ MST (G). Hence, w(T) = w(TB) + w(MST (G)) ≤ (2 +
⌈log 2

ǫ
⌉) · w(MST (G)).

III. RECTILINEAR STEINER SHALLOW-LIGHT TREE ALGORITHM

SALT, which generates a Steiner (1+ ǫ, 2+⌈log 2
ǫ
⌉)-SLT for a general

graph, can be directly applied in the Manhattan space. However, it can

be further improved with the help of some special properties as well as

classical algorithms. The resulted algorithm, rectilinear SALT, is shown

by Algorithm 4 and Fig. 5. W.l.o.g., we assume that the root r is at the

origin of the space.

First of all, to build a rectilinear Steiner SPT, adding a Steiner point to

merge two vertices (function AddSteiner in Algorithm 3) becomes

easier on Manhattan plane. In the following discussion, we focus on the

two-dimensional situation, but it can be extended to higher dimensions.

For two vertices zl = (xzl , yzl) and zr = (xzr , yzr), the x coordinate

of their parent Steiner point z is

xz =







min{xzl , xzr}, xzl , xzr ≥ 0,

max{xzl , xzr}, xzl , xzr ≤ 0,

0, xzl ≤ 0 ≤ xzr or xzr ≤ 0 ≤ xzl .

(6)

yz is computed similarly. This location assignment of z is determined

by distances w′(zzl), w
′(zzr) and t(z). Note that the case |b(zl, zr)| >

s(zl, zr) (Algorithm 3 lines 20-22) never happens now. Intuitively, such

Algorithm 5 Refinement of Rectilinear SALT

Require: Rectilinear SALT T ;

Ensure: Refined rectilinear SALT T ′;

1: Cancel intersected edges;

2: Do L-shape flipping until no improvement;

3: Do U-shape shifting;

Steiner point z maximizes the overlapping on the two shortest paths

from r to vertices zl and zr . In this way, the coordinate of z can be

directly obtained from locations of zl and zr , which avoids the checking

of all leaves of zl and zr in (2). Therefore, the time complexity is now

bounded by obtaining the MST and is improved to O(n log n).
Second, the Steiner SPT problem on Manhattan plane is exactly

the classical RSMA problem [7], [13]. The CL heuristics [14] is an

approximation algorithm produces a tree of weight at most twice the

optimal. In practice, it is mostly optimal or near optimal, and is very

efficient with a time complexity of O(n log n). On the other hand,

our light Steiner SPT algorithm with lightness β ≤ ⌈log 2
ǫ
⌉ may be

far away from the optimal SPT in worst cases. For example, when all

vertices locates on a straight line, the optimal SPT is a path and also

the MST (i.e., β = 1). Hence, we use CL to construct the Steiner

SPT to further reduce the tree weight in practice (Algorithm 4 line 5).

Note that this modification maintain the proved complexity for both the

quality (shallowness α and lightness β) and time of Algorithm 2. While

the constant in the shallowness bound (ᾱ = 1 + ǫ) is also maintained,

the constant in the lightness bound (β̄ = 2 + ⌈log 2
ǫ
⌉) may be slightly

worsened in some corner cases but is better or much better in most

cases.

Third, instead of starting from an MST in Algorithm 2, an initial

tree with lighter weight is achievable by allowing Steiner points. In

Manhattan space, RSMT is a well-investigated problem, and FLUTE

[12] is adopted in our implementation (Algorithm 4 line 2). In this way,

the bound on the tree weight w(T) actually becomes tighter. There is

still w(T) ≤ (2 + ⌈log 2
ǫ
⌉) ·w(TM), where TM is MST in Theorem 3

but now becomes RSMT. Note that different from Algorithm 2, the

Steiner vertices in the RSMT do not need to be checked during the

DFS (Algorithm 4 line 8).

By the above modifications, we further reduce the lightness β

of the Steiner SLT constructed and improve the time complexity to

O(n log n). From another viewpoint, rectilinear SALT is a smooth

trade-off between RSMA and RSMT. The smaller the ǫ, the closer

the rectilinear SALT is to a RSMA; the larger the ǫ, the closer it is to

a RSMT. It is almost a CL RSMA when ǫ = 0 and a FLUTE RSMT

when ǫ = +∞. In the middle, it is a bounded trade-off between them.

To a certain extent, Fig. 5 illustrates the situation. The RSMT in (a)

is the lightest but has some long paths, while the RSMA in (d) is the

shallowest but is of a large tree weight. Combining the strengths of the

both, the Rectilinear SALT in (c) is not only light but also shallow.

IV. POST PROCESSING

Three effective post processing techniques are adopted to further

improve the rectilinear SALT, which is shown in Algorithm 5. For

simplicity, rectilinear SALT will be referred as SALT hereafter.

First of all, in SALT, edges in RSMA TB may intersect with edges

in forest F , since TB and F are constructed separately. Here, the

intersection between two edges in the Manhattan space means that

their bounding boxes overlap, which is illustrated by Fig. 6(a). For

intersected edges v3v1 and v4v2, we can add a Steiner vertex z within

the intersection box, connect child vertices v3 and v4 to it, and also

connect it to either v1 or v2. By choosing the shorter path between

(z, v1, ..., r) and (z, v2, ..., r), both path length and wirelength can be

reduced. The question is where the best location of the Steiner vertex z

is, which can be answered by the following theorem. Among the four

573

�ଵ �ସ
�ଷ�ଶ

(a) Intersection box
(filled by grey)

�ଵ
�ଶ

�ସ
�ଷ�ଷ′

�ସ′

(b) Child corners
v′3, v

′
4

�ଵ
�ଶ

�ସ
�ଷ

�ସ′
�ଷ′� �′

(c) z should be on
edge v′3v

′
4�ଵ

�ଶ

�ସ
�ଷ�ଷ′�

�ସ′

(d) z should be either
v′3 or v′4

�ଵ
�ଶ

�ସ
�ଷ�ଷ′

�ସ′

(e) First solution

�ଵ
�ଶ

�ସ
�ଷ�ଷ′

�ସ′

(f) Second solution

Fig. 6: Intersection cancelling (arrows point to the root).

(a) (b) (c) (d)

Fig. 7: Z-shape flipping by iterative L-shape flipping. (a) The input.

(b) The first L-shape flipping. (c) The second L-shape flipping (i.e., a

Z-shape flipping). (d) Removing the redundant Steiner vertex.

corners of the intersection box, a child corner is the one closest to a

child vertex (e.g., v′3 and v′4 in Fig. 6(b)).

Theorem 4. For intersected edges, the optimal Steiner vertex z is a

child corner of the intersection box.

Proof. First, z should be on a child edge (i.e., the edge between the

two child corners). If not, its projected point z′ on the child edge

can improve the wirelength without impacting path lengths (Fig. 6(c)).

Supposing z is connected to v1, there is w(v3z)+w(v4z)+w(zv1) =
(w(v3z

′) + w(z′z)) + (w(v4z
′) + w(z′z)) + (w(z′v1) − w(z′z)) ≥

w(v3z
′) + w(v4z

′) + w(z′v1).
When z is on the child edge but not a child corner, it can be improved

by moving to a child corner (Fig. 6(d)). Assume z is still connected to

v1. For wirelength, there is w(v3z) +w(v4z) +w(zv1) ≥ w(v3v
′
4) +

w(v4v
′
4) + w(v′4v1); for path lengths, there is w(v4z) + w(zv1) ≥

w(v4v
′
4) + w(v′4v1), while w(v3z) + w(zv1) = w(v3v

′
4) + w(v′4v1).

The argument is similar if z is connected to v2. In short, the optimal

solution is a child corner (either v′3 or v′4) shown by Figures 6(e) and

6(f). Note that, in some cases, the two child corners may merge into

one, or the intersection box may even degenerates to a segment, but

our discussion is generic and sufficient.

Second, edges may be overlapped with each other by flipping (L-

shape or Z-shape), which improves wirelength and path lengths, as

Fig. 7 shows. A linear time dynamic programming [10] can construct a

flipping solution with optimal wirelength if the vertex degree is bounded

and only edge overlapping around a vertex is counted. In Rectilinear

SALT, the maximum vertex degree is the sum of that in FLUTE (four,

according [24]) and CL (four, considering the root), as a SALT T is

the union of a FLUTE forest F and a CL RSMA TB . Therefore, the

vertex degree is bounded (≤ 4+ 4 = 8), which guarantees O(n) time.

In our implementation, the optimal L-shape flipping is adopted, since

the constant in the time complexity of the optimal Z-shape flipping is

quite large. The Z-shape flipping can be achieved by iterative L-shape

flipping, which is demonstrated by Fig. 7.

Third, the U-shape shifting is beneficial not only to wirelength and

�ଶ �ଷ
�ସ�ଵ

(a) Input

�ଵ
�ଶ �ଷ

�ସ�ଶ′ �ଷ′
(b) Output

Fig. 8: U-shape shifting.

(a) ABP (b) KRY (c) PD (d) Bonn

Fig. 9: Sample runs of various algorithms on the example net (ǫ = 1).

(a) ABP/BRBC (shallowness α = 1.90, lightness β = 1.35). (b) KRY

(α = 1.43, β = 1.10). (c) PD (α = 1.11, β = 1.15) (d) Bonn (α =
1.22, β = 2.25).

path lengths but also to Elmore delay [25], which should be conducted

if possible. An example is in Fig. 8, where the edge v2v3 is shifted

to v′2v
′
3. Note that after the L-shape flipping, the middle edge of the

U-shape path should be strictly horizontal or vertical (e.g., v2v3 in

v1v2v3v4 is strictly horizontal), which makes identifying U easier.

The above methods are safe because they improve wirelength or

path length or both without worsening any of them. They can also

be evaluated and guided by a more accurate delay model.

V. EXPERIMENTAL RESULTS

We implement SALT as well as ES [2], CL [14], ABP/BRBC [17],

[18], KRY [19], PD [20] and Bonn [22] algorithms in C++, while the

source code of FLUTE [12] is obtained from the authors. Benchmarks

of ICCAD 2015 Contest [26] are used for a comprehensive evaluation

and comparison. The benchmark statistics is shown in TABLE V. By

ignoring the 2-pin nets, which are trivial, the batch test covers around

2.4 million nets in total.

First of all, to give the readers some understanding of other routing

tree construction methods, sample runs on the example net are shown

in Fig. 9. Trade-off parameter ǫ is set to 1. Recall that it implies a

shallowness-lightness bound of (1+2ǫ, 1+ 2
ǫ
) for ABP and (1+ǫ, 1+ 2

ǫ
)

for KRY. In PD, it means a shallowness of α ≤ 1+ ǫ. In Bonn, which

targets the Elmore delay, the total tree capacitance is at most 1 + 2
ǫ

times the minimum (i.e., lightness bound β̄ = 1+ 2
ǫ

if pin capacitances

are ignorable), while wire delay is at most a factor of (1+ǫ)2 compared

to a lower bound.

In the batch test, ǫ is set to 20 values ranging from 0 to 73.895

(mainly a geometric sequence 0.05 × 1.5n) to cover the variation of

different methods. The lightness metric is changed to β′ = w(T)
w(FLUTE)

TABLE V: ICCAD 2015 Benchmark Statistics

Design
#cells

(×103)

#nets classified by pin number (×103)
2 3–9 10–19 20–29 30–39 ≥ 40 ≥ 3

superblue1 1932 893 281 23 11 6 0.9 323
superblue3 1876 952 215 35 15 6 1.1 273
superblue4 796 610 162 17 9 4 0.5 192
superblue5 982 824 242 18 8 5 0.7 273
superblue7 768 1493 338 63 27 11 1.7 441
superblue10 1087 1457 385 31 14 9 1.2 441
superblue16 1213 756 213 17 7 5 0.3 243
superblue18 1210 575 156 24 11 5 0.6 197

Total 9863 7559 1992 229 103 51 7.0 2382

574

1 1.05 1.1

1

1.1

1.2

Avg. Lightness β′

A
v

g
.

S
h

al
lo

w
n

es
s
α

FLUTE

CL

SALT w/o

SALT w/

(a) SALT w/ and w/o post processing.

1 1.5 2

1

1.1

1.2

1.3

Avg. Lightness β′

A
v

g
.

S
h

al
lo

w
n

es
s
α

FLUTE CL

SALT ABP

KRY PD

ES Bonn

(b) Shallowness-lightness trade-off.

1 1.5 2

1.2

1.3

1.4

1.5

Avg. Lightness β′

A
v

g
.

D
el

ay
γ

FLUTE CL

SALT ABP

KRY PD

ES Bonn

(c) Delay-lightness trade-off.

Fig. 10: Comparing SALT with other routing tree construction methods.

TABLE VI: SALT with and without Post Processing
trade-off

parameter
ǫ

SALT w/o SALT w/
Light

-ness β′
Shallow
-ness α

Delay
γ

Light
-ness β′

Shallow
-ness α

Delay
γ

0.000 1.100 1.000 1.271 1.066 1.000 1.266
0.050 1.074 1.006 1.258 1.052 1.004 1.259

0.075 1.066 1.010 1.256 1.047 1.007 1.257
0.113 1.056 1.016 1.256 1.041 1.011 1.256

0.169 1.046 1.025 1.258 1.034 1.018 1.257
0.253 1.035 1.039 1.263 1.026 1.029 1.261
0.380 1.024 1.057 1.273 1.018 1.044 1.269

0.570 1.015 1.080 1.287 1.011 1.062 1.281
0.854 1.008 1.108 1.305 1.006 1.085 1.296
1.281 1.003 1.136 1.323 1.003 1.109 1.313

1.922 1.001 1.160 1.339 1.001 1.130 1.328
2.883 1.000 1.176 1.349 1.000 1.146 1.337

4.325 1.000 1.187 1.354 1.000 1.157 1.342
6.487 1.000 1.193 1.356 1.000 1.162 1.344
9.731 1.000 1.195 1.357 1.000 1.164 1.344

... 1.000 1.196 1.357 1.000 1.164 1.344

(instead of β = w(T)
w(MST)

), where FLUTE serves as a better baseline

than MST. Besides, a normalized Elmore delay metric γ, which assumes

uniform unit-length capacitance and resistance, is also used. For each

routing tree, delay γ is the longest Elmore delay among all source-

sink paths, which is then normalized by a delay lower bound using the

method in [22]. For each method and each ǫ, we average the scores

over all nets.

TABLE VI and Fig. 10(a) show the effectiveness of our post

processing techniques, which simultaneously improve α , β′ and γ.

Note that SALT is very efficient. It completes the routing as well as

post processing on 2.4 million nets for 20 times (due to different ǫ) in

just 22.5 minutes.

Compared to other algorithms targeting the shallowness-lightness

trade-off of a tree (including ABP, KRY, PD, ES and Bonn), SALT

has superior performance, which mostly leads to both smaller wire-

length and shorter path lengths. The average situation is illustrated by

Fig. 10(b). It can be clearly observed that our method has the best

Pareto frontier between RSMT and RSMA, while ES, PD and Bonn

compete for the second best.

Fig. 10(c) illustrates the delay and lightness of different methods,

where SALT still achieves a good trade-off. Though KRY may obtain

a slightly smaller delay, the wirelength cost is actually significant (note

that the scales of x and y axes are different). Besides, the smaller Elmore

delay there is sometimes achieved by parallel edges, which is much less

preferable than assigning the edge to a higher metal layer in practice.

VI. CONCLUSION

We describe a novel Steiner SLT construction method called SALT,

which is efficient and has the tightest bound over all the state-of-the-art

SLT algorithms. Applying SALT to Manhattan space leads a smooth

trade-off between RSMT and RSMA for VLSI routing. Cooperating

with some post-processing techniques, it achieves superior trade-off

between path length (or delay) and wirelength, compared to both

classical and recent shallow-light routing tree algorithms. A promising

further work is integrating SALT into a complete routing optimization

flow. Another line of research is to consider congestion when building

the tree.

REFERENCES

[1] M. Elkin et al., “Steiner shallow-light trees are exponentially lighter than
spanning ones,” in Proc. FOCS, 2011, pp. 373–382.

[2] ——, “Steiner shallow-light trees are exponentially lighter than spanning
ones,” SIAM Journal on Computing, vol. 44, no. 4, pp. 996–1025, 2015.

[3] I. L. Markov, “Limits on fundamental limits to computation,” Nature, vol.
512, no. 7513, pp. 147–154, 2014.

[4] H. Esmaeilzadeh et al., “Power challenges may end the multicore era,”
Communications of the ACM, vol. 56, no. 2, pp. 93–102, 2013.

[5] T. H. Cormen et al., Introduction to algorithms. MIT press, 2009.

[6] M. R. o. Garey, “The rectilinear steiner tree problem is NP-complete,”
SIAM Journal on Applied Mathematics, vol. 32, no. 4, pp. 826–834, 1977.

[7] W. Shi et al., “The rectilinear steiner arborescence problem is NP-
complete,” SIAM Journal on Computing, vol. 35, no. 3, pp. 729–740, 2005.

[8] F. K. Hwang, “On steiner minimal trees with rectilinear distance,” SIAM

Journal on Applied Mathematics, vol. 30, no. 1, pp. 104–114, 1976.

[9] H. Zhou et al., “Efficient minimum spanning tree construction without
delaunay triangulation,” Information Processing Letters, vol. 81, no. 5, pp.
271–276, 2002.

[10] J.-M. Ho et al., “New algorithms for the rectilinear steiner tree problem,”
IEEE TCAD, vol. 9, no. 2, pp. 185–193, 1990.

[11] A. B. Kahng et al., “A new class of iterative steiner tree heuristics with
good performance,” IEEE TCAD, vol. 11, no. 7, pp. 893–902, 1992.

[12] C. Chu et al., “FLUTE: Fast lookup table based rectilinear steiner minimal
tree algorithm for VLSI design,” IEEE TCAD, vol. 27, no. 1, pp. 70–83,
2008.

[13] S. K. Rao et al., “The rectilinear steiner arborescence problem,” Algorith-

mica, vol. 7, no. 1-6, pp. 277–288, 1992.

[14] J. Córdova et al., “A heuristic algorithm for the rectilinear steiner arbores-
cence problem,” Tech. Rep., 1994.

[15] J. Cong et al., “Performance-driven interconnect design based on dis-
tributed RC delay model,” in Proc. DAC. IEEE, 1993, pp. 606–611.

[16] M. Pan et al., “A novel performance-driven topology design algorithm,” in
Proc. ASPDAC. IEEE, 2007, pp. 244–249.

[17] B. Awerbuch et al., “Effcient broadcast and light-weight spanners,” Tech.
Rep., 1991.

[18] J. Cong et al., “Provably good performance-driven global routing,” IEEE

TCAD, vol. 11, no. 6, pp. 739–752, 1992.

[19] S. Khuller et al., “Balancing minimum spanning trees and shortest-path
trees,” Algorithmica, vol. 14, no. 4, pp. 305–321, 1995.

[20] C. J. Alpert et al., “Prim-Dijkstra tradeoffs for improved performance-
driven routing tree design,” IEEE TCAD, vol. 14, no. 7, pp. 890–896,
1995.

[21] C. Bartoschek et al., “The repeater tree construction problem,” Information

Processing Letters, vol. 110, no. 24, pp. 1079–1083, 2010.

575

�௞
�௞+1

�௜ �௝

− −

�ሺ�௞ , �௞+1ሻ = �ሺ�௞, �௞+1ሻ

�௟ሺ��ሻ ��ሺ��+1ሻ + + +

(a) Balanced case

�௞

�௞+1

��

− +

�ሺ�௞ , �௞+1ሻ = ܾሺ�௞, �௞+1ሻ

�௟ሺ��ሻ ��ሺ��+1ሻ + + + ��
(b) Unbalanced case

Fig. 11: Decomposed edge cost c(Lk, Lk+1).

[22] R. Scheifele, “Steiner trees with bounded RC-delay,” Algorithmica, vol. 78,
no. 1, pp. 86–109, 2017.

[23] ——, “RC-aware global routing,” in Proc. ICCAD. ACM, 2016, pp. 21:1–
21:8.

[24] M. Hanan, “On steiners problem with rectilinear distance,” SIAM Journal

on Applied Mathematics, vol. 14, no. 2, pp. 255–265, 1966.

[25] K. D. Boese et al., “High-performance routing trees with identified critical
sinks,” in Proc. DAC. IEEE, 1993, pp. 182–187.

[26] M.-C. Kim et al., “ICCAD-2015 CAD Contest in incremental timing-driven
placement and benchmark suite,” in Proc. ICCAD. ACM, 2015, pp. 921–
926.

APPENDIX

A. Proof of Lemma 2

The proof is by induction. If z is a leaf, it is trivial by making vi =
vj = z. We then assume that the statement holds for the two children

zl and zr of z, and prove it for z.

Suppose first that |b(zl, zr)| ≤ s(zl, zr), i.e., w′(zzl) + w′(zzr) =
s(zl, zr). Let vi ∈ Leaves(zl) and vj ∈ Leaves(zr) be two

vertices that achieve s(zl, zr) = dG(vi, vj)−(dT (zl, vi)+dT (zr, vj)).
Therefore,

dT (z, vi) + dT (z, vj)

= w
′(zzl) + dT (zl, vi) + w

′(zzr) + dT (zr, vj)

= s(zl, zr) + dT (zl, vi) + dT (zr, vj)

= dG(vi, vj).

(7)

Otherwise, |b(zl, zr)| > s(zl, zr). Suppose w.l.o.g. that w′(zzl) = 0.

By the induction hypothesis, there are vi, vj ∈ Leaves(zl) such that

dT (zl, vi) + dT (zl, vj) = dG(vi, vj). Hence,

dT (z, vi) + dT (z, vj) = dT (zl, vi) + dT (zl, vj) = dG(vi, vj). (8)

Note that vi, vj ∈ Leaves(zl) ⊂ Leaves(z).

B. Proof of Lemma 3

We start by decomposing c(Lk, Lk+1). There are two cases, as

Fig. 11 shows. First, suppose c(Lk, Lk+1) = s(Lk, Lk+1). Let

vi ∈ Leaves(Lk) and vj ∈ Leaves(Lk+1) be two vertices that achieve

s(Lk, Lk+1). Therefore,

c(Lk, Lk+1) = s(Lk, Lk+1)

= dG(vi, vj)− (dT (Lk, vi) + dT (Lk+1, vj))

≤ dG(vi, vl(Lk))− dT (Lk, vi)
︸ ︷︷ ︸

within T (Lk)

+ W (l(Lk), f(Lk+1))
︸ ︷︷ ︸

between T (Lk), T (Lk+1)

+ dG(vf(Lk+1), vj)− dT (Lk+1, vj)
︸ ︷︷ ︸

within T (Lk+1)

,

(9)

where the last inequality holds due to triangle inequality.

Second, c(Lk, Lk+1) = |b(Lk, Lk+1)|. If b(Lk, Lk+1) ≥ 0, by

Lemma 1, ∀vp ∈ Leaves(Lk), ∀vq ∈ Leaves(Lk+1),

c(Lk, Lk+1) = b(Lk, Lk+1) = t(Lk)− t(Lk+1)

= (dG(r, vp)− dT (Lk, vp))− (dG(r, vq)− dT (Lk+1, vq))

≤ dG(vp, vq)− dT (Lk, vp) + dT (Lk+1, vq)

≤ dG(vp, vl(Lk))− dT (Lk, vp)
︸ ︷︷ ︸

within T (Lk)

+ W (l(Lk), f(Lk+1))
︸ ︷︷ ︸

between T (Lk), T (Lk+1)

+ dG(vf(Lk+1), vq) + dT (Lk+1, vq)
︸ ︷︷ ︸

within T (Lk+1)

.

(10)

If b(Lk, Lk+1) < 0, the result is symmetric. Therefore, the part

decomposed from c(Lk, Lk+1) into T (Lk) is

Cr(Lk) =







dG(vi, vl(Lk))− dT (Lk, vi), c(Lk, Lk+1) = s(Lk, Lk+1),

dG(vp, vl(Lk))− dT (Lk, vp), c(Lk, Lk+1) = b(Lk, Lk+1),

dG(vq, vl(Lk)) + dT (Lk, vq), c(Lk, Lk+1) = −b(Lk, Lk+1),
(11)

where indices i is fixed while p, q are flexible. Meanwhile, there is

Cl(Lk), which is decomposed from c(Lk−1, Lk) and can be calculated

similarly. The weight sum within T (Lk) is then C(Lk) = Cl(Lk) +
Cr(Lk).

We will prove C(Lk) ≤W (f(Lk), l(Lk)), which has three cases.

Case 1: Cl(Lk) and Cr(Lk) both contain minus. Then C(Lk) =
dG(vf(Lk), vj) − dT (Lk, vj) + dG(vi, vl(Lk)) − dT (Lk, vi). When

j ≤ i, it is obvious. Otherwise, since dT (Lk, vj) + dT (Lk, vi) ≥
dT (vi, vj) ≥ dG(vi, vj),

C(Lk) ≤ dG(vf(Lk), vj) + dG(vi, vl(Lk))− dG(vi, vj)

≤ dG(vf(Lk), vi) + dG(vi, vj)) + dG(vi, vl(Lk))

≤W (f(Lk), l(Lk)).

(12)

Case 2: only one of Cl(Lk) and Cr(Lk) contains minus. Sup-

pose w.l.o.g. that Cl(Lk) does, then C(Lk) = dG(vf(Lk), vq) +
dT (Lk, vq) + dG(vi, vl(Lk))− dT (Lk, vi). By setting q = i,

C(Lk) = dG(vf(Lk), vi) + dG(vi, vl(Lk)) ≤W (f(Lk), l(Lk)). (13)

Case 3: neither of Cl(Lk) and Cr(Lk) contains minus. That is,

C(Lk) = dG(vf(Lk), vq)+dT (Lk, vq)+dG(vp, vl(Lk))+dT (Lk, vp).
By Lemma 2, there exist f(Lk) ≤ q ≤ p ≤ l(Lk) such that

C(Lk) = dG(vf(Lk), vq) + dG(vq, vp) + dG(vp, vl(Lk))

≤W (f(Lk), l(Lk)).
(14)

By (9), (10) and C(Lk) ≤W (f(Lk), l(Lk)), the proof is done.

C. Proof of Lemma 5

First, n is assumed to be the power of 2. Indeed, we can duplicate r

into 2⌈logn⌉ − n new vertices if it is not. Besides, if ⌈log θ⌉ ≥ log n,

it is trivial by Theorem 2. Hence, we assume that ⌈log θ⌉ < log n.

Let E′
i ⊆ E′ denote the set of edges added during the i-th iteration

(1 ≤ i ≤ log n), W ′
i denote

∑

e∈E′

i

w′(e), Leaves(e) denote the set

of leaf vertices in the downstream from an edge e. Since T is SPT and

|Leaves(e)| = 2i−1 for e ∈ E′
i,

∑

v∈V \{r}

dG(r, v) =
∑

v∈V \{r}

dT (r, v) =

logn∑

i=1

∑

e∈Ei

|Leaves(e)|w′(e)

=

logn∑

i=1

2i−1 ·W ′
i ≥

logn∑

i=⌈log θ⌉+1

2i−1 ·W ′
i ≥ θ

logn∑

i=⌈log θ⌉+1

W
′
i .

(15)

Therefore,
∑logn

i=⌈log θ⌉+1 W
′
i ≤ η since

∑

v∈V \{r} dG(r, v) ≤ θ · η.

Together with Lemma 4,

w(T) =

logn∑

i=1

W
′
i =

⌈log θ⌉
∑

i=1

W
′
i +

logn∑

i=⌈log θ⌉+1

W
′
i

≤ ⌈log θ⌉ · w(MST (G)) + η.

(16)

576

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 0
 1

 1

 HistoryList_V1
 qi2base

