CMSC5724: Quiz 3

Hand-write all your solutions on paper. Take a picture of the paper **together with** your CUHK student ID card. Upload the picture to Blackboard or email it to the instructor at taoyf@cse.cuhk.edu.hk. Your must do so within 20 minutes after the quiz has started.

Problem 1 (40%). Consider the kernel function $K(p,q) = (2(p \cdot q) + 1)^2$, where p = (p[1], p[2]) and q = (q[1], q[2]) are 2D vectors. Recall that there is a mapping function ϕ from \mathbb{R}^2 to \mathbb{R}^d for some integer d, such that K(p,q) equals the dot product of $\phi(p)$ and $\phi(q)$. Give the details of ϕ .

Answer: Rewrite K as dot product form.

$$K(p,q) = (2p[1]q[1] + 2p[2]q[2] + 1)^{2}$$

= 4p[1]²q[1]² + 4p[2]²q[2]² + 8p[1]p[2]q[1]q[2] + 4p[1]q[1] + 4p[2]q[2] + 1.

Hence, $\phi(p) = (2p[1]^2, 2p[2]^2, 2\sqrt{2}p[1]p[2], 2p[1], 2p[2], 1).$

Problem 2 (10%). Consider a 3-class linear classifier in 2D space that is defined by vectors $w_1 = (3,5), w_2 = (-2,9)$, and $w_3 = (0,7)$. Given a point p = (-5,1), explain what is the label assigned to p and why.

Answer: Computing the dot product between each w_i and p where $i \in [1,3]$, we have:

- $\boldsymbol{w}_1 \cdot \boldsymbol{p} = -10;$
- $w_2 \cdot p = 19;$
- $\boldsymbol{w}_3 \cdot \boldsymbol{p} = 7.$

Since $w_2 \cdot p$ is largest, the label assigned to p is 2.

Problem 3 (50%). In the lecture, we proved that the k-center algorithm is 2-approximate. In this problem, you will see that the approximation ratio 2 is tight. Consider the k-center problem on the following set P of one-dimensional points (the numbers indicate coordinates):

Answer the following questions for k = 2:

- 1. What is the optimal set C^* of centroids? What is the radius of C^* (namely, $r(C^*)$), using the notations in the lecture notes)?
- 2. Prove: the k-center algorithm always returns a centroid set whose radius is $2 \cdot r(C^*)$.

Answer: 1. $C^* = \{b, e\}$ and $r(C^*) = 1$. 2: Let $C = \{o_1, o_2\}$ be the set returned by the k-center algorithm. Assume that o_1 (or o_2 , resp.) is the first (or the second, resp.) point added into C.

When $o_1 \in \{a, b, c\}$, o_2 must be f. We have r(C) = 2.

When $o_1 \in \{d, e, f\}$, o_2 must be a. We also have r(C) = 2.

Therefore, the radius of the centroid set returned by the k-center algorithm is always $2 \cdot r(C^*)$.