CMSC5724: Quiz 2

Hand-write all your solutions on paper. Take a picture of the paper **together with** your CUHK student ID card, national ID card, or passport ID page. Upload the picture to Blackboard or email it to the instructor at *taoyf@cse.cuhk.edu.hk*. Your must do so before the deadline to be announced at the beginning of the quiz.

Problem 1 (50%). The following figure shows a set of 5 points. Use the Perceptron algorithm to find a line that (i) crosses the origin and (ii) separates the black points from the white ones. Recall that Perceptron starts with a vector $\boldsymbol{w} = \boldsymbol{0}$ and iteratively adjusts it using a violation point. You need to show the value of \boldsymbol{w} after every adjustment.

Answer: Without loss of generality, assume that the black points have label 1 while the white ones have label -1. At the beginning, $\boldsymbol{w} = (0,0)$. We use \boldsymbol{A} to denote the vector form of \boldsymbol{A} . Define $\boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$ and \boldsymbol{E} similarly.

Iteration 1. Since A does not satisfy $w \cdot A > 0$, update w to w + A = (0, 0) + (0, 2) = (0, 2).

Iteration 2. Since C does not satisfy $\boldsymbol{w} \cdot \boldsymbol{A} > 0$, update \boldsymbol{w} to $\boldsymbol{w} + \boldsymbol{C} = (0, 2) + (2, 0) = (2, 2)$.

Iteration 3. No more violation points. So we have found a separation line 2x + 2y = 0.

Problem 2 (50%). Suppose that \mathcal{H} is a set of classifiers, each mapping a point in \mathbb{R}^d to $\{-1, 1\}$ for some integer d (which will not matter). Consider any subset $\mathcal{H}' \subseteq \mathcal{H}$. Prove: for any set P of points in \mathbb{R}^d , VC-dim $(P, \mathcal{H}') \leq$ VC-dim (P, \mathcal{H}) .

Answer: Suppose that there exists a set P satisfying VC-dim $(P, \mathcal{H}') > \text{VC-dim}(P, \mathcal{H})$. Then, there must be a subset S of P such that $|S| = \text{VC-dim}(P, \mathcal{H}')$ and S is shattered by \mathcal{H}' . According to the fact $\mathcal{H}' \subseteq \mathcal{H}$, we know S is also shattered by \mathcal{H} . However, this implies that $\text{VC-dim}(P, \mathcal{H}') \leq \text{VC-dim}(P, \mathcal{H})$, thus causing a contradiction.